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The major interest in intervention trials is often the estimation of
intervention effects for individuals who actually receive the intervention.
However, some percentage of noncompliance is usually unavoidable in
intervention trials when dealing with human participants. In addition, it is
not easy to control compliance behavior of individuals who may decide not
to participate even with highly attractive incentives. Noncompliance 1s a
major threat to obtaining power to detect intervention effects (Jo, 2002),
and may bias the estimation of intervention effects if not handled carefully
in the statistical analysis.

ITT (intent to treat) analysis is a standard way to estimate
intervention effects in randomized experimental designs in the presence
of noncompliance. In this method, average outcomes are compared by
randomized groups, ignoring the existence of noncompliance. Because
the standard ITT analysis often underestimates intervention effects in the
presence of noncompliance, the possibility of estimating intervention effects
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6. LONGITUDINAL STUDIES WITH NONCOMPLIANCE 113

only for the individuals who actually receive the intervention has been
explored using CACE (complier average causal effect) estimation (Angrist,
Imbens, & Rubin, 1996; Bloom, 1984; Imbens & Rubin, 1997; Little &
Yau, 1998). In CACE approaches, compliers and noncompliers are allowed
to be different in various aspects and are best thought of as belonging to
different subpopulations. For example, people with higher motivation or a
special interest in the intervention will be more likely to comply with the
intervention.

In the CACE estimation method, the causal effect of intervention 1s
usually defined based on a single outcome observed after intervention,
treating the baseline measure as one of the covariates (i.e., ANCOVA
approach).  However, when an intervention study is focused on the
long-term effect of the intervention, the outcome is often measured several
times at specific intervals. In this case, considering the longitudinal nature
of intervention studies, it is also possible, and perhaps more natural, to
define the intervention effect based on a trend or a growth trajectory of
individuals. This study demonstrates CACE estimation based on latent
trajectories over time in a growth mixture modeling framework.

One advantage of using a growth modeling framework is that the first
time point measure 1s considered as one of the outcome measures instead
of as one of the covariates. This parameterization adds more flexibility in
the interpretation of the results because initial status and growth rate of
outcome measures are separated. For example, the influence of background
variables can be estimated separately for initial status and growth rate of
the outcome measure.

Another advantage of this model is that it utilizes not only covariate but
also trajectory information, which often improves precision in estimating
the compliance type of individuals. Including growth process in the
estimation of CACE utilizes the idea of a general latent variable modeling
framework where both categorical and continuous latent variables are
incorporated (Muthén, 2001a; Muthén, 2001b, Muthén & Muthén,
1998-2001). That is, latent variables that represent growth trajectories
are continuous as in conventional structural equation models, whereas
the latent variable that represents compliance status 1s categorical. To
differentiate growth modeling with both categorical and continuous latent
variables from traditional growth modeling, the former will be called
“growth mixture modeling” in this study. This study focuses specifically
on random coefficient growth mixture modeling where individual variation
.s allowed within each class or compliance status. In contrast, individual
variation is not allowed within each growth trajectory class in a group-based
modeling approach (Nagin, 1999).

This study also explores the possibility of using exploratory growth
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114 JO AND MUTHEN

mixture analysis as a data mining tool that precedes growth mixture
CACE analysis. Growth mixture CACE analysis is considered confirmatory
because compliance type is known for individuals who are assigned to the
intervention condition. In exploratory growth mixture analysis, individuals
are classified into several classes without observed class information
(training data), and efficiency of classification can often be mmproved by
utilizing the fact that certain trends are present in longitudinal data
(Muthén, Brown, Khoo, Yang, & Jo, 1997; Muthén et al., in press; Muthén
& Shedden, 1999). When the intervention condition includes many sessions,
or doses, one needs to determine the appropriate cutpoints that separate
ndividuals into different classes based on level of compliance. Exploratory
growth mixture analysis can be useful in determining cutpoints at the
planning stage of growth mixture CACE analysis.

This chapter is organized as follows. Section 1 describes the estimation
method using the ML-EM algorithm and defines model assumptions in the
estimation of CACE in this study. Section 2 demonstrates the efficiency of
CACE estimation in growth mixture modeling through simulation studies.
Section 3 demonstrates how exploratory and confirmatory growth mixture
analyses can be used in studying unknown subpopulations using the Johns
Hopkins Preventive Intervention Study in Baltimore Public Schools as an
example. Section 4 concludes with discussion.

ESTIMATING DIFFERENTIAL EFFECTS OF
INTERVENTIONS

Model assumptions

The CACE models used in this study are based on statistical assumptions
in line with Rubin’s causal model. In Rubin’s causal model approach,
the possibility of statistical causal inference is built based on the effect of
treatment assignment at the individual level (Holland, 1986: Rubin, 1974,
1978, 1980). Stable unit treatment value (SUTVA) implies that potential
outcomes for each person are unrelated to the treatment status of other
individuals (Rubin, 1978, 1980, 1990).

SUTVA and randomization in the study provide a statistical means of

causal inference at the population level. Based on these assumptions, four
types of subpopulations can be defined by classifying the potential behavior
types of the subjects. Angrist et al. (1 996) labeled the four categories as
complier, never-taker, defier. and always-taker based on assignment and
receipt of treatment. Compliers are subjects who do what they are assigned
to do. Never-takers are subjects who do not receive the treatment even if
they are assigned to the treatment condition. Defiers are the subjects who
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do the opposite of what they are assigned to do. Always-takers are the
subjects who always receive the treatment no matter which condition they
are assigned. Among these four kinds of possible compliance types, the
current study assumes only two types of compliance and eliminates the
possibility of defiers and always-takers. The assumption of monotonicity
(Imbens & Angrist, 1994) excludes the possibility of having defiers. In
addition, the current study assumes that there are no always-takers, which
is the case when study participants are prohibited from receiving a different
intervention condition than the one to which they were assigned as in the
real data examples shown in later sections. However, unlike monotonicity,
the assumption of having no always-takers is not critical in estimating the
CACE and can be relaxed depending on the situation.

Unlike ITT analysis, CACE analysis involves methodological
complexities due to the missingness of compliance information among
control condition individuals. In conventional CACE approaches, it is
assumed that the outcome is independent of the treatment assignment
for never-takers and always-takers (the exclusion restriction assumption,
Angrist et al., 1996). This assumption plays a critical role in simplifying
methodological difficulties involved in CACE approaches. Under this
assumption, treatment effects are estimated for compliers, but are fixed
at zero for the rest. However, this assumption can be unrealistic 1n some
situations (Hirano, Imbens, Rubin, & Zhou, 2000; Jo, in press-a, b). In the
Johns Hopkins Preventive Intervention Study example shown in this study,
it seems more reasonable to dichotomize individuals as low compliers and
high compliers than as never-takers and compliers. In this case, it is possible
that the intervention might have a weaker impact on low compliers, but it
could not be guaranteed that the intervention has no effect at all, because
low compliers were also exposed to the intervention.

Growth mixture CACE modeling using ML-EM estimation
method

This study focuses on average causal effect estimation in the random
coefficient growth mixture modeling framework. In this study, CACE
estimation is used to refer to a more general method that differentiates
average causal effect at varying levels of compliance, although the CACE
method usually means causal effect estimation that is limited only to
compliers.

In growth mixture analysis, the observed outcome variable can be
expressed in terms of continuous latent variables that capture growth
trajectories over time. Consider a single outcome variable y for individual
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i at time point %,
yir = Lik A1g + Sik Ast + €t (6.1)

where latent categorical variable ¢ has K levels of compliance status (k =
1,2, ..., K). Compliance status ¢ is observed in the intervention group and
Jatent (missing) in the control group. Variable ¢; = (i1, Ci2, - Cik) has
a multinomial distribution, where ¢;; = 1 if individual ¢ belongs to class
k. and zero otherwise. The categorical latent variable approach may also
be referred to as finite mixture modeling where sampling units consist of
subpopulations that might have separate distributions and different model
parameters (McLachlan & Peel, 2000; Titterington, Smith, & Makov, 1985).
In finite mixture modeling, the number of mixture components is assumed
to be known and fixed. For example, K =2 1n simulation studies and real
data examples shown in later sections. Here, I;r and Six are individually
varying continuous latent variables representing initial level of outcome and
growth rate (slope) respectively. The time scores for the initial status (A1e)
are equal across all time points (usually fixed at 1.0) because initial status
does not change over time. The time scores for the growth rate (Agt) are
1 T O i representing linear growth over time, which may be fixed at
different values depending on the distance between the measuring points.
And ¢;; represents a normally distributed residual at time point ¢ with zero
mean and variance o”.

Individual variation mn growth parameters Iix and Six within compliance
class k can be expressed as

Lix = I + e Xi < Cl'ik*- (62)
Sik = Sk + Vs Xi +Yzk Zi + CS?'.}:.? (63)

where I and Sy represent intercept parameters of initial status and slope
for each compliance class k; X represents a vector of observed covariates, and
~ . and Ys, are regression coefficient parameters. And Cyix and (g are
normally distributed residuals with zero means and variances ¥y, ¥ sk» and
4 covariance ¥ gx. The Z;is a binary variable that represents intervention
assignment, where Z; = 1 if individual is assigned to the intervention
condition and zero if .ndividual i is assigned to the control condition. Based
on randomization, growth rate (slope) 1s regressed on Zi, but initial status
is not regressed on Z;. The 7z represents a mean shift in the slope when
subject 7 belongs to the intervention condition, and is allowed to vary across
different compliance status. In this study, intervention effect is defined as
the difference between intervention and control conditions in the outcome
measure at the final time point. Based on Equations 6.1, 6.2 and 6.3, the
average causal effect (ACE) of an ‘ntervention assignment can be defined
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at compliance level k£ at the last time point (i.e., Asy =T) as

The class probability 7; is allowed to vary as a function of covariates.
When background variables are available, the multinomial logit model of
m; with a vector of covariates X 1is decribed as

logit(m;) = Bo + By X, (6.5)

where m; is a K dimensional vector (i1, T2, - Wik )y Tk = Pleix =
1 1 Xi), and lngit(ﬂ'g) = [ﬁog(ﬁﬂ/ﬁ”{),Eog(:rrz-g/rr”\*),...,io_i’,l(frl—‘;\f_l/?r.,;,r()]’.
The By are K —1 dimensional logit intercepts, and 3, are multinomial logit
regression coefficient parameters. The multinomial logit regression also
provides information about the characteristics of individuals with different
compliance levels.

CACE analyses reported in this study were carried out by the Mplus
program (Muthén & Muthén, 1998-2001) using maximum likelihood
estimation via the EM algorithm (Dempster, Laird, & Rubin, 1977; Little &
Rubin, 1987; McLachlan & Krishnan, 1997: Tanner, 1996). In the ML-EM
method, the unknown compliance status (¢) is handled as missing data.

Consider the sampling distribution of y and x from the mixture of k
components

K
gly,x | 8,m) =Y muf(y, x| 0k), (6.6)
k=1

where y and x represent observed data, @ represents model parameters,
and 7 represents the proportion of the population from component k with
Zle 7, = 1. The probability 7 is the parameter that determines the
distribution of ¢. The observed-data log likelihood is

LogL ="y log(y: | xi). (6.7)

=1
Given the formulation of the proposed growth mixture CACE model, the
complete-data log likelihood can be written as

i

LogL. = Y _ [log(ci | xi) +log(m; | e, Xi) + log(yi | m)], (6.8)
i=1

where
n K

Z log(c; | xi) = ZZ cik log Tik. (6.9)

i=1 i=1 k=1
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In Equations 6.8 and 6.9, ¢ represents categorical latent compliance class,
and n represents continuous latent growth factors (i.e., and S).

Maximum likelihood estimation using the EM algorithm considers
complete-data log likelihood shown in Equation 6.8. The E step computes
the expected values of the complete data—sufficient statistics, given data and
current parameter estimates. Compliance status c 1s considered as missing
data in this step. The conditional distribution of ¢, given the observed data
and the current value of model parameter estimates 0, is given by

f(clY'-xag):Hf(ciiyi'-xiag)‘ (610)
i=1

The E step applies to both confirmatory (i.e., CACE) and exploratory
growth mixture analyses, but the difference is that growth mixture CACE
analysis uses information about already-known class membership (i.e.,
compliance status) in the intervention condition. Therefore, the first step
of the implentation is easily modified with a known value of the indicator
Cie-

The M step computes the complete data ML estimates with complete
data—sufficient statistics replaced by their estimates from the E step. This
procedure continues until it reaches optimal status. The M step maximizes

T

K
ST palog Tk (6.11)

i=1 k=1

with respect to model parameters. The pix is the posterior class probability
of individual i, conditioning on observed data and model parameters, where
Tik — P(Cik l){i).

The identifiability and precision of mixture and growth mixture models
used for CACE analyses in this study are based on observed compliance
class membership in the intervention condition (training data) and various
sources of auxilliary information such as from covariates and growth
trajectories. For more details about identifiability and efficiency of extended
CACE models, see Jo (in press-a).  Parametric standard errors are
computed from the ‘nformation matrix of the ML estimator using both the
first— and the second-order derivatives under the assumption of normally
distributed outcomes. For more details about estimation procedures in
growth mixture modeling, see Muthén & Muthén (1998-2001), Muthén &
Shedden (1999), and Muthén et al. (in press).




6. LONGITUDINAL STUDIES WITH NONCOMPLIANCE 119

CACE ESTIMATION USING THE OBSERVED AND
LATENT VARIABLES: SIMULATION STUDIES

In longitudinal intervention studies, the effect of the intervention can be
defined as the difference between the intervention and the control group
in the observed outcome measured at the last time point, conditioning on
the outcome measured at the first time point (ANCOVA approach). An
alternative is to define the intervention effect based on latent variables
that capture growth trajectories of individuals (growth model approach) as
described in the previous section. This section demonstrates the quality of
average causal effect estimates based on observed variable (ANCOVA) and
latent variable (growth model) approaches. The simulation studies shown
in this section assume that there are two underlying subpopulations with
different compliance behaviors (K = 2). One subpopulation consists of
‘ndividuals who would show a high level of compliance if assigned to the
intervention condition (high compliers). The other subpopulation consists
of individuals who would show a low level of compliance if assigned to the
‘ntervention condition (low compliers). The ratio of high and low compliers
is 50:50, and the ratio ot individuals assigned to the intervention and control
conditions is 50:50. It is assumed that the intervention assignment is binary
(intervention condition if Z = 1. control condition if Z = 0) and has
differential effects on high compliers and low compliers. The true parameter
values, effect size, and sample size are chosen based on the Johns Hopkins
Public School Preventive Intervention Study example that is shown in a
later section. Covariates are not included in this setting.

The true initial status mean (I) and the true mean growth rate (Si)

for high compliers are
In \ _ 5.00
S, /]~ \ -025 )"

The true initial status mean (I;) and the true mean growth rate (S;) for

low compliers are
I _( 3.50
S . 0.15 )~

The true additional growth rates for high compliers (7yz;,) and low
compliers (vz;) when they are assigned to the intervention condition are
yzn = 020, 7z = —0.10, where the positive value of vy, represents a
desirable effect of the intervention for high compliers, and the negative
value of 7z, represents a negative offect of the intervention for low compliers,
assuming that positive growth of the outcome is desirable.
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The true initial status variance is the same for high compliers and low
compliers (¢;, = ¥y = 0.64), and the true growth rate residual variance
is the same for high compliers and low compliers (Vg = Y5 = 0.0625).
The true residual covariance between initial status and growth rate is zero
for both high compliers and low compliers (Y gn = %151 = 0), but is not
fixed at zero in the analyses. Both variances and covariances are assumed
to be equal across high and low compliers in the analyses. However, in real
data examples shown in a later section, both variances and covariances are
allowed to vary across high and low compliers.

Tt is assumed in the simulation setting that the outcome is measured
four times with equal distances and has a linear trend over time. The
initial status does not change over time. Given that, the fixed time scores
for initial status and growth rate used in both data generation and growth
mixture CACE analyses are

( /\fta ASI‘. ) =

—_ = =
Lo b = O

The true residual variances and covariances of observed outcome
measures are

d11 g12 013 0O14 0.36 0 0 0
o1 O22 023 024 _ 0 049 O 0
o331 O32 033 034 N 0 0 064 O
041 CT42 043 044 0 0 0 1.00

where true residual covariances are zero, and are also assumed to be zero
in the analyses. The true residual variances of outcome measures result in
R2 of 0.64 at the first time point, and 0.55 at the last time point.

The model used for data generation and the CACE analysis using the
latent variable approach can be described as

yie = Lik Are+ Sik Ast + €it, (6.12)
I = di ¥ (6.13)
Sik = Sk+vzr Zit+ sk (6.14)

where the assignment of an intervention has a differential effect (7, ) on the
growth rate of high compliers and low compliers. According to Equation
6.4, 7, can be translated into the intervention effect at the last time point

(i.e., Yz X 3)-
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Given that & = 2 and there are no covariates, the multinomial logit

model can be simplified as

P €h) = m,
Pliel) =1— mp = mp,
logit(mpi) = B, (6.15)

where 7p,; denotes the probability of being a high complier, 7; denotes the
probability of being a low complier, and 3, represents a logit intercept that
determines the ratio of high and low compliers. The true logit intercept is
0.0 (i.e., 50:50).

The model used for the CACE analysis based only on the observed
variables (ANCOVA approach) can be expressed as

Yia = + A yir + Lzi Zi + €ias (6.16)

where the differential effect of intervention (I'z;) is defined based on the
outcome measured at the last time point (y;4) conditioning on the outcome
measured at the first time point (y;1). Here, the baseline outcome measure
(yi1) is considered as a covariate.

In the ANCOVA approach, the baseline outcome measure (yi1) is also
nsed as a predictor of compliance. Treating v, as a covariate, the logit
model can be described as

Pli€h|ya) = i
Piel|lyn) =1 — mi = mi,
logit(mp;) = Bo+ By Yiis (6.17)
where the logit coefficient 3, shows the level of association between the

haseline outcome measure and compliance behavior.
The simulation results presented in Table 6.1 are based on 500

o

replications with a sample size of 300. Coverage is defined as the proportion
of replications out of 500 replications where the true intervention effects
‘or high and low compliers are covered by the 95% confidence intervals
of intervention eoffect estimates. Power is defined as the proportion of

replications out of 500 replications where the iutervention effect estimate is
significantly different from zero (o = .09).

It is demonstrated in Table 6.1 that both the ANCOVA and growth
model approaches provide average intervention offect estimates with
reasonable quality. considering that compliance information is missing for
50% of individuals (i.c.. control condition individuals) and the sample size
s fairly small (i.c., N = 300). Simulation results show that the quality
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TABLE 6.1

CACE Analyses Using the Observed and Latent Variable Approaches: The

Quality of Average Intervention Effect Estimates at the Last Time Point

Intervention Effect

High Complier (I'zn)
Low Complier (I'z;)
Coverage (High Complier)
Coverage (Low Complier)
Power (High Complier)

Power (Low Complier)

Intervention Effect

High Complier (vz; % 3)

Low Complier (vz;, % 3 )

Coverage (High Complier)
Coverage (Low Complier)
Power (High Complier)

Power (Low Complier)

Observed Variable (ANCOVA) Approach

True Value Avg Estimate Avg SE

0.60 0.604 0.292
-0.30 -0.280 0.291
0.930
0.932
0.560

0.226

Latent Variable (Growth Model) Approach

True Value Avg Estimate Avg SE

0.60 0.606 0.259
-0.30 -0.286 0.260
0.940
0.938
0.657

0.248

22
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of estimates is close between the two models in terms of point estimates
and standard errors, implying comparability of the two models. The
growth model approach, however, shows slightly better point estimates and
standard errors than the ANCOVA approach. Although the gap between
the two approaches in point estimates and standard errors is not dramatic,
it still results in a noticeable difference between the two methods in terms
of statistical power to detect intervention effects (e.g., 0.657 vs. 0.560 for
high compliers). In the ANCOVA approach, only the outcome measures at
the first (1) and the last time point (y4) are considered, and the outcome
measures in between (y2, y3) are ignored. The loss in information may lead
to a lower precision in the ANCOVA approach.

It has been demonstrated in previous research that average causal effects
of interventions can be identified for more than one subpopulation with a
satisfactory level of accuracy based on auxiliary information from covariates
(Jo, in press-a). Simulation results shown in Table 6.1 show that growth
trajectories (in a latent variable form) can provide auxiliary information
that can be used for the same purpose. It is also shown that the growth
model approach may improve precision of average causal effect estimates
by handling measurement errors and by utilizing trajectory information.

THE JOHNS HOPKINS PUBLIC SCHOOL
PREVENTIVE INTERVENTION STUDY

The Johns Hopkins Public School Preventive Intervention Study was
conducted by the Johns Hopkins University Preventive Intervention
Research Center (JHU PIRC) in 1993 to 1994 (Ialongo et al., 1999). Based
on the life course/social field framework as described by Kellam and Rebok
(1992), the Johns Hopkins PIRC preventive trial focused on successful
adaptation to first grade as a means of improving social adaptational
status over the life course. The study was designed to improve academic
achievement and to reduce early behavioral problems of school children.
Teachers and first-grade children were randomly assigned to intervention
conditions. The control condition and the family-school partnership
intervention condition are compared in this example. In the intervention
condition, parents were asked to implement 66 take-home activities related
to literacy and mathematics over a 6 month period. The intervention was
provided over the first-grade school year (1993-1994), following a pretest
assessment in the early fall. The intervention impact was assessed in the
spring of first (6 months from the pretest) and second (18 months from the
pretest) grades. In the spring of first grade, 91.3% completed assessments,
and in the spring of second grade, 88.5% completed assessments.

A total sample size of 333 was analyzed after listwise deletion of

o
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cases that had missingness in covariates and outcome variables. The
two major outcome measures in the JHU PIRC preventive trial were
academic achievement (CTBS mathematics and reading test scores) and
the TOCA-R. score (Teacher Observation of Classroom Adaptation-Revised,;
Werthamer-Larsson, Kellam, & Wheeler, 1991). The TOCA-R is designed
to assess each child’s adequacy of performance on the core tasks in the
classroom as rated by the teacher. Among various outcome measures,
readiness to learn (or work) assessed in the spring of the second grade (18
months from the pretest) is used as the outcome in this example. In the
JHU PIRC preventive trial, readiness to learn does not represent acquisition
of prerequisite knowledge or okills. but rather, being ready to exert effort
to reach academic excellence. The readiness to learn scale ranges from 1 to
6. and consists of TOCA-R itewms that measure whether a child completes
assignments, puts forth effort. and works hard. Table 6.2 shows the sample
statistics for the variables used in the analyses of this study.

Intent to treat analysis using the ANCOVA approach

Standard ITT analysis provides an overall average intervention effect
estimate by comparing the outcome hased on assignment of intervention,
but ignoring the aspect of the receipt of the intervention. That 1s, it
assumes that children of parents with a Jow compliance rate receive the same
offects from the intervention as children of parents with a high compliance
rate. Table 6.3 shows the results from the J HU PIRC preventive trial data
analysis using the I'T'T analysis. In this analysis, the overall effect of the
intervention is estimated based on the outcome measured at the last time
point (Ready3). The outcome measured at the first time point (Readyl) is
used as one of the covariates, and the outcome measured at the second time
point (Ready2) is not considered in the analysis (ANCOVA approach).

There is a positive eftect of the intervention on the level of children’s
readiness to learn (intervention effect = 0.316, cffect size = 0.212). The
effect size of the intervention was calculated by dividing the outcome
difference in the intervention and the control condition means by the square
root of the variance pooled across the control and intervention groups.
In the ITT analysis, baseline readiness to Jearn (Readyl) and free lunch
program were found to be significant predictors of the level of readiness to
learn. Children had a higher level of readiness at the last time point if their
baseline readiness level was higher, and a lower level of readiness if their
SES background level was low.
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TABLE 6.2
Johns Hopkins PIRC: Sample Statistics (N=333)

Variable Mean SD  Description

Z 0.52  0.50 Intervention assignment (0 = control, 1 = in-
tervention)

Readyl 4.59 1.32 TOCA mean readiness at the pretest

Ready?2 448 1.39 TOCA mean readiness 6 months from the
pretest

Ready3 4.33 149 TOCA mean readiness 18 months from the
pretest

Male 0.49 0.50 Student’s gender (0 = female, 1 = male)

Lunch 0.60 049 Free lunch program (0 = no, 1 = yes)

Unemployed 0.14 0.34 Parent’s employment status (0 = no, 1 = yes)

Married 0.47 0.50 Parent’s marital status (0 = no, 1 = yes)

Limited Health 0.10 0.30 Parent limited by health problem (0 = no, 1
= yes)

Health 3.83 1.03 Parent’s overall health (1 = poor, 5 = excel-
lent)

Age 2.97 1.42 Parent’s age in 5-year brackets

125
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TABLE 6.3
Johns Hopkins PIRC: Intent to Treat Analysis

Parameter Estimate SE

Intervention effect 0.316 0.147

Ready3 Regressed on Covariates

Readyl 0.505 0.060
Male -0.243 0.143
Free Lunch -0.410 0.156
Unemployed -0.348 0.236
Married -0.288 0.147
Limited Health -0.074 0.236
Health -0.062 0.077
Age -0.037 0.050
Intercept 2.742 0.503
o3’ 1.636 0.112

CACE analysis using the ANCOVA approach

In the ITT analysis, intervention effect may be underestimated for high
compliers due to the inclusion of low compliers who might not have been
exposed enough to benefit from the intervention. In this situation, the
possible bias can be avoided by taking into account the difference between
the two subpopulations in the analysis. Table 6.4 shows the results from
the CACE analysis, where the differential effect of intervention is estimated
for high compliers and low compliers. As in the ITT analysis, intervention
offect is estimated based only on observed variables (ANCOVA approach).
The same set, of covariates used in the ITT analysis are used as predictors of
the outcome, and also as predictors of compliance. The model used for this
CACE analysis is the same as the model described in Equations 6.16 and
6.17, with the exception that more covariates are included in this example
in addition to the baseline outcome measure.

Table 6.4 shows that the intervention had a positive impact on the
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TABLE 6.4

Johns Hopkins PIRC: CACE Analysis Using the Observed Variable (ANCOVA)

Approach

Parameter Estimate SE
Intervention Effect

High Complier (I'z) 0.477 0.221

Low Complier (I'z;) -0.103 0.530

Ready3 Regressed on Covariates
Ready0 0.524 0.060
Male -0.246 0.145
Free Lunch -0.419 0.157
Unemployed -0.355 0.238
Married -0.276 0.147
Limited Health -0.078 0.243
Health -0.059 0.079
Age -0.048 0.051
High Comp Intercept (ap) 2.523 0.523
Low Comp Intercept () 3.093 0.723
a4° 1.606 0.118
¢ Regressed on Covariates (High vs. Low Compliers)
Ready0 0.376 0.130
Male -0.021 0.350
Free Lunch -0.235 0.385
Unemployed -0.162 0.492
Married 0.095 0.347
Limited Health -0.266 0.720
Health 0.009 0.191
Age -0.221 0.109
Logit Intercept (53,) 0.059 1.116
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level of readiness for children with parents with a high compliance rate
(intervention effect = 0.477, effect size = 0.320), and the magnitude of the
effect was larger than that of the overall effect in the ITT method. It also
shows a slightly negative effect of the intervention for children of parents
with a low compliance rate, but the magnitude of the effect is very small
and insignificant (intervention effect = -0.103, effect size = -0.069). Effect
size was calculated based on a pooled standard deviation as in the ITT
analysis. This approach was chosen for easier comparison across different
estimation methods. In this analysis, baseline readiness to learn (Ready1)
and free lunch program were found to be significant predictors of the level
of readiness to learn. Children had a higher level of readiness at the
last time point if their baseline readiness level was higher, and a lower
level of readiness if their SES background level was low. Initial level of
child’s readiness and parent’s age were found to be significant predictors of
parent’s compliance behavior. Parents complied more if the child’s baseline
readiness level was higher. Younger parents also complied more.

For the CACE analysis shown in Table 6.4, individuals were
dichotomized into either the low or the high complier category based on
the level of completeness in home learning activities. For easier comparison,
the same cutpoint is used as that in the CACE analysis using the latent
variable approach that is shown in a later section. For illustration purposes,
compliance was dichotomized in this example; but note that sensitivity of
the CACE estimate to different thresholds needs to be carefully examined
in practice (West & Sagarin, 2000). The following section shows how the
cutpoint was decided in this study for CACE analyses.

Exploratory growth mixture analysis

This section examines the possibility of using exploratory growth mixture
analysis as a data-mining tool that precedes CACE analysis using mixture
and growth mixture models. In randomized intervention trials, the
intervention condition often includes many sessions, or doses. One way
to model compliance behavior in this situation is to treat compliance as a
continuous variable. Holland (1988) proposed ALICE (additive linearly
constant effects) model, where the effect of intervention is estimated
based on continuous compliance. The ALICE model requires several
strong assumptions, which often limits the applicability of the model in
practice. For example, it is assumed in the ALICE model that the effect of
intervention linearly increases as the level of compliance increases. In the
JHU PIRC preventive trial, there is a large variation in completed number
of intervention activities (range 0 to 66), and children may not get any
benefit from the intervention unless parents complete a sufficient number
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of activities. Over reporting of compliance level is also expected, because
parents self-report their level of completion in intervention activities. In this
situation, the intervention may not show any desirable effects unless parents
report a quite high level of compliance. Another way to model compliance
behavior in this situation is to use the dose-response curve approach (Efron
& Feldman, 1991), where the effect of intervention can be estimated
without assuming a linear relationship between intervention effects and
compliance. However, this approach requires successful double-blind
experiments, which are not often applicable especially in psychosocial
intervention trials. The third way to model compliance behavior in this
situation is to treat compliance as a categorical variable without assuming
linearity. The difficulty of this approach is in deciding the appropriate
number of categories and thresholds that separate individuals into different
compliance categories.

The current study takes the third approach in analyzing the Johns
Hopkins PIRC preventive trial data, and shows that exploratory growth
mixture analysis can be useful in determining cutpoints at the planning
stage of CACE analysis. To estimate the differential effect of the
intervention for those who completed enough activities and for those
who did not, the compliance measure is dichotomized in this example.
Exploratory growth mixture analysis is conducted for control group
individuals, which provides the information about the trajectory shape and
the proportion of subgroups in the absence of intervention (Muthén et al., in
press). The confirmatory mixture analysis (i.e., CACE analysis) following
the exploratory analysis is based on the idea that subpopulations that are
already different in the absence of intervention will be more likely to differ
in terms of compliance behavior. Consequently, it is also expected that the
effect of intervention will differ for these heterogeneous subpopulations.

The model used for exploratory growth mixture analysis is the same as
the model described in Equations 6.1, 6.2, 6.3, and 6.5 except that vz, Z; is
removed from Equation 6.2 in the exploratory analysis. The same covariates
used in CACE analyses in the previous section and in the following section
are used in the exploratory growth mixture analysis. However, note that
the model used for exploratory analysis is significantly different from the
model used for mixture and growth mixture CACE analyses because the
intervention group is not included in the model and potential level of
compliance is not considered in estimating class membership of individuals.
Figure 6.1 shows estimated trajectories suggested by two-class exploratory
growth mixture analysis for the control group.

Figure 6.1 shows that the level of readiness decreases over time for the
majority of children (69.2%), whose baseline readiness level is high. It also
shows that the level of readiness increases over time for the other class
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FIG. 6.1. Estimated mean curves of readiness to learn in the control group
using exploratory growth mixture analysis.

of children (30.8%), whose baseline readiness level is low. Based on the
proportion of subpopulations from the exploratory analysis, parents who
completed 35 or more of the take-home learning activities were categorized
as high compliers (71% of parents), and parents who completed fewer than
35 take-home learning activities were categorized as low compliers (29% of
parents). Four parents did not comply at all and were included in the low
complier category in this example. Parents in the control condition could
not be dichotomized because their compliance information was missing.
Figure 6.2 shows observed mean curves of readiness to learn based on this
dichotomization.

CACE analysis using the growth model approach

This section demonstrates the estimation of intervention effects using the
growth mixture modeling approach, where the effect of intervention is
defined based on a trend or a growth trajectory of individuals. The growth
mixture model used for CACE analysis is the same as the model described
in Equations 6.1, 6.2, 6.3, and 6.5. The same covariates used in the
CACE analysis using the ANCOVA approach and the exploratory growth
mixture analysis are used. Based on exploratory growth mixture analysis
of the control group and observed mean curves shown in Figure 6.2, linear
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FIG. 6.2. Observed mean curves of readiness to learn.

trajectory was found to be appropriate for the CACE analysis using growth
model approach. In the JHU PIRC preventive trial example, the outcome
was measured in fall of the first grade, spring of the first grade, and spring of
the second grade (Readyl, Ready?2, Ready3). Given the distances between
time points, the time scores used to capture a linear trend over time are
0, 1, and 3. Therefore, the average causal effect of intervention assignment
at the last time point is defined as vz, x 3 for high compliers and vz X 3
for low compliers (see Equation 6.4). Table 6.5 shows the results from the
CACE analysis using the growth model approach.

Table 6.5 shows that the intervention had a positive impact on readiness
of children if parents showed a high compliance rate (intervention effect =
0.477, effect size = 0.320). For children with highly complying parents,
the level of readiness to learn decreases significantly less compared to
that of control condition children with parents who could have been high
compliers if they have had been assigned to the intervention condition. The
intervention effect for high compliers in the CACE analysis using the growth
model approach has the same magnitude as in the CACE analysis using the
ANCOVA approach (see Table 6.4), but the confidence interval is slightly
tighter than in the CACE analysis using the ANCOVA approach. Table
6.5 also shows a slightly negative but insignificant effect of the intervention
for children of parents with a low compliance rate (intervention effect =




TABLE 6.5
Johns Hopkins PIRC: CACE Analysis Using the Latent Variable (Growth
Model) Approach
Parameter Estimate SE
1
Intervention Effect
High Complier (v, x 3) 0.477 0.186
Low Complier (v, % 3) -0.150 0.393
Initial Status Regressed on Covariates
Male -0.259 0.134
Free Lunch -0.244 0.146
Unemployed -0.068 0.200
Married 0.076 0.138
Limited Health 0.368 0.254 ]
Health 0.041 0.078 1,
Age 0.058 0.047 -
High Comp Intercept (In) 4.682 0.420 ]
Low Comp Intercept (I;) 3.908 0.427
Yin 0.936 0.139
Y 1.608 0.253
Growth Rate Regressed on Covariates
Male -0.033 0.054
Free Lunch -0.092 0.057 J
Unemployed -0.108 0.091 é
Married -0.105 0.055
Limited Health -0.093 0.101 1
Health -0.025 0.031
Age -0.026 0.019
High Comp Intercept (Si) 0.118 0.158
Low Comp Intercept (S) 0.424 0.208
. 0.064 0.037
Ve, 0.151 0.055
Yisk -0.048 0.051
Vi1 -0.227 0.106
a1 0.444 0.118
#y 0.708 0.080
o3’ 0.717 0.216
¢ Regressed on Covariates (High vs. Low Compliers)
Male -0.175 0.324
Free Lunch -0.388 0.352
Unemployed -0.217 0.457
Married 0.102 0.331
Limited Health 0.042 0.621
Health 0.029 0.171
| Age -0.205 0.106 1
i Logit Intercept (f8,) 1.774 0.874
il ]
132 |
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-0.150, effect size = -0.101).

The parameterization used in the growth model approach adds more
flexibility in the interpretation of the CACE analysis than that used in
the ANCOVA approach because initial status (/) and growth rate (S5)
are separated. For example, the influence of background variables can be
estimated separately for initial level of readiness and change of readiness.
In the CACE analysis using the ANCOVA approach, child’s gender and
free lunch program were found to be significant predictors of the outcome.
However, these variables are not significant predictors when initial status
(I) and growth rate (S) are separated as shown in Table 6.5. It also shows
in CACE analysis using the growth model approach that low compliers have
more variation in initial status and growth rate conditioning on covariates.
In the high compliance category, initial status and growth rate show very
low correlation conditioning on covariates (¢;g, = —0.048). However, in
the low compliance category, initial status and growth rate are negatively
correlated conditioning on covariates (¢;q, = —0.227). In addition to
flexibility in modeling, another advantage of the growth model approach is
that it utilizes not only covariates but also trajectory information to identify
class membership and to increase efficiency in estimating the differential
effect of intervention.

Figure 6.3 shows estimated mean readiness curves over time based on
results in Table 6.5. Estimated mean outcomes can be calculated using
Equations 6.1, 6.2 and 6.3 and weighted covariate means based on posterior
class probability of each individual. This figure shows how readiness to learn
changed over time depending on parents’ compliance level and intervention
assignment. It shows that highly complying parents’ children had a higher
level of readiness at the first grade, but the level could decrease to a point
even lower than that of less involved parents’ children by the second grade
unless the intervention was given.

By comparing the mean trajectories of the control group in Fig. 6.3 to
those in Fig. 6.1, it can be learned how closely subpopulations derived by
exploratory and confirmatory growth mixture analyses are related. Mean
trajectories in Figs. 6.1 and 6.3 show similarity in the sense that the level of
readiness decreases over time for the majority of children (those with high
baseline readiness), and the level of readiness increases over time for the
other class of children (those with low baseline readiness). Mean trajectories
in Figs. 6.1 and 6.3 also show discrepancy in the sense that trajectories in
Fig. 6.1 have a larger difference at the initial point and a smaller difference
at the last time point than those in Fig. 6.3. The disagreement is not
surprising because the model used for exploratory analysis does not consider
potential level of compliance, whereas CACE (confirmatory) analysis does.
However, information from exploratory analysis is still valuable in deciding
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FIG. 6.3. Estimated mean curves of readiness to learn: CACE analysis
using the growth model approach.

the cutpoint that is essential for CACE analysis, given that there are no
established methods that can determine an optimal cutpoint. Without
information from exploratory growth mixture analysis, one may simply
choose to categorize 50% of individuals into the high complier category
and 50% of individuals into the low complier category. In the JHU PIRC
preventive trial example, the CACE analysis based on the cutpoint from
exploratory growth mixture analysis was found to be substantially better
than the CACE analysis based on the simple categorization (i.e., 50:50) in
terms of model fit, precision of intervention effect estimates, and precision
in classification of individuals into different compliance categories.

CONCLUSION

This study demonstrated the estimation of differential average intervention
effects at varying levels of compliance in a growth mixture modeling
framework, where the effect of the intervention is defined based on a trend
or a growth trajectory of individuals. 1t was demonstrated in simulation
studies that the quality of intervention effect estimates in ANCOVA and
growth model approaches is very close, implying comparability of the two
approaches. The growth model approach, however, showed slightly better
point estimates and standard errors than did the ANCOVA approach.
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Although the gap between the two approaches in point estimates and
standard errors was not dramatic, it still resulted in a noticeable difference
between the two methods in terms of statistical power to detect intervention
effects. In the growth model approach, precision of average causal effect
estimates can be improved by handling measurement errors and by utilizing
trajectory information. In contrast, the ANCOVA approach only considers
the outcome measured at the first and the last time point, and ignores the
outcome measured in between. The loss in information may lead to lower
precision in the ANCOVA approach.

In the JHU PIRC preventive trial example shown in this study, the
differential effect of intervention was estimated through CACE analysis
using ANCOVA and growth model approaches. CACE analyses using
ANCOVA and growth mixture approaches showed a larger effect of
intervention for high compliers compared to the overall effect in the I'T'T
method. The results were also compared between CACE analyses using
the ANCOVA and growth model approaches. In line with simulation study
results, it was shown in this example that ANCOVA and growth model
approaches have close intervention effect estimates, but CACE analysis
using the growth model approach showed a slightly tighter confidence
interval than CACE analysis using the ANCOVA approach. It was also
demonstrated that the parameterization of the growth model approach adds
more flexibility in modeling and provides richer information than that of
the ANCOVA approach.

In the JHU PIRC preventive trial example shown in this study,
individuals were classified into two groups, and CACE models were
identified based on various covariates and growth trajectories. The
exclusion restriction could not be assumed in this example, because low
compliers were also exposed to the intervention. The intervention might
have had a weaker impact on low compliers, but it cannot be guaranteed
that the intervention had no effect at all. Without assuming the exclusion
restriction, the identifiability and the quality of CACE estimation relies on
auxiliary information (Hirano et al., 2000; Jo, in press-a). Given that, it
is desirable to use multiple sources of information to improve accuracy and
efficiency in the estimation. In the JHU PIRC preventive trial example
shown in this study, not only covariate information but also trajectory
information was used to identify class membership and to increase efficiency
in the estimation of differential intervention effects. Although previous
research showed that it is possible to identifty CACE models without
assuming the exclusion restriction based on auxiliary information, very
little is known about how this method should be applied in practice. More
research is needed in this area to explore what kind of information and
modeling approaches are more efficient and how stability of models should
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be checked in extended versions of CACE models.

This study also examined the possibility of using exploratory growth
mixture analysis as a data-mining tool that precedes CACE analyses.
The confirmatory mixture analysis (i.e., CACE analysis) following the
exploratory mixture analysis is based on the idea that subpopulations that
are already different in the absence of intervention will be more likely
to differ in compliance behavior. How closely subpopulations derived by
exploratory growth mixture analyses are related to subpopulations derived
by CACE analysis varies in different situations. When the intervention
condition includes many sessions, as in the JHU PIRC preventive trial, how
individuals are categorized into different compliance classes is critical for
CACE analysis. However, little is known about how to determine optimal
cutpoints and number of cutpoints. Given that, exploratory growth mixture
analysis can be useful at the planning stage of CACE analysis in the sense
that it provides information about subpopulations that are heterogeneous
in the absence of the intervention. Further research is needed in this area
to establish a systematic way of connecting exploratory and confirmatory
mixture analyses.
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