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This article discusses replication sampling variance estimation techniques that are

often applied in analyses using data from complex sampling designs: jackknife

repeated replication, balanced repeated replication, and bootstrapping. These tech-

niques are used with traditional analyses such as regression, but are currently not

used with structural equation modeling (SEM) analyses. This article provides an

extension of these methods to SEM analyses, including a proposed adjustment to

the likelihood ratio test, and presents the results from a simulation study suggesting

replication estimates are robust. Finally, a demonstration of the application of these

methods using data from the Early Childhood Longitudinal Study is included.

Secondary analysts can undertake these more robust methods of sampling vari-

ance estimation if they have access to certain SEM software packages and data

management packages such as SAS, as shown in the article.

Most national datasets are collected using sampling designs other than simple

random sampling (SRS). Most statistical analyses operate on the assumption of

independence of observations (which can be virtually assured through the use of

SRS). If this assumption does not hold, inappropriately calculated standard errors

can result, compromising hypothesis tests. Special procedures for estimating

means, ratio, and regression parameter estimates with data from complex sample

designs have been developed; however, many software programs for structural

equation modeling (SEM) do not accommodate sampling design information
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184 STAPLETON

or may have limited capacity to do so. This research extends a prior study by

Stapleton (2006) that examined the practical approaches that researchers can

use when analyzing covariance structure models with complex sample data. It

builds on that study by examining the robustness of sampling variance estimates

and a proposed adjusted chi-square statistic from replication methods including

jackknife repeated replication (JRR), balanced repeated replication (BRR), and

bootstrapping. These replication methods for estimating sampling variances with

complex sample data are currently not available in software for SEM and must be

specially programmed; they are available in other statistical packages for more

traditional analyses such as multiple regression and comparison of frequency

distributions.

In describing effects and procedures for this study, the Early Childhood

Longitudinal Study (ECLS; U.S. Department of Education, 2001) data collection

plan is used as a model: a stratified multistage sample. The ECLS sampling

design included three stages of sampling: the selection of primary sampling units

(PSUs) of single counties or groups of counties, then the selection of schools

within those counties, and finally selection of students within the schools. At

the first two stages of selection, stratification and probability proportional to

size sampling was used and at the final stage, stratification unequal sampling

probabilities was used; Asian/Pacific Islander students were sampled at a rate

three times higher than the sampling rate for all other students. An excellent

review of the characteristics of complex sample designs including clustering,

stratification, unequal probabilities of selection, and nonresponse and poststrati-

fication adjustment is provided by Longford (1995). This article focuses on the

problems posed when stratified multistage sampling is used.

An assumption in the use of many analysis techniques, including SEM, is

that observations are independent and identically distributed. Data obtained

through multistage sampling, however, typically demonstrate some degree of

dependence (Kish, 1965; Skinner, Holt, & Smith, 1989). Because traditional

standard error formulas assume that the correlation of the errors is zero, a

researcher using clustered data may underestimate the sampling variance, re-

sulting in inappropriate Type I error rates (Lee, Forthofer, & Lorimor, 1989).

Muthén and Satorra (1995) demonstrated the standard error bias and large chi-

square values that can result when SRS-based SEM is applied to data that were

obtained through a two-stage SRS design (they refer to this type of analysis

as “conventional”). A conventional SEM analysis of clustered data, therefore,

may lead to the mispronouncement of statistically significant relations where

only random covariation exists, as well as result in inappropriate rejection of

correct models for the finite population. Additionally, if stratification is part of

the sampling design and the response variables are homogeneous within strata,

standard error estimates from a conventional analysis will be overestimated and

represent a loss of efficiency (Asparouhov, 2004; Kish & Frankel, 1974).
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VARIANCE ESTIMATION USING REPLICATION METHODS 185

General analytic strategies, not specific to SEM, have been developed for

appropriately estimating sampling variances of parameter estimates for the fi-

nite population when using data obtained using complex sampling designs.

The options range from simple adjustments of standard error estimates from

a conventional analysis to more complex estimators of sampling variances. An

additional option, instead of seeking to obtain a more accurate standard error

for the finite population parameter estimate, is to include the sampling design in

the analytic model itself. This model-based or model-assisted analysis approach

would include such strategies as multilevel analyses and inclusion of stratifi-

cation design variables as fixed effects. These analyses, termed disaggregated

by Muthén and Satorra (1995) are discussed in Hox (2002) and a nice applied

example is provided in Kaplan and Elliott (1997). The research question in such

analyses involves testing a theoretical model with components at each level of the

analysis. The theoretical model may exist only at the individual level, however,

and clustering effects are considered a nuisance. In this case, aggregated SEM

is appropriate (Muthén & Satorra, 1995) and is the focus of this article.

CURRENT ANALYTIC OPTIONS TO ACCOUNT FOR

THE SAMPLING DESIGN IN AGGREGATE

SEM ANALYSES

A simple method to adjust for a complex sampling design, as described in Staple-

ton (2006), might be to inflate the standard errors obtained from a conventional

weighted analysis by the square root of the design effect of the mean of the

dependent variable(s) in the analysis. A related approach, advocated in some

database user’s guides (U.S. Department of Education, 1996; Walker & Young,

2003), is to use a design effect sampling weight in the analysis. Although the

procedures of adjusting a standard error estimate by the square root of the design

effect or using an adjusted sampling weight result in accurate adjustments of the

standard error for a simple statistic such as the mean, these procedures can be

expected to result in conservative estimates of the sampling errors in complex

statistical procedures (Kish & Frankel, 1974) as was found for SEM applications

(Stapleton, 2006).

Estimating sampling variances using a linearization method is perhaps a more

appropriate approach (Kish & Frankel, 1974). With complex sample data, the

sampling variance estimate of a statistic can be approximated by the weighted

combination of the variation as assessed by the first-order derivatives across

PSUs within each stratum (Kalton, 1983; Skinner et al., 1989). Muthén and

Satorra (1995) first applied this type of approach to an SEM analysis and

Asparouhov (2005) described the quasi-pseudo maximum likelihood (QPML)

approach currently implemented in software such as Mplus (Asparouhov, 2004)
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186 STAPLETON

and LISREL (Scientific Software International, 2004) for use with data that are

both dependent (i.e., from cluster samples) and sampled at unequal probabilities.

Assumptions in the use of this method include selection of PSUs within strata

with replacement (Muthén & Muthén, 2004) and simulations have demonstrated

that this approach provides robust estimates when assumptions are met (As-

parouhov, 2004, 2005). Whereas the QPML estimation provides robust standard

error estimates as part of the asymptotic covariance matrix, a robust likelihood

ratio chi-square statistic is approximated by correcting the conventional log-

likelihood-based chi-square statistic by using a correction factor. Specifically,

Asparouhov and Muthén (2005) derive the correction factor for the likelihood

ratio test as a function of the difference in the number of parameters and

in the variance components within the asymptotic covariance matrix across a

restricted and unrestricted model. This correction factor is similar to adjustments

to likelihood ratios as proposed by Satorra and Bentler (1988) and is a parallel

to the adjustment proposed for tests of independence by Rao and Scott (1981)

and further explicated by Rao and Thomas (1989). This adjustment is reported

to be used in the Mplus software (Asparouhov & Muthén, 2005). LISREL

documentation is not clear with regard to its calculation of the correct factor

as it offers a different formulation of the adjustment factor without derivations

(Scientific Software International, 2004). Tests of the correction factors across

these two software programs with empirical data yield very minimal differences

in the adjusted chi-square statistic; differences are found only at the second and

third decimal places. In either software program, to use the QPML estimation

functions, the user must provide unique PSU and stratum indicators with the

sample data. Monte Carlo simulation appraisals of this method demonstrated

its superiority over the conventional method on standard error and chi-square

statistic estimation for a confirmatory factor analysis under conditions of two-

stage sampling with equal (Muthén & Satorra, 1995) and unequal (Asparouhov,

2005) probabilities of selection.

In another simulation study, Stapleton (2006) compared the robustness of

estimates of standard errors and chi-square statistics from the simple adjustment

methods one could use when undertaking a covariance structure analysis with

complex sample data. The comparison included a conventional analysis, an

analysis that incorporated design effect adjustments of the standard errors from

a conventional analysis, an analysis that utilized design effect adjusted weights,

and an analysis using the QPML method. Specifically, she examined the robust-

ness of estimates under six different sampling design conditions with a large

sample size (more than 14,000 observations), mirroring typical conditions of

some national and international datasets. When there were dependencies within

sampled clusters, as expected, the conventional analysis underestimated standard

errors and the two analysis options that included design effect adjustments

overestimated standard errors. The QPML estimation was found to provide
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VARIANCE ESTIMATION USING REPLICATION METHODS 187

fairly robust estimates under all sampling conditions. Under the most complex

sampling condition studied, the QPML estimation provided reasonable chi-

square rejection rates, close to the nominal a level, and slightly overestimated

standard errors of direct effects and variances by about 6% and 7%, respectively.

Although this QPML estimation can therefore be viewed as a viable alternative

for variance estimation, a researcher might not have access to the complex

sample functions currently available in the Mplus and LISREL software or the

dataset itself might not contain the PSU and stratum indicators necessary for

QPML estimation but instead contain predefined replicate weights. In that case,

the use of replication methods for sampling variance estimation may be more

appropriate.

REPLICATION METHODS FOR

VARIANCE ESTIMATION

Perhaps the most complicated, or at least computer-intensive, techniques that

have been developed for variance estimation include replication methods. Appli-

cation of these replication methods to SEM analysis of complex sample data has

not been discussed. Replication techniques involve repeated sampling from the

original sample and the empirical distribution of the parameter estimates across

these replicates is used as an estimate of the sampling variance of parameter

estimates. The most often used replication techniques when modeling complex

sample data with more traditional analyses, such as multiple regression, are

JRR, BRR, and bootstrapping. In general, for multistage designs, each of these

replication methods involves the selection of PSUs and subsequent selection of

all cases within the selected PSU. It has been claimed that, with such complex

multistage sampling designs, the variance estimation calculations are greatly

simplified by treating the sample as if the clusters are sampled with replacement

(Rao, Wu, & Yue, 1992). This approximation can lead to overestimation of the

sampling variance of a parameter estimate, but the bias has been found to be

small if the number of selected PSUs is small compared to the PSUs in the

stratum (Rao et al., 1992). A very nice description of each of these methods is

available in Rust and Rao (1996) and the methods are described in the section

that follows.

To better describe the methods, each is demonstrated with a small sample

dataset. Suppose that we need to collect data from students who are located

in two states and within these states there are 40 school districts (20 in each

state). Within each of the districts, there are 10 schools, and within each school

there are 100 students who are in our target population. Therefore, there are

.2 � 20 � 10 � 100 D/ 40,000 students in our population of interest. We would

like to survey a sample of these students but we do not have a list of the students,
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188 STAPLETON

TABLE 1

Example Dataset

Stratum PSU School Student Y wraw wnorm

1 1 1 1 9 2,500 1

1 1 1 2 7 2,500 1

1 1 2 3 8 2,500 1

1 1 2 4 4 2,500 1

1 2 3 5 4 2,500 1

1 2 3 6 5 2,500 1

1 2 4 7 2 2,500 1

1 2 4 8 3 2,500 1

2 3 5 9 2 2,500 1

2 3 5 10 6 2,500 1

2 3 6 11 5 2,500 1

2 3 6 12 4 2,500 1

2 4 7 13 1 2,500 1

2 4 7 14 0 2,500 1

2 4 8 15 1 2,500 1

2 4 8 16 4 2,500 1

Note. PSU D primary sampling unit.

and thus we decide to use a stratified three-stage sampling technique. We want

to obtain survey responses from students from the two different strata (so we

have students representing both of the states) and within each of those strata, we

randomly sample two districts as PSUs. At the second stage of sampling, within

each of our four selected school districts, we randomly sample two schools,

and within each of these eight schools, we randomly sample two students. We

now have a total of 16 students in our sample and hypothesized data for these

students are shown in Table 1. The values of 1 and 2 in the stratum column refer

to State 1 and State 2, respectively. The value in the Y column represents some

measurement taken on each of the two randomly chosen students in each school.

The last two columns, wraw and wnorm, contain the raw and normalized sampling

weights that should be attributed to each student. The raw weights represent the

number of people each subject represents and will sum to the population size.

They are a function of the selection probabilities at each stage of selection. For

our specific example, the weights are equal to the inverse of the product of the

probability of the PSU being selected,  PSU, the conditional probability of the

school being selected within the PSU,  schjPSU, and the conditional probability of

the student being selected given selection of the school,  studjsch. In this example

wraw D
1

 PSU �  schjPSU �  studjsch

D
1

2

20
�

2

10
�

2

100

D 2,500
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VARIANCE ESTIMATION USING REPLICATION METHODS 189

Each student in our sample represents 2,500 other students. The sum of this

raw weight over our 16 students will equal the total population size (40,000).

To obtain a normalized weight, the raw weight is divided by the average weight

across all observations in the sample, and thus the normalized weight will be

1 for all elements in our example dataset. The sampling design characteristics,

and thus the observation weight, for this example are very simple (and atypical).

If differential selection probabilities were used, if our schools sizes differed, if

the number of schools per PSU differed, or if the number of PSUs in each

stratum differed in the population, the dataset would contain observations with

weights that differed across strata and schools. This dataset will be used in

the next section to demonstrate the different replication approaches that can be

employed to obtain estimates of sampling variances and standard errors for the

estimate of the mean of the response variable, Y.

Jackknife Repeated Replication

JRR with data collected using a multistage sampling design involves the use of

replicate datasets that are typically created by dropping observations from one

PSU at a time to form a replicate until PSUs have been dropped from each

stratum (Skinner et al., 1989). The sampling weights for the observations from

the dropped PSU are set to zero and the sampling weights for the observations in

the remaining PSUs in the stratum are scaled upward to account for the dropped

observations, using a scaling factor of .Kl =.Kl � 1/ where K represents the

number of PSUs in stratum l (Rust & Rao, 1996).1 Within our small dataset,

we have four PSUs in two strata. We can drop each of these PSUs (and their

respective student observations) one at a time to create four replicate samples.

Note that because we have stratification, we need to maintain the weight of the

stratum relative to the other strata when we drop a PSU from the stratum.

Therefore, for each stratum, we can create a replicate by dropping a PSU

(by reassigning all of the case weights in that PSU to be 0) and reweighting

observations in the remaining PSU to account for that entire stratum. This set of

1A different rescaling procedure has also been suggested, using the actual sum of the weights

in the stratum, thus the scaling factor would be

1 �

Jkl
X

j D1

njkl
X

iD1

wijkl

Kl
X

kD1

Jkl
X

j D1

njkl
X

iD1

wijkl

where the summation in the numerator is for the kth PSU that was dropped from the stratum and

the summation in the denominator is across all PSUs in the selected stratum (Lee et al., 1989).
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190 STAPLETON

new weights when we drop the first PSU in the first stratum is shown as w0
1 in

Table 2. A complement replicate for the first stratum is created by dropping the

second PSU in the stratum (by assigning all case weights to 0) and reweighting

the observations in the first PSU to account for the entire stratum; this second

set of new weights is shown as w00
1 in Table 2. This process is repeated for each

stratum until two replicate samples are created for each stratum for a total of

four replicate samples in the example.

Four analyses can now be run; each of the analyses would use one set of

the newly calculated replicate sampling weights. The standard errors of the

parameter estimates obtained from the conventional analysis using the original

full sample weight are thus determined by

seO™JACK
D

v

u

u

t

L
X

lD1

�

Kl � 1

Kl

� Kl
X

kD1

.O™.kl/ � O™/2 (1)

where L represents the number of strata, Kl is the number of sample PSUs in the

lth stratum, O™.kl/ is the estimate for the replicate that dropped PSU k in stratum

l, and O™ is the original full sample parameter estimate. Because most large

sample surveys involve paired selection in the sampling design (two PSUs are

selected from each stratum) one can undertake a simplified jackknife replication

technique, using only one pseudo-replicate for each stratum (and not utilizing

TABLE 2

Example Dataset With Jackknife Replicate Weights

Stratum PSU School Student Y w0
1 w00

1 w0
2 w00

2

1 1 1 1 9 0 2 1 1

1 1 1 2 7 0 2 1 1

1 1 2 3 8 0 2 1 1

1 1 2 4 4 0 2 1 1

1 2 3 5 4 2 0 1 1

1 2 3 6 5 2 0 1 1

1 2 4 7 2 2 0 1 1

1 2 4 8 3 2 0 1 1

2 3 5 9 2 1 1 0 2

2 3 5 10 6 1 1 0 2

2 3 6 11 5 1 1 0 2

2 3 6 12 4 1 1 0 2

2 4 7 13 1 1 1 2 0

2 4 7 14 0 1 1 2 0

2 4 8 15 1 1 1 2 0

2 4 8 16 4 1 1 2 0

Note. PSU D primary sampling unit.
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VARIANCE ESTIMATION USING REPLICATION METHODS 191

the complement replicate). Given this approach, the standard error is estimated

as

seO™JACK2
D

v

u

u

t

L
X

lD1

.O™.l1/ � O™/2 (2)

and the subscript l1 indicates that the first PSU in the lth stratum is dropped

and assumes that the PSUs are randomly sorted within strata. For our example

dataset, this approach would entail only using the first and third sets of repli-

cate weights for two analyses, respectively, and Equation 2 would be used to

determine the standard error of the parameter estimate.

The type of jackknife replication one can use depends on the sampling

scheme; the replication just described assumes a stratified multistage sample.

If the sample was obtained with a single stage (no selection of PSUs) then

jackknifing could be accomplished with one observation dropped (its weight set

to zero) at a time, and the weights for the remaining observations in that stratum

would be adjusted by a function of nl

nl �1
where, in this case, nl represents the

number of single observations in the stratum. If a multistage sample was taken

with no stratification, the jackknife replicates could be formed by dropping

observations for one PSU at a time and reweighting observations within all

remaining PSUs to account for the dropped PSU, with the rescaling factor being

the ratio of K=.K � 1/.

Many large-scale datasets include sets of jackknife replicate weights so that

specialized survey statistical software that include JRR estimation functions,

such as STATA and WesVar, can be used. Because the standard error formula-

tion depends on the type of JRR replicate calculation that is used to develop

the weights, the applied researcher must understand and identify the type of

jackknife replicate weighting to the software program, and therefore a detailed

reading of the user’s manual for the dataset is essential.

Balanced Repeated Replication

BRR, like JRR, involves dropping all observations within given PSUs in a

stratum, but does so by creating half-samples. One PSU from each stratum

is selected and its observations are retained, forming a pseudo-replicate, with

the set of remaining PSUs (and their respective observations) from each stratum

forming the complement replicate (Rust & Rao, 1996). BRR can thus only be

accomplished when the sampling design has been undertaken with the selection

of two PSUs from each stratum. If the sample design did not include the selection

of two PSUs from each stratum, similar strata or PSUs can be grouped to obtain

such a design (but such realignment must be done with caution).
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192 STAPLETON

This process of allotting each pair of PSUs into pseudo- and complement

replicates is repeated many times to create a large set of half-replicates. There is

a complication in creating replicates using half of the PSUs because dependent

replicates can result, providing parameter estimates that are correlated across

replicates. For example, it is possible that if PSUs are chosen randomly from

each stratum for pseudo-replicates, two replicates could have 90% or more of

their PSUs overlapping. A solution is to balance the formation of replicates

by using an orthogonal design matrix. A selection of these matrices, sometimes

referred to as Hadamard matrices, are available from Wolter (1985). Using these

matrices, a minimal set of R balanced half-samples are created where R is

between L C 1 and L C 4. To ensure balance, the analyst must choose a design

matrix that is a multiple of four and exclude the columns of C1s from the

Hadamard matrix (Rao et al., 1992). For each of the retained PSUs as defined

by the design matrix, the weight is doubled (inflated by the familiar Kl

Kl �1
). For

any given replicate, w
.r/

ijkl D 2wijkl if PSU k in stratum l is retained in the

pseudo-replicate and the weight is equal to zero otherwise (Rust & Rao, 1996).

With only two strata in our dataset, we need to use four sets of replicate weights.

The weights associated with four BRR replicates (or half-samples) are provided

in Table 3. This design matrix was taken from an example provided in Lohr

(1999) and also shown in Wolter (1985).

TABLE 3

Example Dataset With Balanced Repeated Replicate Weights

Stratum PSU School Student Y w0
1 w0

2 w0
3 w0

4

1 1 1 1 9 0 2 0 2

1 1 1 2 7 0 2 0 2

1 1 2 3 8 0 2 0 2

1 1 2 4 4 0 2 0 2

1 2 3 5 4 2 0 2 0

1 2 3 6 5 2 0 2 0

1 2 4 7 2 2 0 2 0

1 2 4 8 3 2 0 2 0

2 3 5 9 2 0 0 2 2

2 3 5 10 6 0 0 2 2

2 3 6 11 5 0 0 2 2

2 3 6 12 4 0 0 2 2

2 4 7 13 1 2 2 0 0

2 4 7 14 0 2 2 0 0

2 4 8 15 1 2 2 0 0

2 4 8 16 4 2 2 0 0

Note. PSU D primary sampling unit.
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VARIANCE ESTIMATION USING REPLICATION METHODS 193

Once these sets of replicate weights are created, a conventional analysis is

run for each set of weights, and the standard errors of the parameter estimates

are a measure of the variability across pseudo-replicates

seO™BRR
D

v

u

u

u

u

t

R
X

rD1

.O™r � O™/2

R
: (3)

With larger datasets, BRR estimates of variance are seen by some as less

computationally taxing than JRR because they use only half-samples (Rao et al.,

1992; Rust & Rao, 1996).

Bootstrapping

Bootstrapping can be a difficult task with complex sample data, but it has been

cited as being possibly the most flexible and efficient method of analyzing survey

data because it can be used to solve a number of problems posed by the sample

design (Lahiri, 2003). Developing an appropriate bootstrapping technique, given

a particular sampling design, however, can be complicated and some have argued

that the bootstrap sampling procedure must follow the procedure used in drawing

the original sample (Kaufman, 2000). Others have claimed that, for many large

datasets from complex sampling designs, bootstrapping can occur at the first

stage of selection only (Lahiri, 2003; Rust & Rao, 1996). Within strata, it is

typical to sample .K � 1/ PSUs (from the original sample) with replacement,

where K represents the number of PSUs in the stratum in the original sample.

Defining optimal values for the number of PSUs selected for the bootstrap

sample from a stratum has been the subject of some research (Rao & Wu, 1988)

and it has been determined that there are practical advantages and little loss in

efficiency in choosing the number of PSUs to be .K � 1/ instead of K (Efron,

1982; Rust & Rao, 1996).

For each bootstrap replicate, just as with JRR and BRR, each observation’s

sampling weight is adjusted to reflect its status in the replicate sample. The

bootstrap replicate weight in a stratified three-stage sample, for example, is cal-

culated as w
.r/

ijkl D wijkl
Kl

.Kl �1/
f

.r/

kl , where wijkl represents the original sampling

weight for the ith person in the jth segment in the kth PSU in the lth stratum,

and f
.r/

jk represents the number of times the PSU was randomly selected with

replacement for the given r bootstrapped replicate. This method of adjusting

the sampling weights based on random sampling with replacement of the PSUs

was suggested by Rao et al. (1992) and it was found, for the general case,
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that the method overestimates the true variance to some extent but, like JRR

and BRR, it has the desirable feature that it does not require knowledge of the

sampling design beyond the first stage (Lahiri, 2003). Note that in two-PSUs

per stratum designs, this formula simplifies to the familiar w
.r/

ijkl
D 2wijkl for

observations from PSUs selected for the replicate and w
.r/

ijkl
D 0 for those not.

Also, in this case when K D 2, the process reduces to the random half-sample

replication as with BRR. One should note that with BRR one can achieve the

full precision possible for a linear estimate using slightly more than L replicates

due to the orthogonal selection of pseudo-replicates. The bootstrap, however,

because of its random selection of PSUs, provides less precision for the same

number of half-samples. Therefore, for a design with two PSUs per stratum,

there is probably little benefit of using the bootstrap over the BRR (Rao &

Wu, 1988; Rust & Rao, 1996). Table 4 contains bootstrap replicate weights for

the example dataset (note that the use of only eight sets of bootstrap replicate

weights is not typical).

Unlike JRR and BRR, the number of bootstrap replicates used does not

depend on the number of strata or PSUs in the sample. The bootstrap resampling

process is repeated hundreds (or possibly thousands) of times, and the empirical

standard deviation of the estimate across these replicates is considered the

TABLE 4

Example Dataset With Bootstrapped Replicate Weights

Stratum PSU School Student Y w0
1 w0

2 w0
3 w0

4 w0
5 w0

6 w0
7 w0

8

1 1 1 1 9 2 0 0 2 2 0 0 2

1 1 1 2 7 2 0 0 2 2 0 0 2

1 1 2 3 8 2 0 0 2 2 0 0 2

1 1 2 4 4 2 0 0 2 2 0 0 2

1 2 3 5 4 0 2 2 0 0 2 2 0

1 2 3 6 5 0 2 2 0 0 2 2 0

1 2 4 7 2 0 2 2 0 0 2 2 0

1 2 4 8 3 0 2 2 0 0 2 2 0

2 3 5 9 2 0 0 2 0 0 0 2 0

2 3 5 10 6 0 0 2 0 0 0 2 0

2 3 6 11 5 0 0 2 0 0 0 2 0

2 3 6 12 4 0 0 2 0 0 0 2 0

2 4 7 13 1 2 2 0 2 2 2 0 2

2 4 7 14 0 2 2 0 2 2 2 0 2

2 4 8 15 1 2 2 0 2 2 2 0 2

2 4 8 16 4 2 2 0 2 2 2 0 2

Note. PSU D primary sampling unit.
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sampling error of the original parameter estimate

seO™BOOT
D

v

u

u

u

u

t

R
X

rD1

.O™r � O™/2

R � 1
(4)

where O™r is the parameter estimate of interest in replicate r, and O™ is the original

estimate of the parameter from the full sample. The precision of the variance

estimator, of course, increases with increasing R, but the computational time that

is required to undertake the bootstrap replication process increases as well (Rust

& Rao, 1996, p. 292). Kovar, Rao, and Wu (1988) undertook a simulation study

using a typical example sampling design (based on the data collection design

of the National Assessment of Educational Progress) and found little advantage

to using R D 200 over R D 100 when examining ratio and regression variance

estimators. Although it can be more computationally intensive, an advantage to

using bootstrap replication is its ability to provide empirical confidence intervals.

That is, if 1,000 bootstrap samples are generated, an empirical 95% confidence

interval can be created by sorting the resulting 1,000 estimates and by taking

the 25th and 975th estimates as the lower and upper bounds of the confidence

interval.

Summary of Replication Methods

Three methods of resampling observations from a dataset to produce multiple

replicates have been introduced here. The treatment has been very brief, and

readers are encouraged to consult other resources before undertaking a replica-

tion analysis. Researchers have compared the robustness of variance estimates

from JRR, BRR, and Taylor series linearization for ratio and regression estima-

tors and none of the methods have performed consistently better than the others

(Skinner et al., 1989); thus the decision to use a particular strategy should depend

on availability of estimation functions in software and the type of statistic (Kish

& Frankel, 1974). For statistics such as medians and percentiles, replication

methods have been found to be more robust than the linearization method. Rao

and Wu (1988) indicated that JRR and linearization methods are asymptotically

equivalent and thus, under large sample size conditions, these estimates should

be highly similar. For the secondary analyst, the choice of replication method

may not be a salient one. Typically, with national and international datasets,

specific replicate weights have already been created and are provided on the

dataset. Given this situation, JRR or BRR has already been chosen and the

analyst must find a program that can accommodate this replication estimation
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process. If the user has access to PSU and stratum indicators, linearization (with

programs that accommodate it) or bootstrapping (with additional programming)

also are possible options for estimation.

A Summary of Options for SEM Analysts

Given the various techniques, an analyst might be unsure of the method that

is best suited to variance estimation for his or her SEM analysis. WesVar, SU-

DAAN, Stata, and SAS software accommodate replication and/or linearization

estimation for tables of means and proportions and for regression techniques.

These software programs, however, do not support robust variance estimation for

SEM analyses with complex sample data. Up to this point, secondary researchers

wishing to undertake SEM seem to have used two general approaches for

analyses with complex sample data, either (seemingly) ignoring the sampling

design or using design effect adjustments. In reviewing recent research articles

that use SEM techniques with National Center for Education Statistics (NCES)

probability samples, there are some articles that do not make reference at

all to issues in sampling variance estimation in SEM and therefore appear

to undertake a conventional analysis (see Coker & Borders, 2001; Singh &

Billingsley, 1998; Wang & Ma, 2001; Wang & Staver, 2001). Also, there are

some that have used a design-effect-adjusted sampling weight (see Marsh &

Yeung, 1996) or adjustment of standard error estimates from a conventional

analysis using the design effect (see Fan, 2001). Only recently has the QPML

method been made available in both the LISREL and Mplus software and thus, as

of this writing, no published articles were found using this method with applied

SEM analyses. Given previous methodological research, the linearization method

appears to provide robust estimates of the finite population parameters given

conditions found with typical NCES data (Muthén & Satorra, 1995; Stapleton,

2006). Sometimes, however, the information required to undertake the QPML

estimation is not available to the secondary analyst. Specifically, PSU indicators

or stratum indicators may not be available, but replicate weights (e.g., JRR and

BRR) might be on the dataset. Thus, the question remains as to how SEM

analysts can utilize the JRR or BRR weights on national datasets and whether

the resulting estimates are robust in the SEM context.

Adjusted Chi-Square Statistics

One problem with the application of replication methods in SEM is that the chi-

square statistic for each of the replications does not account for the sampling

design. The creation of an adjusted chi-square test statistic is proposed, similar

to the Rao–Scott correction (Rao & Scott, 1981) used with chi-square tests of

goodness of fit and independence. The extension of the Rao–Scott correction
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to chi-square test statistics in SEM analyses is reasonable, given that likelihood

ratio tests are asymptotically equivalent to the Pearson chi-square statistic (Rao

& Scott, 1981) and that the adjusted chi-square under QPML, as derived and

proposed by Asparouhov and Muthén (2005), is functionally a correction based

on the diagonal of the asymptotic covariance matrix. For SEM replication

analyses, a division of the chi-square statistic obtained from the conventional,

original full sample analysis by the average design effect of the estimates is

proposed. Specifically, this adjustment can be undertaken as

¦2
adj D ¦2

conv

q

q
X

iD1

se2
O™Ri

se2
O™i

(5)

where q is the number of parameters, seO™R i
is the estimated standard error from

the replication process for the ith parameter, seO™i
is the estimated standard error

from the conventional analysis for the ith parameter, and ¦2
conv is the test statistic

from the conventional analysis. An assumption in the use of an average design

effect across parameters is that the effect is equivalent across parameters, and the

design effect based on the covariance of parameters is equivalent as well. It is

suggested that such an assumption is stringent and, when violated, will provide

a conservative test (Rao & Scott, 1981). In the case of SEM, this conservative

approach would lead a researcher to fail to reject the model when the model

might actually be incorrect.

METHOD

This study extends the Stapleton (2006) study, which compared the performance

of the QPML method versus conventional and design-effect-adjusted standard

error estimation methods in SEM by including an assessment of estimates from

JRR, BRR, and bootstrapping techniques. The most complex sampling design

and population condition that was studied in Stapleton (2006) was used so that

results can be compared between the two studies. Although she examined six

sampling designs, only the most complex design, one that is similar to national

large-scale studies, was used here because the estimation methods were able to

provide fairly robust estimates under the simpler sampling designs, and some of

the replication techniques (i.e., BRR) are only applicable with the most complex

sampling design.

For this study, a population of data was created and the complex sampling

design was then repeatedly applied to it. The population data were generated

using a hierarchical structure (fictitious geographic regions, counties, schools,

and students) and consisted of 60 regions, with 12 counties in each of the
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regions. Within each county, school data were generated with two hypothetical

types of schools: private and public. In each county, data for seven private

schools and 23 public schools were generated. Finally, within each of the 21,600

schools, student data records were generated with varying numbers of students

per school. Private schools were designed, on average, to have 47 students

(SD D 11) and public schools had an average size of 130 (SD D 30). Within

each school, student data were generated to reflect a two-stratum structure: 70%

of the students were generated to be from a hypothetical majority group and

30% from a hypothetical minority group. The empirical population contained

more than 2,300,000 observations.

Data were generated to reflect the population model in Figure 1, and the

population intraclass correlation for all variables was generated to be at a

fairly high level, .5. Region, county, and school each accounted for a third

of the grouping variance. In the population, differences in the fixed ”11 effect

existed across strata. Data for private school students and majority students

were generated to represent higher levels of the fixed ”11 effect; the path was

generated at a standardized value of .5 with a .1 increment for each condition

(private school or majority student). So, for example, data for private school

majority students were generated with a standardized path value of .7 on average,

whereas data for public school majority students reflected a standardized path

value of .6 on average. Although the generating parameters were set values,

given random school sizes, the actual population parameters in the 2.3-million-

member population differed slightly from the intended values. The generating

and actual empirical unstandardized population parameters are shown in Table 5.

The generating values for ”11 and §11 are estimates. The values depended on

school and student type, and because student size differed randomly across the

school, the values are not known. The generating ”11 value was estimated to

be a weighted average of the ”11 across the strata, given expected population

FIGURE 1 Population model of interest.
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TABLE 5

Population Parameter Values

œ21 œ31 •11 •22 •33 ”11 §11

Standardized generating values 0.700 0.700 0.510 0.510 0.510 0.580 0.664

Unstandardized generating values 1.000 1.000 51.000 51.000 51.000 0.406 32.516

Unstandardized empirical values 1.054 1.034 49.219 50.656 51.095 0.391 32.416

sizes within schools, and the §11 value was estimated as a function of the ”11

estimate.

The sampling design entailed a stratified three-stage approach. First, two

counties were selected in each of the 60 regions using probability proportionate

to size sampling; SAS PROC SURVEYSELECT was used for all sampling.

Within each county, the schools were chosen using stratified sampling with

unequal selection rates across the two strata and probability proportionate to size

sampling; 5 of the 23 public schools were chosen and 1 of the 7 private schools

was chosen for the sample. Within schools, 20 students were randomly sampled

from each of the two strata of students, with 10 students selected from each,

representing disproportionate sampling. The process of sampling was repeated

500 times and for each of these 500 samples, a conventional SEM analysis was

undertaken. In addition to the conventional analysis, four methods of standard

error estimation were examined: QPML, JRR, BRR, and bootstrapping. The

specifics of the estimation implementation are explained in the next section.

All analyses utilized Mplus version 3.11 software (Muthén & Muthén, 2004)

and interest was in the accuracy of standard error estimates, the design-effect-

adjusted chi-square, and in the complexity of running the analyses.

QPML Linearization

In Mplus, TYPE IS COMPLEX was specified in the ANALYSIS: section syntax

and three items required for the analysis were specified in the VARIABLE: section

of the syntax. First, the stratum identifier and the PSU identifier were provided

using the syntax statements STRAT IS region and CLUSTER IS county. Also, the

sampling weight was specified in the definition of the variable components using

the statement WEIGHT IS orig_weight. This syntax was run 500 times, once

for each sample drawn from the population, and estimated parameters, standard

errors, and chi-square statistics were saved for analysis.

Jackknife Repeated Replication

Because there were 60 strata in the sampling design with two PSUs selected in

each, two options were available for the creation of jackknife replicate weights:
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Either 60 sets of pseudo-replicate weights or 120 sets of pseudo- and complement

replicate weights could be created. If 60 sets of replicates weights are created,

each of the sets would be defined by randomly selecting a PSU from one of

the strata for exclusion for each replicate. For this replicate weighting scheme,

Equation 2 would be used in the estimation of the parameter standard errors.

Alternatively, 120 sets of replicate weights could be created with each of the

120 PSUs dropped one at a time, and Equation 1 would be used for standard

error estimation. For this simulation, this latter approach was used, and 120 sets

of jackknife weights were created for each of the 500 samples. Within each

of these sets, the weights for the individuals associated with one of the PSUs

for a specified stratum were set to zero, and the weights of the individuals in

the remaining PSU in the stratum were inflated by the ratio of Kl

Kl �1
(Rust &

Rao, 1996), or 2 in this case. For each of the 500 samples, once the replicate

weights were defined, the model was run in Mplus 120 times, using each of

the 120 sets of jackknife weights, and the parameter estimates were saved from

each. For this analysis, the strata and cluster identifiers are not used, and each

time the model is run, data are analyzed as if from an SRS (but with their

associated JRR replicate weights). The standard error estimates for each of the

500 samples were thus calculated as shown in Equation 1, using the original

parameter estimates from the conventional analysis as O™. Adjusted chi-square

statistics were then calculated as given in Equation 5.

Balanced Repeated Replication

Because there were 60 strata and balanced repeated replicates need to be on an

order of L C 1 to L C 4, a Hadamard matrix of order 64 was taken from Wolter

(1985) to identify the set of orthogonal weights for a set of 64 replicates. For

each of the 500 samples, the sampling weights for the observations for each

PSU were set to zero or twice the original sampling weight, depending on the

replicate as defined in the design matrix. The model was then run in Mplus 64

times, using the 64 sets of balanced repeated replicate weights, and the parameter

estimates were saved from each. Again, for this analysis, the strata and cluster

identifiers are not used, and the 64 models were run as if from an SRS (but

with their associated BRR weights). The standard error estimates for each of

the 500 iterations were calculated as in Equation 3 using the 64 sets of .O™iR/

estimates and the original parameter estimates from the conventional analysis as
O™. Adjusted chi-square statistics were then calculated as given in Equation 5.

Bootstrapping

For each of the 500 iterations, bootstrap replicates were selected such that,

within each of the 60 regions, one PSU was selected at random and the in-
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dividual observations for that PSU were retained and their sampling weights

were multiplied by 2. The weights for the individuals from the nonselected PSU

were set to zero. This process of randomly sampling PSUs from all strata was

repeated 200 times for each of the 500 samples. For each sample, the model

was then run in Mplus 200 times, using the 200 sets of bootstrapped replicate

weights, and the parameter estimates were saved from each. As with JRR and

BRR, the strata and cluster identifiers are not used in the model analysis and

the 200 models were run as if the data were from an SRS (but with their

associated bootstrap weights). The standard error estimates were thus calculated

as in Equation 4 using the original parameter estimates from the conventional

analysis as O™. Adjusted chi-square statistics were then calculated as given in

Equation 5.

For each of the four estimation methods, bias of standard errors and adjusted

chi-square values were examined. Parameter estimate bias was not of concern

in this study because the replication methods assessed here are for sampling

variance estimation and parameter estimates are taken from the conventional

SEM analysis. Relative bias for the standard errors of the parameter estimates

was calculated as B.s OeO™q
/ D

s OeO™q
�s Oe™q

s Oe™q
, where s OeO™q

is the mean of the estimated

standard errors of the qth parameter across the 500 iterations, and s OeO™q
is an

estimate of the population standard error of O™q calculated as the empirical

standard deviation of O™q across the 500 iterations (Hoogland & Boomsma, 1998).

The adjusted chi-square values were used to determine the number of times the

adjusted chi-square statistic resulted in the rejection of the hypothesized model

using an alpha level of .05. Additionally, average adjusted chi-square values

were calculated.

RESULTS

All analyses converged and provided admissible solutions. As expected, param-

eter estimate bias was negligible and is not presented here. Bias of estimates of

standard errors is displayed in Table 6. As can be seen in the table, except for

the conventional analysis, the standard error bias is very similar for all methods.

The conventional analysis resulted in negatively biased estimates of standard

errors by nearly 70%. The replication methods resulted in slightly positively

biased estimates ranging from about 4% for the ”11 estimate to 10% for one of

the residual variances. As might have been expected, the standard errors were

conservatively estimated because sampling after the first stage of selection was

ignored and the sampling fraction at the first stage was not extremely small (2

out of 12 PSUs were selected). The failure to adjust for the finite population

(sampling without replacement) results in a loss of efficiency.
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TABLE 6

Relative Bias of Standard Error Estimates and Chi-Square Rejection Rates by Method

Conv. PML Jack BRR Boot200

Standard error bias

œ21 �0.677 0.079 0.081 0.091 0.094

œ31 �0.682 0.063 0.064 0.076 0.077

”11 �0.686 0.037 0.037 0.043 0.046

•11 �0.692 0.065 0.064 0.073 0.070

•22 �0.672 0.095 0.096 0.101 0.107

•33 �0.654 0.077 0.077 0.087 0.086

§11 �0.688 0.053 0.055 0.057 0.056

Chi-square rejection rate 74.6% 3.4% 3.2% 2.8% 3.2%

Average chi-square value 19.11 1.83 1.74 1.71 1.71

Note. PML D pseudo maximum likelihood; Jack D jackknife repeated replication; BRR D

balanced repeated replication; Boot200 D bootstrapping.

Adjusted chi-square test statistics resulted in rejection rates close to the

nominal .05 rate for the replication methods, as opposed to the nearly 75%

rejection rate for the conventional analysis. The slight underestimation of the

chi-square statistic may be a result of the slight overestimation of the standard

errors and the possible violation of equivalent design effects across parameters

and the covariance of the parameters.

As suggested from previous research on more traditional statistical estimates

(Rust & Rao, 1996), the QPML linearized standard error estimates were similar

to the JRR estimates, whereas the BRR estimates and the bootstrap estimates

were more similar to each other. In the conditions studied in this simulation, the

BRR and bootstrap estimates tended to be slightly more biased than the QPML

and JRR estimates.

A second interest in this study was to examine the number of bootstrap

replications that were necessary for proper standard error estimation. An ex-

amination of the stability of the estimates over increasing R size from 1 to

200 was undertaken, and one example of the results is shown in Figure 2. The

maximum change in the estimated standard error at each replication across the

500 simulated datasets is shown for a representative parameter (œ31). In general,

across the 500 iterations, the estimate appeared to stabilize fairly quickly; very

little movement in the estimate occurred after 50 bootstrap samples, and certainly

estimates were stable within 100 replications. This result supports the finding in

Kovar et al. (1988), that 100 replications (as opposed to 200) might be sufficient

in this context. The findings were consistent across all three types of parameters

studied in this model.
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FIGURE 2 Maximum change in standard error estimate across 500 iterations of the œ31

parameter estimate by number of bootstrap replicates.

AN EMPIRICAL EXAMPLE

To aid researchers in applying these procedures in a real-life context, an exam-

ple analysis was undertaken with data from the Early Childhood Longitudinal

Study–Kindergarten (ECLS–K) cohort. The model shown in Figure 1 was ap-

plied to data from 15,757 kindergarten students. Specifically, a construct of “cog-

nitive achievement” as indicated by item response theory scale scores in reading

(C1RSCALE), mathematics (C1MSCALE), and general ability (C1GSCALE) was

regressed on the number of places the child had lived for at least 4 months

since birth up until the day of the parent interview (P1NUMPLA). It could

be hypothesized that stable home conditions lead to earlier gains in cognitive

processing. Descriptive information for the unweighted data appears in Table 7;

listwise deletion was used to provide the final dataset for analysis. Design effects

TABLE 7

Unweighted Descriptive Statistics for Example Analysis (N D 15,757)

Estimate M SD Min Max Design Effect

P1NUMPLA 2.18 1.39 1 20 7.34

C1RSCALE 22.60 8.63 10.08 69.66 7.39

C1MSCALE 20.03 7.35 6.90 59.82 11.10

C1GSCALE 22.56 7.39 7.30 47.78 3.47
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of the mean for each variable were calculated as the ratio of the square of the

standard error estimated via SAS PROC SURVEYMEANS over the square of

the standard error estimated via SAS PROC MEANS; the stratum and PSU

identifiers were provided in the syntax for the SURVEYMEANS procedure and

Taylor series linearization was used.

The analysis was undertaken using conventional SEM to obtain parameter

estimates and conventional estimates of standard errors (as shown in Table 8)

and then five other methods of obtaining standard error estimates and adjusted

chi-square statistics were used: QPML estimation, JRR estimation, and three

variations of bootstrapping using 100, 200, and 500 replications. The QPML

estimation was undertaken by indicating that TYPEDCOMPLEX in the Mplus

syntax as well as providing the sampling stratum variable (C1CPTSTR) and a

PSU indicator variable. Note that Mplus requires that PSU identifiers be unique

across all strata; most NCES databases have sequential numbering of PSUs

within strata, but will reuse PSU identifiers across strata (thus the first stratum

might have PSUs with indicator values of 1 and 2 and the second stratum might

also have PSUs with indicator values of 1 and 2). For this analysis, a new PSU

indicator was created by concatenating the identifier (C1CPTSTR) with the PSU

indicator (C1CPTPSU). Both the conventional and QPML estimation analyses

used the sampling weight C1CPTW0.

TABLE 8

Unstandardized Estimates From the Example Early Childhood Longitudinal Study Analysis

Estimate Conv. PML Jack Boot100 Boot200 Boot500

Model chi-square

(adjusted chi-square)

8.643 6.524 6.002 4.676 4.937 4.876

Parameter estimates

œ21 1.006 — — — — —

œ31 0.736 — — — — —

”11 �0.386 — — — — —

§11 44.824 — — — — —

•11 25.873 — — — — —

•22 6.664 — — — — —

•33 29.501 — — — — —

Standard error estimates

œ21 0.012 0.013 0.012 0.012 0.013 0.013

œ31 0.011 0.013 0.012 0.019 0.017 0.017

”11 0.040 0.051 0.050 0.054 0.051 0.053

§11 1.122 1.618 1.426 1.875 1.887 1.922

•11 0.732 0.876 0.933 0.949 0.938 0.921

•22 0.445 0.474 0.500 0.435 0.426 0.420

•33 0.422 0.519 0.548 0.599 0.521 0.549

Note. PML D pseudo maximum likelihood; Jack D jackknife repeated replication; Boot D

bootstrapping.
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The JRR estimates were obtained by using the 90 JRR weights available on

the ECLS–K dataset and running the Mplus syntax 90 times, once with each

set of JRR weights. Because the ECLS–K User’s Manual (U.S. Department of

Education, 2001) indicated that the JRR weights exist for only pseudo-replicates

and not for the complement replicates, Equation 2 was used to estimate the

individual standard error estimates. Equation 5 was used to calculate the adjusted

chi-square value. The SAS syntax to run the process of generating 90 sets of

parameter estimates by calling Mplus within a macro is presented in Appendix A.

The bootstrapped replicate weights were created by using the stratum and

PSU indicators. First, the number of PSUs within each stratum was determined,

and then Kl � 1 PSUs were sampled from each stratum with replacement.2 Ob-

servations from the selected PSUs were then used in the bootstrapped analysis,

but the sampling weights were first inflated by Kl

Kl �1
. The model was run in

Mplus using only the selected observations and this process of random selection

of PSUs and subsequent analysis was repeated 500 times. Estimates of standard

errors and adjusted chi-square values were determined using Equations 4 and

5, respectively, after 100, 200, and 500 bootstrap samples. The SAS syntax to

run the process of generating 500 sets of parameter estimates by calling Mplus

within a macro is presented in Appendix B.

As expected, the standard error estimates are, in general, smaller with the

conventional analysis; on average, they are approximately 20% smaller than the

standard error estimates from the other methods of estimation. In this example,

the other methods—QPML, JRR, and bootstrapping—did result in somewhat

different estimates between them, but the differences were not great. The ad-

justed chi-square statistics, as predicted, were smaller with the alternate meth-

ods as compared to the conventional chi-square statistic value. Note that with

bootstrapping, an analyst would have proclaimed that the model met criterion

for exact fit (df D 2) given the adjusted chi-square value. Aside from this

difference, the substantive interpretations are not greatly different across the

methods of standard error estimation (tests of individual parameter estimates

would yield the same conclusions across the methods).

DISCUSSION

In general, for the conditions examined in the simulation study and in the em-

pirical demonstration, variance estimation with all replication methods provided

2Although the ECLS–K has been described up until now as utilizing a two-PSU-per-stratum

sampling design, the actual process was quite a bit more complex. Some of the strata contained PSUs

that were selected with certainty and thus all PSUs within that stratum were selected. More detail

on this process and its implications for JRR weights and Taylor series stratum and PSU indicators

used for linearized or bootstrapping estimates are available in U.S. Department of Education (2001).
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similar estimates of standard errors and adjusted chi-square values, and these

values were quite similar to the estimates obtained through QPML estimation

available in current versions of LISREL and Mplus software. The use of any

of these options should be strongly preferred over the option of running a

conventional analysis when the data result from a complex sampling design.

Under conditions specified in this study, although the standard error estimates

were negatively biased by nearly 70% for the conventional analysis, all standard

errors from the replication designs were biased by less than 10.7%, although

that bias was consistently positive. This slight positive bias is the result of

assuming that the PSUs were sampled with replacement (and not utilizing a finite

population correction). In terms of the chi-square rejection rates, a conventional

analysis would suggest that the hypothesized model is not consistent with the

sample data, whereas using the adjusted chi-square value would result in a

decision that the hypothesized model is plausible. In this study, equivalent

design effects were generated for all measured variables, thus the assumption of

equivalent design effects for the Rao–Scott-type correction to the chi-square was

met. This condition might not be reasonable in empirical data; future research

might examine the impact on the chi-square adjustment of including variables

with very different design effects in one model.

With regards to chi-square, a contrary result across two analyses is of theoretic

value; a discrepancy between the chi-square statistic from a weighted conven-

tional analysis and the adjusted chi-square statistic alerts the analyst to a possible

confound of theoretic cluster effects. If the interpretations from the chi-square

statistics are discrepant, the analyst can claim that the model is plausible for the

finite population, but will need to reflect on the assumption that the clustering

is truly a nuisance. If clustering plays a role in the causal mechanism among

observed variables, then interpretations made against the finite population model

might not be appropriate for generalization and a model-based analysis, such as

multilevel SEM, might be more appropriate for theory building.

It is hoped that this article has highlighted some of the issues that must

be considered when undertaking an SEM analysis with complex sample data.

Current versions of some SEM software are not able to accommodate the

complex sampling structure behind some large-scale data; however, with the

programming tools provided in the appendices, analysts could examine for

themselves the alternate results and interpretations they might obtain if they

use a replication method for estimation. Although only one type of sampling

design and set of population characteristics were considered here, findings should

extend to other sampling designs and population structures. Because the success

of the estimation has been found to differ across statistic types (Kish & Frankel,

1974; Rao & Wu, 1988), future research could consider whether there might be

an interaction between the complexity of the model analyzed and the robustness

of the standard error estimates with any of these variance estimation techniques.
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APPENDIX A: SAS SYNTAX TO RUN JACKKNIFE

REPLICATION WITH THE MPLUS SOFTWARE ON

ECLS—K DATA

%MACRO JACK;

%DO J=1 %TO 90; ***run for as many jackknife weights as you have*;

DATA TEMP;

SET fall_ecls2; *this is the SAS dataset that contains the raw data and 90

sets of replicate weights*;

*next, I write out model variables to a text file*;

FILE ‘C:\TEMPdata\MPLUSDAT.DAT’;

PUT @1 C1RSCALE @11 C1MSCALE @21 C1GSCALE @41 P1NUMPLA @51 C1CPTW&J;

*note that the jackknife weights should be named

sequentially from 1 to 90;

RUN;

DM "x ‘c:\ECLS_JACK.BAT’"; *this command runs an external batch file *;

*that calls Mplus and runs prespecified input syntax*;

DATA READIN_RESULTS;

INFILE ‘C:\RESULTS_JACK’; *in Mplus, the estimates are saved to this file*;

*next, Mplus estimates are read in and saved to a dataset*;

INPUT V2INT V3INT V4INT V3F1 V4F1 E2E2 E3E3 E4E4 F1V1 D1D1 /

SEV2INT SEV3INT SEV4INT SEV3F1 SEV4F1 SEE2E2 SEE3E3 SEE4E4 SEF1V1 SED1D1/

CHISQ CHISQDF CHISQP CFI TLI LLH0 LLH1 FREEPARA AIC BIC /

ABIC RMSEA SRMR;

JACK=&J;

PROC DATASETS; APPEND BASE=LIB.RESULTS_ECLS_JACK DATA=READIN_RESULTS ; quit;

*dataset will append by 1 record each loop thru the %DO statement*;

%END;

%MEND;

%JACK;

APPENDIX B: SAS SYNTAX TO RUN BOOTSTRAP

REPLICATION WITH THE MPLUS SOFTWARE ON

ECLS—K DATA

PROC SORT DATA=fall_ecls2; BY C1CPTSTR C1CPTPSU; *sort data by stratum, PSU*;

DATA STRAT_PSUS; SET FALL_ECLS2; BY C1CPTSTR C1CPTPSU;

IF FIRST.C1CPTPSU; KEEP C1CPTSTR C1CPTPSU; *list of stratum, PSU *;

DATA STRATNUM; SET STRAT_PSUS; BY C1CPTSTR C1CPTPSU;

RETAIN NUMPSU;

IF FIRST.C1CPTSTR THEN NUMPSU=0;

IF FIRST.C1CPTPSU THEN NUMPSU=NUMPSU+1;

IF LAST.C1CPTSTR;

_NSIZE_=NUMPSU-1;

KEEP C1CPTSTR _NSIZE_; *provides data file of Stratum IDs and K-1*;
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PROC SURVEYSELECT DATA=STRAT_PSUS METHOD=URS SAMPSIZE=STRATNUM SEED=8923

OUT=SELECTED_PSUS REP=500;

STRATA C1CPTSTR; RUN; *requests 500 stratified samples of PSUs be drawn

*(based on C1CPTSTR) with replacement, using the

*(K-1) sample sizes contained in File STRATNUM. *;

PROC SORT DATA=SELECTED_PSUS; BY C1CPTSTR C1CPTPSU;

DATA ADD_NMINUS1;

MERGE SELECTED_PSUS STRATNUM; BY C1CPTSTR;

WEIGHTSCALE=(_NSIZE_+1)/(_NSIZE_);

*creates a constant for each stratum to be applied

*to scale weights from selected PSUs*;

%MACRO BOOT;

%DO B=1 %TO 500; ***run for as many BOOTSTRAP SAMPLES as you have*;

DATA PSU_REP;

SET ADD_NMINUS1;

IF REPLICATE=&B; *selects appropriate PSUs given bootstrap sample number*;

DATA ALLDATA;

MERGE PSU_REP (IN=A) FALL_ECLS2; BY C1CPTSTR C1CPTPSU; IF A;

*only records that match with the selected bootstrap PSUs

*are included in this analysis*;

NEWWEIGHT=WEIGHTSCALE*C1CPTW0; *weights are adjusted by K/(K - 1)*;

*next, I write out model variables to a text file *;

FILE ‘C:\TEMPdata\MPLUSDAT.DAT‘;

PUT @1 C1RSCALE @11 C1MSCALE @21 C1GSCALE @41 P1NUMPLA @51 NEWWEIGHT ;

RUN;

DM "x ‘c:\ECLS_BOOT.BAT‘"; *this command runs an external batch file *;

*that calls Mplus and runs prespecified input syntax*;

DATA READIN_RESULTS;

INFILE ‘C:\ RESULTS_BOOT‘; **in Mplus, estimates are saved to this file*;

*next, Mplus estimates are read in and saved to a dataset*;

INPUT V2INT V3INT V4INT V3F1 V4F1 E2E2 E3E3 E4E4 F1V1 D1D1 /

SEV2INT SEV3INT SEV4INT SEV3F1 SEV4F1 SEE2E2 SEE3E3 SEE4E4 SEF1V1 SED1D1/

CHISQ CHISQDF CHISQP CFI TLI LLH0 LLH1 FREEPARA AIC BIC /

ABIC RMSEA SRMR;

BOOT=&B;

PROC DATASETS; APPEND BASE=LIB.RESULTS_ECLS_BOOT DATA=READIN_RESULTS; quit;

*dataset will append by 1 record each loop thru the %DO statement*;

%END;

%MEND;

%BOOT;


