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Consider a multiple-group scalar invariance factor model
Yz‘g =V+ Anz'g + Eig

Nig ~ N(O‘gv ‘I/g)

where 7;, and Y;, are the factors and the factor indicators for observation
¢ in group g. The loading matrix A contains only free parameters and the
scale of the factors is set by assuming that the factor means «; in the first
group are 0 and that the factor variances in the first group are 1, i.e., ¥,
is a correlation matrix with 1 on the diagonal. The first group is called the
reference group. If we change the reference group, i.e., we rearrange the data
so a different group appears as the first group the log-likelihood of the model
will remain the same however the parameter estimates will change as follows.
If the new reference group is group k the new factor means and variances for

group ¢ are
Nig ~ N((ag — ) Cy, C’k\IfgC,f)

where Cj, is the vector 1/1/diag(¥y)

If one is interested in testing for significant difference in factor means
between groups ¢g; and gs, changing the reference group will change the tested
hypothesis from

0= Qg — Qg

to
0= (agl - agz)ok-



While these two hypotheses are logically identical and are guaranteed to
asymptotically have identical conclusion (i.e. we would conclude that the
means are significantly different or not as long as we have sufficiently large
sample size regardless of which one of the two hypotheses we use), in finite
sample size the two hypotheses will not have identical p-values. When using
maximum-likelihood estimation, the testing of the above hypotheses is based
on the delta method and an asymptotic computation. When a hypothesis
reparameterization is not a linear transformation and involves multiplication
of model parameters (such as in the above example) the p-value is not pre-
served (the simplest example is the fact that testing if a parameters a is
significant we get twice as large T-test statistic as compared to testing a?).
The Baysian estimator has an advantage over ML estimator because it pre-
serves the p-value in this situation of testing significant differences between
the factor means and generally behaves more intuitively when it comes to
model reparameterizations.

In our experience, even though the p-value changes when the reference
group is changed, in most cases the conclusion does not change (i.e., regard-
less of which reference group we use the conclusion remains the same). Rarely
though the conclusion will indeed change, and perhaps using the Bayesian
estimator as an alternative is the sound way to resolve this issue in such
cases. The above discussion applies both for SEM and for ESEM models.

In Mplus it is easy to study this issue further because of the flexibility of
model constraints. Consider this two-group example

model: f1-f2 by y1-y6 (*1);
model g2: f1-f2 (v1-v2); [f1-f2] (m1-m2);
model constraints: new(al-a2); al=ml/sqrt(vl); a2=m2/sqrt(v2);

The statistical significance of al and a2 will be the same as the one of m1
and m2 if the two groups are reversed.



