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Residual Structural Equation Models

Tihomir Asparouhov and Bengt Muth�en�
Mplus

ABSTRACT
The residual variables in a structural equation model can be used to create a secondary structural
model which we call the residual structural equation model (RSEM). We describe the maximum-likeli-
hood, weighted least squares and Bayesian estimations for RSEM. The methodology is illustrated with
several examples and simulation studies. We discuss the implementation of RSEM in the Mplus soft-
ware package and provide scripts for the simulation studies. The RSEM framework is utilized to esti-
mate and simplify popular models such as the random intercept cross-lagged panel model (RI-CLPM)
and the latent curve model with structured residuals (LCM-SR). We discuss in details RSEM models
with categorical observed variables as well as categorical latent variables in the context of mix-
ture modeling.

KEYWORDS
Auto-regressive models;
longitudinal models;
residual modeling; RI-CLPM

1. Introduction

The residual variables in a structural equation model (SEM)
can be used to create a secondary structural model. This
combination of the primary and the secondary structural
models is what we call the Residual Structural Equation
Model (RSEM). The RSEM model has been discussed previ-
ously in the context of the dynamic structural equation
models (DSEM), see Asparouhov et al. (2018) and
Asparouhov and Muth�en (2020), and it is generally referred
to as the residual dynamic structural equation model
(RDSEM). The RSEM model has also been used in the con-
text of longitudinal cross-lagged panel models and is the
basis for the random intercept cross-lagged panel model
(RI-CLPM), see Hamaker et al. (2015), and the latent curve
model with structured residuals (LCM-SR), see Curran et al.
(2014). In this article, we provide a formal definition for the
RSEM model in the context of the standard single-level
SEM model with continuous and categorical variables. We
describe the implementation of this model in Mplus 8.7 and
discuss ML/WLSMV/Bayes model estimation. We illustrate
and motivate the use of the RSEM model with several exam-
ples. Among these examples are the RI-ARMA (random
intercept auto-regressive moving average) model, RI-MEAR
(random intercept measurement error auto-regressive)
model for longitudinal panel data, and the LCA model with
local dependence for ordered categorical variables, which
previously have not been available. We also describe an
expansion of the RDSEM model which now includes con-
temporaneous residual modeling in addition to the lagged
residual modeling. Model testing for the RSEM model is
discussed and a new Pearson posterior predictive p-value

(PPP) is introduced that can be used in evaluating model fit
for categorical data modeling with Bayesian estimation. The
Pearson PPP is particularly useful in evaluating the model
fit for Mixture models.

The article is structured as follows. In Section 2 we
introduce the general formulation of the model and pro-
vide details on the model estimation with the different esti-
mation methods. In Section 3 we provide multiple
examples and simulation studies. The Mplus input state-
ments for these simulation studies are given in Appendix
B. We show how the Mplus hats language for modeling
with residuals, previously available only for RDSEM mod-
els, is now used to simplify the RSEM model specifications.
An empirical study is also included for illustration pur-
poses. Section 4 concludes.

2. The General RSEM Model

Let Y be a vector of continuous observed dependent varia-
bles, g be a vector of continuous latent variables and X be a
vector of covariates. The basic SEM model is given by the
following two equations

Y ¼ � þ Kgþ KX þ e (1)

g ¼ aþ Bgþ CX þ n, (2)

where � and a are the intercept parameter vectors and K, K,
B and C are the regression parameter matrices. The residual
variables in this model are e and n. Denote the vector of all
residual variables by R ¼ ðe, nÞ: The RSEM model is then
given by the following equation

R ¼ BrRþ f, (3)
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where f�Nð0,WÞ: The variance covariance matrix W may
take any prespecified form, i.e., it can be diagonal or it can
include covariance parameters among the secondary resid-
uals f. The RSEM model allows us to explore structural
models for the residual variables of a standard SEM model.
The RSEM framework can be viewed as a generalization of
the unified longitudinal framework discussed in Usami et al.
(2019). To accommodate categorical observed variables in
this model, we simply replace the categorical variable with
the corresponding underlying continuous variables based on
the probit link function as it is typically done in the Mplus
framework. The threshold parameters that categorize the
underlying variables into the observed categories are also
included in the model. The underlying continuous variable
is used in the above equations instead of the observed cat-
egorical variable.

Note that the RSEM model is equivalent to the standard
SEM model given in Equations (1) and (2) where the vari-
ance covariance matrix of the residual vector R is

ððI�BrÞ�1ÞTWðI�BrÞ�1: (4)

Thus the RSEM model can be viewed as a methodology
that provides structural form for the variance covariance
matrix of the residuals.

Here we also define the extended RSEM model, which is
slightly more general than the model defined in Equations
(1–3). In this model, Equation (3) remains the same, while
Equations (1) and (2) are replaced by

Y ¼ � þ Kgþ KX þ B1rRþ e (5)

g ¼ aþ Bgþ CX þ B2rRþ n: (6)

In the extended RSEM model, the residual variables aug-
ment the very same primary SEM model that is used to
define them. Currently, the extended RSEM model can be
estimated with the ML and WLSMV estimators but not
with the Bayes estimator.

The Mplus language that facilitates the structural model-
ing for the residuals is identical to what has been used for
the RDSEM model. For an observed variables Y, the residual
variable of Y is referred to as Y^(Y hat) in the Mplus model
statement. Similarly, for a continuous latent variable g, the
variable g^ refers to the residual variable of g. The residual
variables can be regressed on each other with the usual ON
statement or can be correlated with the usual
WITH statement.

2.1. Model estimation with the ML and the
WLSMV Estimators

The maximum-likelihood estimation of the RSEM model
simply amounts to treating the residual variables R as an
additional set of latent variables. The RSEM model is there-
fore converted to a standard SEM model, where the loading
parameters for the residuals are fixed to 1. For standard
SEM models, the model formulation must include actual
residual variables, which are now converted to structural
latent variables. Therefore the conversion process from
RSEM to SEM includes adding new residuals that are zero.

The variances of these new residuals must be fixed to zero
so that the model is not altered by the add-on residuals.
The conversion of RSEM to SEM allows us to use in the
RSEM estimation computational routines developed for the
SEM model. This estimation approach is illustrated in the
estimation of the RI-CLPM model in Mulder and Hamaker
(2021) Supplementary materials. The new implementation
in Mplus, however, greatly simplifies the model specification
for these models as the residual latent variables and the
add-on zero residuals are automatically created.

Note here that the ML estimator can be used only with
continuous dependent variables. That is because Equation
(4) implies that the residuals are correlated. In the Mplus
framework, the residuals of categorical variables can be dir-
ectly correlated, i.e., not via a latent variable, only with the
Bayes and the WLSMV estimators but not with the
ML estimator.

The WLSMV estimation of the RSEM model mirrors that
of the ML estimator. The residual variables are treated as
latent variables. As in the ML estimation, add-on residuals
are created with zero variances to replace the residuals. This
step, however, requires the use of the theta parameteriza-
tion, see Muth�en and Asparouhov (2002). That is because
with the theta parameterization, we can set the add-on
residual variances to 0. With the delta parameterization,
the residual variance of a categorical variable is not a model
parameter. It is a parameter that depends on all other model
parameters and cannot be set directly to any value.

2.2. Model estimation with the Bayes Estimator

The Bayes estimator of the RSEM model is somewhat more
complicated. Here, it is not possible to use the estimation
approach used with the ML and the WLSMV estimators.
This is because add-on residuals can not have a fixed
residual variance of 0. It is possible to fix the residual vari-
ance to a small positive value, such as 0.001, however, such
an approach has several drawbacks. First, when using a
small but positive add-on residual value, we create an
approximate model rather than exact. Second, in practical
applications it is difficult to select a good small value that
works well for all variables in the model. Third, the
Bayesian estimation via the MCMC method converges very
slowly due to highly correlated model components updated
at different steps in the MCMC. Therefore we have imple-
mented direct Bayesian estimation that does not use add-on
residuals. This new estimation method generally follows the
estimation methodology described in Asparouhov and
Muth�en (2010) for standard SEM models. For standard
SEM models, all structural parameters and intercepts are
updated in the MCMC estimation with a normal conditional
distribution, conditional on all other model parameters and
latent variables. In the RSEM model that is not the case.
The structural model parameters and intercepts in
Equations (1–2) are estimated in one step and the structural
model parameters in Equation (3) are estimated in a separ-
ate step. The residual variables R in the RSEM Bayesian esti-
mation are not stochastically updated in the MCMC, i.e.,
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they are not treated as latent variables that must be stochas-
tically updated. They are derived quantities computed from
all other model components: model parameters, observed
and latent variables.

To update the parameters in Equations (1–2), conditional
on the parameters in (3), we simply reformulate the RSEM
model as a SEM model with residual variance covariance
given in Equation (4). We then apply the approach in
Asparouhov and Muth�en (2010), which uses a conditional
normal distribution (based on conjugate priors) for the
updating these parameters.

To update the parameters in Equation (3), conditional on
the parameters in Equations (1–2) and all other quantities,
we first compute the residual variables R. These variables
are then used for formulating a standard SEM model given
in Equation (3). Using the Asparouhov and Muth�en (2010)
method for this SEM model allows us to update the struc-
tural parameters in Equation (3) as well as the variance
covariance matrix W: This approach yields fast, efficient and
reliable Bayesian estimation for the RSEM model.

The Mplus default priors for the RSEM model are set to
uninformative priors as in the SEM model, see Asparouhov
and Muth�en (2010). If the RSEM model is somewhat poorly
identified or the sample size is very small, weakly inform-
ative priors may be necessary. In most situations, however,
we expect that the uninformative priors will be sufficient.

3. Examples

3.1. Growth Modeling with Autoregressive
Error Structure

Suppose that Yit is an observed variable for individual i at
time t ¼ 1, :::,T: A linear growth model is described by the
following equation

Yit ¼ Ii þ Si � t þ eit , (7)

where Ii and Si are the normally distributed random inter-
cept and slope. The autoregressive structure for the residuals
can be introduced in several different ways. One way to
introduce that structure is as follows

eit�Nð0, hÞ (8)

Corðeit1 , eit2Þ ¼ qjt1�t2j (9)

where h and q are model parameters. To estimate such a
model in Mplus, one can use the model constraint com-
mand as in Muth�en and Muth�en (1998–2017) example 6.17.
Such an approach is generally limited to at most 50 time
points because the model is estimated in a wide format and
the size of the manipulated matrices would become too
large for larger values of T. The approach is mainly used
with only a single variable observed across time.
Autoregressive error structure for multivariate models would
be difficult to estimate this way because Equation (9) would
involve matrix power computation which is impractical to
implement with the model constraint command. In add-
ition, this approach is typically used when the residual var-
iances and the autoregressive parameters are time invariant.

If either of these are not time-invariant the variance covari-
ance matrix implied by the non-invariant versions of
Equations (8–9) becomes impractical to implement with the
model constraint command. Even with just 10 time points,
if the autoregressive parameters and the residual variances
are not time invariant, one will need to write out 55 differ-
ent equations in model constraint.

A different modeling approach that is available in Mplus
for growth models with autoregressive error structure is the
DSEM and RDSEM modeling frameworks. Examples are
discussed in Asparouhov et al. (2018) and Asparouhov and
Muth�en (2020). Equations (8–9) are replaced most
typically by

eit ¼ qiei, t�1 þ fit (10)

where qi and logðVarðfitÞÞ are subject-specific normally dis-
tributed random variables, see Muth�en and Muth�en
(1998–2017) example 9.37. In the cross-classified DSEM
framework, the random effects can also be time and subject
specific, see Muth�en and Muth�en (1998–2017) example 9.39.
Such cross-classified modeling for longitudinal data is also
discussed in Asparouhov et al. (2018) and Asparouhov and
Muth�en (2016). These modeling approaches are typically
used when the number of time points is larger, i.e., at least
10. However, depending on the model complexity, the num-
ber of time points that is required could be much higher.
Because the models are estimated in long format, the num-
ber of time points that can be modeled in unlimited. In
fact, the larger number of times points, the better the esti-
mation is. Because the DSEM and RDSEM models are
intended for use with larger values of T, the subject-specific
and time-specific parameters are modeled as random effects
rather than non-random model parameters. For small num-
ber of time points, T< 10, even without subject-specific or
time-specific auto-regressive parameters, the DSEM and
RDSEM models tend to have worse performance than the
wide-modeling approach due to the added level of uncer-
tainty that comes about from the initial conditions. That
refers to the fact that at time t¼ 1, the predictor variable
ei, 0 in (10) is an unmeasured latent variable. The influence
of the initial condition tends to disappear as T increases,
however, for T< 10 it can lead to biases in the estimates.

The RSEM model offers a different alternative to the
above two approaches. It is a wide modeling approach that
focuses on time-specific parameters. Equations (8–9) are
replaced by

eit ¼ qtei, t�1 þ fit (11)

fit�Nð0, htÞ: (12)

Equation (11) is used only for t> 1. The initial condition
problem that exist with small T in the DSEM and RDSEM
models is not present here. We are able to avoid this issue
in the RSEM modeling framework because time-invariance
is not needed or assumed. In the RSEM model, the parame-
ters are cross-sectionally estimated and there are no subject-
specific parameters in the auto-regressive error structure.

One advantage of the RSEM model over the wide-format
model (8–9) is that it allows non-invariance of the
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parameters. Even when the parameters are invariant, how-
ever, the RSEM model is more compact and easy to use.
Model (11–12) becomes equivalent to (8–9) if the auto-
regressive parameters qt are held equal across time, the
residual variances parameters ht are held equal across time
for t> 1, and the first time point residual variance is con-
strained as follows

h1 ¼ h2=ð1�q2Þ: (13)

This last constraint must be added to the model con-
straint statement in the Mplus input file to obtain the
equivalence between the two models.

An advantage of the RSEM model over the DSEM/
RDSEM model is that the time non-invariance is more
flexible. In RSEM, we can estimate partial invariance
models where some of the time points have invariant
parameters and others do not. Invariance and partial invari-
ance of the autoregressive and residual variance parameters
can be tested in Mplus using the model test command.
Note, however, that there is a difference between the
autocorrelation parameter Corðeit , ei, t�1Þ and qt ¼
Corðeit , ei, t�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeitÞ=Varðei, t�1Þ

p
: Testing the invariance

of qt is not the same as testing the invariance of the correl-
ation parameter. To test the invariance of the correlation
parameter, in the model test command, the autocorrelations
must be expressed in terms of the model parameters.

Another advantage of the RSEM model over the DSEM/
RDSEM model is that it performs better for small T.
Furthermore, the RSEM model provides a chi-square test of
fit and Bayesian posterior predictive P-value (PPP), based
on the comparison of the model with the sample statistics
of the multivariate vector Y1,… ,YT. This is not available in
the long-format modeling approach used with the DSEM/
RDSEM models.

The disadvantages of the RSEM model as compared to
DSEM/RDSEM models is that the model doesn’t allow for
subject-specific parameters except for the random intercept
and slope and that it is limited in terms of how large T can
be. Furthermore, the time-varying RSEM model has a much
larger number of parameters as compared to the time-vary-
ing DSEM model where the time-specific variations in the
auto-regressive parameters are modeled as random effects.
Thus the time-varying DSEM model is much more parsimo-
nious when compared to the RSEM model. Note, however,
that the RDSEM model currently implemented in Mplus has
time-invariant autoregressive structure. Only the DSEM
model accommodates time-specific auto-regressive parame-
ters. Since the linear growth model is actually an RDSEM
model, rather than a DSEM model, the time-varying DSEM
model must be transformed into a time-varying RDSEM
model through a non-linear reparameterization. That trans-
formation is described in Asparouhov et al. (2018) for linear
and quadratic growth models. This complexity in the time-
varying RDSEM estimation can be viewed as another advan-
tage of the RSEM model which achieves this more directly.

All three of the above models are available for categorical
data as well. The observed variable Yit is simply replaced by
Y�
it: The RSEM model and the model given in Equations

(8–9) can be estimated with the WLSMV estimator. The
Bayesian estimator can be used for all three models with
continuous and categorical data.

Figure A1 in Appendix B shows the input file for a simu-
lation study for the RSEM linear growth model for continu-
ous data and with non-invariant autoregressive coefficients
qt. Figure 1 shows the graphical representation for this
model. We use 7 time points in this simulation study and
the times of observations are set to �1.5, �1, �0.5, 0, 0.5,
1, 1.5. Figure A2 in Appendix B shows the results of this
simulation study for a subset of the model parameters. The
results indicate that the Bayesian model estimation performs
well. Figure A2 in Appendix B is a direct extract of the out-
put file produced by Mplus and it allows us to quickly
evaluate the quality of the estimation. The estimation is con-
sidered good when all of these are satisfied: the point esti-
mates in column 2 show minimal bias as compared to the
true values reported in column 1, the standard deviation of
the point estimates reported in column 3 and the average
standard errors reported in column 4 are relatively small
and are comparable to each other (asymptotically the ratio
of the these two columns should be 1), the mean squared
error of the point estimates reported in column 5 is min-
imal (i.e. close to 0), the coverage of the confidence or cred-
ibility intervals reported in column 6 is near to the nominal
level of 95%, and the majority of the model parameters are
statistically significant in most of the replications (the per-
centage of replications where the parameter is significant is
reported in column 7, i.e., we want to see large values in
that column on the percentage scale of 0 to 1).

In this simulation study, we used a sample size of 1000
observations, however, smaller sample sizes, such as 100
observations also yield acceptable results. In general, sample
size requirements for the RSEM model would be slightly
higher than the requirements for the corresponding SEM
model, which excludes the residual part of the model. This
is simply because of the added number of parameters and
the increased complexity of the model.

3.2. RI-CLPM

Suppose that Y1,… ,YT are a set of outcomes for a variable
Y observed at times 1, :::,T: We define the RI-AR (random
intercept auto-regressive) model as follows

Yt ¼ �t þ gþ bYt (14)

bYt ¼ qt bYt�1 þ et: (15)

The latent variable g represents the time-invariant per-
son-specific effect and is generally referred to as the random
intercept. The parameters �t represent the time-specific
mean across the population. The latent variable bYt repre-
sents the residual, i.e, the time-specific individual-specific
deviation from the population mean �t and the time-invari-
ant person-specific effect g. Equation (15) represents the
auto-regressive part of the model.

The RI-CLPM (random intercept cross-lag panel model)
is the bivariate version of the RI-AR model and is described
as follows. Suppose that Z1,… ,ZT is a second set of
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outcomes observed at times 1, :::,T: For t ¼ 1, :::,T

Yt ¼ �1, t þ gY þ bYt (16)

Zt ¼ �2, t þ gZ þ bZt : (17)

The latent variables gY and gZ represent the time-invari-
ant person-specific effects, i.e., the random intercepts. The
parameters �j, t represent the time-specific variable-specific
mean across the population. The latent variables bYt and bZt

represent the residuals. An RSEM model can be used to
model the cross-lagged relationships among these residuals
as follows. For t ¼ 2, :::,T

bYt ¼ b1, t bYt�1 þ b2, t bZt�1 þ e1, t (18)

bZt ¼ b3, t bYt�1 þ b4, t bZt�1 þ e2, t: (19)

The regression parameters bj, t represent the bivariate
auto-regression and show how the deviations from the
means persist over time. Time-specific residual variances
can also be estimated Varðej, tÞ ¼ hj, t as well as the contem-
poraneous covariances Covðe1, t , e2, tÞ ¼ ct:

3.2.1. RI-CLPM with Continuous Variables
Here we conduct a simulation study to evaluate the per-
formance of the Bayes estimator for the RI-CLPM model
with continuous variables using T¼ 4 and sample size of
N¼ 200. Figure A3 in Appendix B contains the input file
used for this simulation and Table 1 contains the results for
a selection of the parameters. The results indicate that the
Bayes estimator performs well for this model. Similar results
can be obtained with the ML estimator if the Mplus

estimator5ml option is used in the input file. Note here
that in the Mplus language, the residual variance for a vari-
able actually refers to the variance of the secondary residual,
i.e., variance specification y2*1 implies that Varðe1, 2Þ ¼
h1, 2 ¼ 1: The actual residual variance for Y2, which is
Varð bY2Þ, is not a model parameter but a derived quantity
which can be obtained from Equation (18). Figure A4 in
Appendix B shows the Mplus input file needed for the RI-
CLPM model estimation with a single data set. This input
file is substantially simpler than the input file used prior to
Mplus 8.7, see Hamaker (2018).

3.2.2. RI-CLPM with Categorical Variables
The RI-CLPM can be estimated with categorical variables as
well. The model will generally require somewhat bigger
sample sizes as compared to the continuous variables case.
In this simulation we use N¼ 500. Figure A5 in Appendix B
contains the input file used for this simulation and Table 2
contains the results for a selection of the parameters. The

Figure 1. Graphical representation for RSEM AR(1) linear growth model.

Table 1 RI-CLPM simulation study with continuous variables.

Parameter True value Abs. Bias Coverage

b12 .5 .00 .95
b22 .2 .01 .99
b32 .1 .01 .92
b42 .5 .02 .98
b13 .3 .01 .97
b23 .2 .00 .95
b33 .3 .00 .95
b43 .3 .00 .94
CovðgY ,gZÞ .2 .02 .94
c1 .2 .01 .96
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results indicate that the Bayes estimator performs well in
this case as well. The model can also be estimated with the
WLSMV estimator using the option estimator5wlsmv;
param5 theta;. The RI-CLPM model in Figure A5 in
Appendix B uses binary variables, however, the performance
of the Bayes and the WLSMV estimators with ordered cat-
egorical variables is similar.

In the continuous case, the residual variance parameters
hj, t are estimated as free and unequal parameters. In the
example given in Figure A5 in Appendix B for the categor-
ical case, the parameters hj, t are all fixed to 1 by default.
This is along the lines of standard probit regression and is
generally needed for identification purposes. In longitudinal
studies, however, see for example growth models in Muth�en
and Asparouhov (2002), it is possible in principle to identify
all but one of these residual variance parameters because the
scale of the variables is aligned by the random intercept. If
the variance parameter for one of the variables in the longi-
tudinal process is fixed to 1, the variance parameters for all
other variables in the longitudinal process can in principle
be estimated as free parameters. For example, if the residual
variance of Y1 is fixed, the variance of the random intercept
is identified from the R2 of Y1 explained by the time-invari-
ant component in the model. Then, different values of ht for
t> 1, would imply different random intercept based correla-
tions between Y1 and Yt which means that ht is identified.

In the model given in Figure A5 in Appendix B, one
could fix h1, 1 ¼ h2, 1 ¼ 1 and estimate the remaining 6
residual variances. This modeling approach, however, is
somewhat more advanced and has several caveats. First, the
model is prone to empirical non-identification. The identifi-
ability of these additional parameters depends on all other
model parameters and for some data sets the parameters
cannot be identified. Second, reliable estimation of these
parameters requires much larger sample sizes. Third, even
with larger sample sizes, the standard errors of these param-
eters are often quite large and very likely, the residual vari-
ance parameters will not be significantly different from 1.
This defeats the purpose of estimating these parameters as
free model parameters.

In practical situations, one could explore estimating a
small selection of these residual variances, while still holding
the majority of the residual variances fixed to 1. There are
several different strategies that can be employed in deciding
which residual variances should be freed. One strategy is to
estimate the residual variance for only the first time point.
These residual variances may indeed be bigger than the

residual variances for remaining time points due to the fact
that the first residuals are not regressed on any other vari-
able. In fact, under the assumption of time invariance,
where all coefficients are held equal across time, the first
time point residual variances must be estimated as free
parameters because the model for the first residual is differ-
ent, see also Equation (13).

A different strategy is to estimate the model with all
residual variances fixed to 1 and then consider the standar-
dized loadings of the random intercept. Ideally we would
want these loadings to be not too different. If a particular
variable stands out and has standardized loading for the
random intercept that is very different from the rest of the
variables, freeing that variable residual variance may yield
standardized loadings that are more equitable.

A third strategy is to use the modification indices of the
WLSMV estimator and free those residual variances that are
most promising. A fourth strategy is to use the Bayes esti-
mator and the BSEM methodology of Muth�en and
Asparouhov (2012), which is specifically designed to deal
with somewhat poorly identified parameters and employs
the concept of approximately fixed parameters via stringent
prior specifications. This approach can be viewed as the
Bayesian equivalent of the modification indices method-
ology. Prior to Mplus 8.7, the residual variances for categor-
ical variables in the Mplus Bayesian framework were always
fixed to 1. This restriction is now eliminated for Bayes and
the residuals variances can now be estimated in a properly
specified longitudinal or multiple group study, just as this is
done with the WLSMV estimator.

Regardless of which strategy is utilized, in practical set-
tings, estimating residual variances for categorical variables
requires a more substantial sample size and carefully weigh-
ing the pros and cons of such modeling. Adding poorly
identified parameters to a model can compromise the infer-
ence that can be made from the model as the standard
errors of all other model parameters would likely be nega-
tively impacted. On the flip side, fixing residual variances
incorrectly to 1 will likely propagate biases in the rest of the
model parameters.

There are two other issues that should be addressed here
regarding the Bayesian estimation of RSEM models with
categorical variables. The first issue is regarding the RI-
CLPM model when the RI is actually not present in the
model and the outcome variables are binary. In that case,
the residual variable Ŷ

�
and the actual variable Y� are one

and the same. However, due to various complexities in the
Mplus algorithm, the autoregressive model specified as cY2
on cY1 is estimated differently by Bayes from the model
specified as Y2 on Y1. The difference is related to how the
threshold parameters are updated. In the first case, the
thresholds are estimated as the negative of the mean of Y�

and that yields the most efficient algorithm. In the second
case, the less efficient MH algorithm for updating the
thresholds is used. The difference between the algorithms is
generally small and in most situations will not be noticeable
beyond the speed of the computation. In more complex
models, however, such as Mixture models, the difference

Table 2. RI-CLPM simulation study with categorical variables.

Parameter True value Abs. Bias Coverage

b12 .5 .00 .94
b22 .2 .01 .98
b32 .1 .00 .98
b42 .5 .00 .95
b13 .3 .03 .92
b23 .2 .01 .95
b33 .3 .01 .97
b43 .3 .01 .96
CovðgY ,gZÞ .2 .00 .93
c1 .2 .02 .90
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between the algorithms may become more substantial. Even
in that case, however, for larger sample sizes the differences
tend to disappear. In all cases, the most efficient algorithm
in Mplus is obtained with the language cY2 on cY1 :

The second important issue for the Bayesian estimation
of RSEM is specific to models with ordered categorical vari-
ables with thresholds held equal across time. In such situa-
tions, Mplus uses the least efficient and only available
algorithm for updating the threshold parameters and the
latent variables Y�: This method is referred to as Method 3
in Asparouhov and Muth�en (2010) and its applicability is
somewhat limited. In practical applications where various
complexities arise, the method may not perform well.
Therefore, we generally recommenced not holding thresh-
olds equal across time for models such as RI-CLPM. Even
when the thresholds are time invariant, a more efficient
Bayesian estimation can be obtained by estimating time spe-
cific thresholds.

3.3. ARMA Models

3.3.1. D-RI-ARMA Model
The auto-regressive moving-average (ARMA) model is one
of the most commonly used models for analyzing time ser-
ies data, see Box and Jenkins (1976). If Yt is an observed
variable at time t, the ARMA(1,1) model is given by the fol-
lowing equation

Yt ¼ aþ qYt�1 þ bet�1 þ et: (20)

This model is an extension of the basic auto-regressive
model. Through the parameter b, we can predict the
dependent variable from the residual in the previous time
period. The model is generally equivalent to an AR model
with infinite lag and can account for correlations that persist
in the data across longer periods of time, without the expo-
nential decay limitation associated with the AR model.
Because the model is conceptually the same as an RSEM
model, where residuals are used in a path analysis sense, we
can adopt the ARMA modeling idea to psychometrics and
social science models, see Du Toit and Browne (2001).
Suppose that Yit is an observed variable for individual i at
time t. We define the D-RI-ARMA (dynamic random inter-
cept auto-regressive moving average) model as follows. For
t¼ 1, the model starts with

Yi1 ¼ a1 þ gi þ ei1: (21)

For t> 1 the model is given by the full ARMA expres-
sion

Yit ¼ at þ gi þ qtYi, t�1 þ btei, t�1 þ eit , (22)

where eit�Nð0, htÞ and g�Nð0,wÞ: This model can be
viewed as the univariate version of the GCLM of Zyphur,
Allison, et al. (2020). If the moving average parameters bt ¼
0, we obtain a simpler model which we call the D-RI-AR
model. Just like in the RI-AR model, all the parameters in
the D-RI-ARMA model are time-specific, although they can
be estimated as time-invariant. The latent variable gi takes
the role of the random intercept (RI) and is the only subject
specific parameter. In the RI-AR model, the random

intercept takes the role of the subject specific mean param-
eter, while in the D-RI-ARMA model, the random intercept
is not the subject specific mean parameter. The expected
value for EðYitjgiÞ depends on the intercept parameters at
and the autoregressive coefficients qt, see Usami (2021).

The model can easily be extended to a multivariate
model, like the RI-CLPM model, by simply using vector and
matrix forms in the above equations. In the univariate case,
the number of parameters in the D-RI-ARMA model is
4T�1, while the total degrees of freedom is TðT þ 3Þ=2:
Therefore the model would not be identified for T< 5. For
T¼ 5, T¼ 6 and T¼ 7, the model is too close to the satu-
rated model and most likely will often not be as useful
because the standard errors of the parameters will be too
large to establish significance. In these situations, however,
imposing some time-invariance in the model parameters or
fixing some of the insignificant parameters to 0 will likely
improve the value of the model. For T> 7, we can find
enough longitudinal evidence to support this more complex
auto-correlation structure with all time-specific parameters.
Because the model is estimated in a wide format, it would
be time consuming to estimate it if T> 50 (or if P � T>50
in the multivariate case). The D-RI-ARMA model is likely
to be most useful for T between 7 and 50 when the simpler
D-RI-AR or RI-AR models are rejected. In such situations,
the added flexibility of the moving-average component
would allow us to find better fitting longitudinal models for
panel data.

The D-RI-ARMA model can also be viewed as a moving-
average extension of the lagged models discussed in Bollen
and Brand (2010). In the D-RI-ARMA model, it is possible
to not hold all the loadings of the random intercept fixed to
1. Such models are considered in Bollen and Brand (2010).
One can argue that the first loading should be free because
the first equation is different. This should generally be
reserved for T> 10, because adding free loadings would not
only diminish the degrees of freedom for the model but also
will very likely increase the standard errors for the rest of
the parameters beyond what is reasonable. Due to such large
standard errors, the free loading may in fact become insig-
nificantly different from 1. Freeing some of the loadings
should be reserved for those situations when a substantial
improvement in model fit is achieved by the additional
parameters. Note also that if the first two loadings in the D-
RI-ARMA model are free to be estimated, the model
becomes unidentified. The parameter b2 must then be fixed
to 0 to obtain an identified model. Thus, if the first loading
is free, freeing the second loading will not improve the
model fit at all.

3.3.2. Longitudinal evidence
Panel data models, such as D-RI-ARMA and RI-CLPM, are
somewhat different from standard SEM models. Similar to
the SEM models, these models can be used to make infer-
ence for individuals that were not observed. In addition,
however, these models attempt to make inference to some
extent for time points that were not observed (time points
in the future). Therefore one should be mindful regarding
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the asymptotics with respect to T and not just to N. This is
what we refer to as the longitudinal evidence. Longitudinal
modeling requires longitudinal evidence. The variance
covariance from 4 time points can be regarded as mostly
cross-sectional evidence. That is because we have many
observations in the sample but very little in term of how
these observations evolve across time. When we use such
cross-sectional evidence to build longitudinal models,
extreme caution should be applied. Simplest models should
be preferred when T is small. When simple models do not
fit the cross sectional evidence, that may be because the
auto-regressive relations are not the same for all individuals
rather than requiring a much more complex subject-invari-
ant longitudinal model. Consider this as an example. For
any panel data with T¼ 7, the D-RI-ARMA(2,2) model has
0 degrees of freedom and is virtually guaranteed to fit (the
cross-sectional evidence of) the data perfectly. This of course
doesn’t mean that D-RI-ARMA(2,2) is a model useful to
predict what will happen at T¼ 8 or that we have deter-
mined the underlying nature of the longitudinal process.
Longitudinal evidence can be claimed when the standard
variance covariance chi-square has a good amount of
degrees of freedom (DF) left. We recommend for such mod-
els to have the DF be near or greater than the number of
model parameters. This way we can avoid over-saturating
the model with parameters and over-extending the cross-
sectional evidence implications for the longitudinal proc-
esses. Weak longitudinal evidence can be strengthened by
holding parameters equal across time, by holding parame-
ters equal across neighbouring periods and by removing
insignificant parameters from the model to obtain a more
parsimonious model.

This problem of empirical underidentification when there
are not enough waves of data, is also illustrated by Orth
et al. (2021), who analyzed ten different data sets, most of
which consisted of only four waves of data. They found that
all models, except the simplest AR models, failed to con-
verge for almost all data sets. We regard this as another cau-
tionary tale for the possible misuse of cross-sectional
evidence to inform longitudinal models.

When a complex longitudinal model is estimated, a very
likely scenario is that some of the residual variances are esti-
mated to be negative. Even if the model fits the data well,
the negative residual variances should be taken as possible
evidence that the model is over-saturated with parameters.
As a result of this over-saturation, a good model fit is
found, but the underlying longitudinal process is not feas-
ible. Residual variance parameters can be constrained in
Mplus to be positive via the model constraint command.
Only when all model parameters are in the admissible par-
ameter space, the fit of the model should be considered.

3.3.3. RI-ARMA Model
As discussed in Asparouhov et al. (2018), the ARMA model
is equivalent to a measurement error auto-regressive model
(MEAR), see also Granger and Morris (1976). If the coeffi-
cients in the D-RI-ARMA model are time-invariant, the
model becomes similar to the two-level DSEM-MEAR

model described in Asparouhov et al. (2018). There are sev-
eral important differences, however. One difference is that
the DSEM-MEAR model equivalence to the ARMA models
is subject to parameter restrictions. The MA parameter
must be negative for this equivalence to work. Another dif-
ference is that the DSEM-MEAR model is estimated in long
format, which means that it can be estimated for any T. The
D-RI-ARMA model is estimated in wide format, so it can
efficiently accommodate only T< 50. Yet another difference
is the way the two models handle the initial equation at
time t¼ 1, which can lead to noticeable differences in the
parameter estimates for smaller T< 10. The most important
difference, however, is how the random intercept is included
in the model. In DSEM-MEAR, the random intercept is sep-
arate from the ARMA model, i.e., the ARMA model is
defined for the residual variable which doesn’t include the
random intercept.

Here we also introduce a new model, the RI-ARMA (ran-
dom intercept auto-regressive moving average) model that
uses the same approach to the random intercept as the
DSEM-MEAR and the RI-CLPM models. This approach can
also be viewed as latent centering for the observed variables,
see Asparouhov and Muth�en (2019). The random intercept
part of the model is

Yit ¼ at þ gi þ eit: (23)

The ARMA model is then defined for the residual varia-
bles eit: The model starts with t¼ 2

ei2 ¼ q2ei1 þ êi2: (24)

For t> 2 the model is given by the full ARMA expres-
sion

eit ¼ qtei, t�1 þ bt êi, t�1 þ êit: (25)

The RI-ARMA model has one parameter less than the D-
RI-ARMA model, i.e. 4T�2, because b2 is unidentified
(since ei1 and êi1 are one and the same variable). The
parameters are as follows: T intercept parameters at, T
residual variance parameters ht ¼ Varð̂eitÞ (assuming
ei1 ¼ êi1), T� 1 auto-regressive parameters qt for t> 1,
T� 2 moving-average parameters bt for t> 2, and 1 random
intercept variance parameter w ¼ VarðgiÞ: It should be
noted here that if the random intercept loadings are all free
parameters, the RI-ARMA model and the D-RI-ARMA
model become equivalent and there is a simple reparamete-
rization between the two models. This equivalence hold
only in the univariate case and requires the removal of the
first moving average parameter from the D-RI-ARMA
model which would be unidentified when all the loadings
are free, just as it is in the RI-ARMA case. In the multivari-
ate case, an equivalence between the two models can be
established if the loadings and the auto-regressive parame-
ters are time invariant. If the loadings and the auto-regres-
sive parameters are time specific, however, the models are
not equivalent. Translating the multivariate RI-ARMA
model into a multivariate D-RI-ARMA model, we find that
the random intercept variables will cross-load onto the other
variables, i.e., under the restriction that each variable ran-
dom intercepts load only on that variable process (diagonal
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loading matrix), the two models are not equivalent. In a
broader framework, where the time invariant portion of the
processes (the random intercepts) can cross-load freely on
all the variables as in EFA, the two multivariate models
would be equivalent when all parameters are time-specific.

In practical applications, there may be a substantive rea-
son to prefer one of the two models, see Hamaker et al.
(2015), Usami (2021) and Orth et al. (2021), but generally
the chi-square test of fit can be used to determine which of
the two models is best suited for the data.

The new Mplus hats language does not allow us to dir-
ectly code the RI-ARMA model. Instead it should be done
through the creation of the residual latent variables as in
Hamaker (2018), which would then be followed by the
ARMA model for those latent variables using the hats lan-
guage. Mplus input model statements for the RI-ARMA
model are illustrated in Figure A6 (Appendix B), where the
factors ft correspond to eit in Equation (23).

The RI-ARMA and D-RI-ARMA models are examples of
the extended RSEM model given in Equations (5–6), rather
than the basic RSEM model given in Equations (1–3). Here,
the residuals are used to augment the primary SEM model.
Models with continuous variables can be estimated with the
ML estimator, while models with categorical variables can
be estimated with the WLSMV estimator. For categorical
data, the RI-ARMA and D-RI-ARMA models are defined
for Y�

it instead of Yit and the residual variances ht are fixed
to 1 for identification purposes. With the Bayes estimator, it
is possible to estimate the model by introducing latent varia-
bles to replace ei1: Such an approach however will require
fixing the residual variance of Yit to small positive value and
will result in slow and inefficient estimation. Therefore the
Bayesian estimation is not recommended for the RI-ARMA/
D-RI-ARMA models at this time. The minimum number of
time points needed to estimate the RI-ARMA/D-RI-ARMA
models with ordered categorical variables will be slightly
higher than it is for continuous variables and with binary
variables it will be slightly higher than for ordered
categorical.

3.3.4. RI-MEAR Model
Next, we introduce the RI-MEAR (random intercept meas-
urement error auto-regressive) model which is equivalent to
the RI-ARMA model given in Equations (23–25). The ran-
dom intercept part of the model is the same as in the RI-
ARMA model and is given by the following equation

Yit ¼ at þ gi þ Ŷ it: (26)

The MEAR model is then defined for the residual
variables Ŷ it: The measurement error part of the model is
given by

Ŷ it ¼ fit þ eit (27)

where eit represents the measurement error. The auto-
regressive part of the model is given for t> 1

fit ¼ qt fi, t�1 þ nit: (28)

For t¼ 1 we augment the model with fi1 ¼ ni1 for con-
venience. This model has 4T parameters: T intercept param-
eters at, T measurement error variance parameters
rt ¼ VarðeitÞ, T residual variance parameters vt ¼ VarðntÞ,
T� 1 auto-regressive parameters qt, and 1 random intercept
variance parameter / ¼ VarðgiÞ: This means the RI-MEAR
model has two extra parameters as compared to the RI-
ARMA model. Note however that vT and rT are indistin-
guishable parameters. Both play the same role in the model
implied variance covariance matrix Var(Y). Thus one of the
two parameters must be eliminated from the model, other-
wise the model will not be identified. For convenience, we
set rT ¼ 0, i.e., the measurement error at the last measure-
ment occasion cannot be identified separately. The same
thing in fact applies to the first measurement occasion,
although the non-identification there is slightly more com-
plex and it would involve also the first auto-regressive par-
ameter q2. The three parameters v1, r1 and q2 are involved
in the following indeterminacy. A set of other parameters
v01, r

0
1 and q02 would imply exactly the same variance covari-

ance matrix Var(Y) if these two equations are satisfied

v01 þ r01 ¼ v1 þ r1 (29)

ðq02Þ2v01 ¼ ðq2Þ2v1: (30)

Since these two quantities can not be used to determine
3 parameters, one of the three parameters is unidentified.
We conclude that the measurement error at the first occa-
sion also can not be identified and we set r1 ¼ 0: With the
two necessary identification constraints r1 ¼ rT ¼ 0, the
RI-MEAR model has the same number of parameters as the
RI-ARMA model. The identification issues for this model
are exactly the same as the identification issues of the quasi
simplex model discussed in Joreskog (1978). The RI-MEAR
model reduces to the quasi simplex model if we remove the
random intercept gi. The identification constraints typically
used with the quasi simplex model are to hold the unidenti-
fied variance components to be equal to the ones in the
neighbouring period, that is r1 ¼ r2 and rT ¼ rT�1: Such
alternate identification constraints can be used with the RI-
MEAR model as well. The choice of the identification con-
straints does not affect the model fit as the models are
equivalent and there is a simple reparameterization between
the alternate versions.

The equivalence between the RI-MEAR and RI-ARMA
models is established in Appendix A. The RI-MEAR model
gives an alternative interpretation of the RI-ARMA model.
The main interpretation is that the variable Yit has a meas-
urement error eit. If that measurement error is removed, the
model will be reduced to the simpler RI-AR model. Note,
however, that in practice eit doesn’t necessarily need to be
interpreted as measurement error. It can simply be inter-
preted as a instantaneous effect that has no carry-over effect
to the next period, i.e., instantaneous input to the process
that leave no trace past the current period. The RI-ARMA
model, however, appears to be more robust in small and
medium sample sizes and smaller values of T. The RI-
ARMA model estimation is more likely to converge, it is
less likely to have exploding parameter values, it is less likely
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to require multiple random starting values in the estimation
procedure, it is less likely to have multiple solutions, and it
is less likely to yield inadmissible solutions, such as negative
variances. The reparameterization formulas given in
Appendix A show that the RI-MEAR model is expected to
perform well when all moving average parameters are nega-
tive and all auto-regressive parameters are positive. In simu-
lation studies, where parameters vary in a certain range,
these restrictions are likely to be violated, particularly so
when T and N are small, when the range in the parameter
estimates is bigger.

There are two different ways to estimate the RI-MEAR
model in Mplus. The first approach is given in Figure A7
(Appendix B), where the factors ft correspond to fit in
Equation (27) and the residual variance of Yt correspond to
the measurement error eit. The constraints r1 ¼ rT ¼ 0 are
implemented by fixing the first and the last residual vari-
ance to zero for the observed variables. The second
approach is given in Figure A8 (Appendix B), where the fac-
tors ft correspond to the measurement errors eit and the hat
variables Ŷ t correspond to factors fit in Equation (27). The
constraints r1 ¼ rT ¼ 0 are implemented by not having fac-
tors ft for the first and the last variable. The second
approach appears to have two advantages and is therefore
the recommended approach. Limited experimentation sug-
gests that the second approach is more likely to converge.
Also, the second approach is more efficient with the
Bayesian estimation as it avoids fixing residual variances
to 0.

The RI-MEAR model is very similar to the TSE (trait-
state-error) model of Kenny and Zautra (1995) and dis-
cussed further by Cole et al. (2005). The difference between
these models is only in the identification of the model
parameters. In the RI-MEAR model, all parameters are
time-specific, while in the TSE model the parameters are
time-invariant. The TSE model has just 5 parameters: qt ¼
q, at ¼ a, rt ¼ r, vt ¼ v, for t> 1, and v1. An important
difference between the models is in the identification of the
variance of the measurement error. In the RI-MEAR model,
the measurement errors in the first and last time points can-
not identified and are thus removed from the model. On
the other hand, the TSE model identifies the variance of the
measurement error by holding it equal across time. Overall,
the RI-MEAR model can be viewed as a more flexible ver-
sion of the TSE model. The TSE model is nested within the
RI-MEAR model. If time invariance of the model parame-
ters is not supported by the data, the TSE model is prone to
convergence failures and inadmissible parameter solutions,
such as negative variance parameters.

3.3.5. RI-ARMA and RI-MEAR Models for Categorical Data
Next, we consider the RI-ARMA and the two different ways
of writing the RI-MEAR model for categorical data. Here,
the equivalence between the models is somewhat more com-
plicated. The issue that complicates the comparison is how
the metric is set for the variables. In the RI-ARMA model
the metric is set by fixing the residual variance of the factors
fi to 1 in Figure A6 (Appendix B), that is ht ¼ 1: In the RI-

MEAR model given in Figure A8 (Appendix B), the metric
will be set by fixing the residual variances of Ŷ t to 1, that is
vt ¼ 1. In the RI-MEAR model given in Figure A7
(Appendix B), the metric will be set by fixing the residual
variances of the factors fi to 1, that is also vt ¼ 1, but one
must free the variances of Yt for all but the first and the last
time points (those will be fixed by default). The two RI-
MEAR methods will yield the same model, however, that
model will be different from the RI-ARMA model. The rep-
arameterization formulas given in Appendix A show that
ht ¼ 1 doesn’t translate into vt ¼ 1. To make the conversion
from the RI-ARMA to the RI-MEAR model, the constraint
ht ¼ 1 should be translated into a constraint for vt. This is
illustrated in Figure A9 (Appendix B). In this figure, we
generate data according to the RI-ARMA model and we
estimate the RI-MEAR model using the approach of Figure
A8 (Appendix B). Instead of using vt ¼ 1 as the scale setter
in the estimation, we use ht ¼ 1 as it is in the data generat-
ing model. That amounts to freeing vt for t> 1 and restrict-
ing these parameters in the model constraints command
through the conversion formulas so that ht ¼ 1: Doing so
will result in equivalence of the RI-MEAR and RI-ARMA
models. When we estimate this model over 100 replications,
we obtain an average chi-square value of 26, which with 27
degrees of freedom results in 3% rejection rate. If we instead
use vt ¼ 1 as the scale setter in this simulation, we obtain
an average chi-square value of 44 and a rejection rate of
54%. We conclude that the RI-ARMA and the RI-MEAR
models are equivalent for categorical data as well, however,
in their native scale setter, the two models are different. In
practical settings, both models should be estimated in their
default state as we expect to see different levels of fit.

3.3.6. Simulation Studies with Continuous Variables
To illustrate the D-RI-ARMA model for continuous varia-
bles, we conduct a simulation study using T¼ 10 time
points for N¼ 1000 observations. The Mplus input file for
this simulation is given in Figure A10 (Appendix B) and the
results for some of the parameters are given in Table 3. The
results indicate that the estimation performs well. In fact,
the standard errors for all parameters are sufficiently small
and all the parameters were significant in all 100 replica-
tions. The chi-square test of fit has an average value of 26
in this case which matches the degrees of freedom and
yields a rejection rate of 6%. If we estimate the model with-
out the moving-average parameters bt on the same data, i.e.
using the D-RI-AR model, the autoregressive coefficients are
underestimated, the random intercept variance is overesti-
mated and the average chi-square value is 233. With 35

Table 3. D-RI-ARMA simulation study.

Parameter True value Abs. Bias Coverage

q2 .5 .00 .95
b2 –.3 .00 .96
q3 .5 .00 .99
b3 –.3 .00 .94
q4 .5 .00 .96
b4 –.3 .00 .95
w 1.0 .01 .98
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degrees of freedom the model is rejected for all 100 replica-
tions. If we estimate the RI-AR model on the same data, the
AR coefficients are also underestimated and the random
intercept variance overestimated. In that case the chi-square
average value is 690, which with 35 DF also results in 100%
rejection rate. If we estimate the RI-ARMA model on the
same data, the chi-square average value is 56, which with 27
DF also results in 85% rejection rate. Importantly, when the
RI-ARMA model was estimated on the D-RI-ARMA gener-
ated data, multiple local solutions were found. Using 50 ran-
dom starting values, between 0 and 3 local solutions are
found in each replication. In 14% of the replications, the
model estimation did not converge. Therefore, in practical
situations, the RI-ARMA and the D-RI-ARMA models
should be estimated in combination with the starts option
in Mplus. In conclusion, the D-RI-ARMA model is well
identified and can be used to improve model fit for those
situations when the RI-AR/D-RI-AR/RI-ARMA models
are rejected.

3.3.7. Simulation Studies with Categorical Variables
A simulation study for the D-RI-ARMA model with cat-
egorical data using the WLSMV estimator is shown in
Figure A11 (Appendix B). The results of the simulation
study are given in Table 4. Similarly, a simulation study for
the RI-ARMA model with categorical data is shown in
Figure A12 (Appendix B) and the results are given in Table
5. The results indicate that for both models the estimation
performs well with categorical data. The average chi-square
value for the RI-ARMA model in Figure A12 (Appendix B)
is 26 and with 27 degrees of freedom that yields a rejection
rate of 4%. For comparison, we analyze the RI-ARMA gen-
erated data with the D-RI-ARMA, D-RI-AR and RI-AR
models. The D-RI-ARMA model appears to yield unbiased
estimates for the random intercept variance, but the auto-
regressive parameters are underestimated. The average chi-
square in that case is 78 and with 26 degrees of freedom
that yields a rejection rate of 98%. Multiple solutions are
found with 10 random starting values in some of the repli-
cations. The average chi-square value for the D-RI-AR
model is 150 and with 35 degrees of freedom that yields

100% rejection rate. In that case, both the random intercept
variance and the autoregressive coefficients are underesti-
mated. The average chi-square value for the RI-AR model is
51 and with 35 degrees of freedom that yields 55% rejection
rate. In that case, the random intercept variance is slightly
overestimated while the auto-regressive coefficients are
underestimated. Overall, the RI-ARMA model with categor-
ical variables is clearly distinguishable from the alternative
models and can be pursued in those situations when the
simpler D-RI-AR and RI-AR models are rejected.

3.3.8. Bivariate Models
Next we illustrate the bivariate version of the RI-ARMA
model where all cross-lagged relations are present. This
model can be viewed as the matrix version of the univariate
RI-ARMA model given in Equations (23–25). In this bivari-
ate version, Yit, at, gi, eit , êit are all vectors of size 2, while
the regression parameters qt and bt are square matrices of
size 2. This model can also be viewed as the moving average
extension of the RI-CLPM described in Equations (16–19).
As in the univariate case, this model is recommended only
when T> 7, unless time-invariance in some of the parame-
ters is assumed. Figure A13 in Appendix B shows the input
file for a bivariate RI-ARMA model simulation study with
T¼ 10. The results of the simulation, given in Table 6, indi-
cate the ML estimation performs well. Parameter p(i, j) is
the i�th row and j�th column of parameter matrix p. The
average chi-square value in this simulation study is 107,
which with 110 degrees of freedom results in 3% rejection
rate. For comparison, using the same data generation, we
estimate the bivariate RI-ARMA model without the cross-
lagged moving average components, i.e., restricting the bt
regression matrix to be a diagonal square matrix. In that
case, the average chi-square value is 147, which with 126
degrees of freedom results in 34% rejection rate. In 66% of
the replications, the bivariate RI-ARMA model without the
cross-lagged moving average components provides sufficient
fit for the data even though the data was generated with the
full bivariate RI-ARMA model. Thus, excluding the cross-
lagged moving average components provides a more parsi-
monious alternative to the full bivariate RI-ARMA model,
which can be useful in practical applications and may

Table 4. D-RI-ARMA simulation study with categorical variables.

Parameter True value Abs. Bias Coverage

q2 .5 .00 .94
b2 –.3 .01 .97
q3 .5 .00 .97
b3 –.3 .00 .95
q4 .5 .01 .98
b4 –.3 .01 .97
w 1.0 .00 .97

Table 5. RI-ARMA simulation study with categorical variables.

Parameter True value Abs. Bias Coverage

q2 .5 .01 .96
q3 .5 .00 .95
b3 –.3 .01 .92
q4 .5 .05 .94
b4 –.3 .05 .97
w 1.0 .03 .97

Table 6. Bivariate RI-ARMA simulation study.

Parameter True value Abs. Bias Coverage

q2ð1, 1Þ .5 .00 .95
q2ð1, 2Þ .2 .00 .95
q2ð2, 1Þ .2 .00 .92
q2ð2, 2Þ .5 .00 .95
q3ð1, 1Þ .5 .00 .91
q3ð1, 2Þ .2 .00 .98
q3ð2, 1Þ .2 .01 .95
q3ð2, 2Þ .5 .01 .95
b3ð1, 1Þ –.3 .00 .94
b3ð1, 2Þ –.2 .00 .97
b3ð2, 1Þ –.2 .01 .95
b3ð2, 2Þ .3 .01 .97
wð1, 1Þ 1.0 .02 .92
wð1, 2Þ 0.3 .02 .90
wð2, 2Þ 1.0 .02 .92
h1ð1, 2Þ 0.3 .03 .92
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provide sufficient model fit. For comparison, we also esti-
mate the RI-CLPM for these data. The average chi-square
test of fit for the RI-CLPM model is 255, which with 142
degrees of freedom results in 100% rejection rate. To sum-
marize, the bivariate RI-ARMA model can be used in those
situations where the simpler RI-CLPM model is rejected.
We also note here that the bivariate RI-ARMA model is
equivalent to a bivariate RI-MEAR model, just as this is so
in the univariate case. The bivariate RI-MEAR model, how-
ever, must include residual cross-correlation between the
measurement error and the observed variables.

The bivariate version of the D-RI-ARMA model has also
been discussed in Zyphur, Allison, et al. (2020) and Zyphur,
Voelkle, et al. (2020). The GCLM model defined in these
articles, however, has different parameter restrictions. The
loading parameters for the random intercept are all free
parameters, except for one time point, while all auto-regres-
sive and moving-average parameters are time-invariant. The
new hats language in Mplus can be used to simplify the spe-
cification for the GCLM model as well. Using data from
Van Iddekinge et al. (2009), the GCLM is illustrated in the
online materials provided in Zyphur, Allison, et al. (2020).
The original Mplus model statement used in Zyphur,
Allison, et al. (2020) is given in Figure A14 (Appendix B),
while the new simplified model statement is given in Figure
A15 (Appendix B).

3.3.9. Empirical Study
We conclude this section with an empirical illustration
using the data from a double-blind clinical trial comparing
interventions for alcohol use disorder, see Anton et al.
(2006). We use the Stress outcome in this study for the 8
measurement occasions after the intervention, extending
through week 16. The sample size in this study is N¼ 1357.
The dependent variable is treated as continuous and we use
the MLR estimator to protect against non-normality. We
compare 9 different models. The first seven models have no
time invariant constraints: ARMA, D-RI-ARMA, RI-ARMA,
RI-MEAR, D-RI-AR, RI-AR as well as the RI-AR(2) model
where we use lag ¼ 2 in the auto-regressive part of the
model. We also include two models with time invariant
constraints ARMA(inv), and RI-ARMA(inv). In both of
these models, we hold the residual variances and all AR/MA
parameters invariant across time with the exception of the
starting parameter.

The results of this empirical study are given in Table 7.
First, we compare the 7 models with no time-invariant

constraints. Using the BIC as a criterion, the best model for
this data is ARMA. Using the chi-square test of fit, four of
the models provide adequate fit: ARMA, RI-ARMA, RI-
MEAR and D-RI-ARMA. The D-RI-ARMA model has a
negative estimate for the variance of the random intercept
so from an interpretation point of view it can be eliminated
as an acceptable model. The role of the MA component of
the ARMA/RI-ARMA model is to provide deeper lagged
relations. For these data, it appears that such relations are
needed. In the RI-ARMA/RI-MEAR model, the variance of
the random intercept is significant with a Z-score above 4.
In the RI-ARMA model, all moving average parameters are
negative. This is a prerequisite for obtaining all positive
variance components in the RI-MEAR model. For this
example, all variance components in the RI-ARMA and RI-
MEAR models are positive. The log-likelihood value for the
RI-ARMA and RI-MEAR models are identical. The chi-
square value, however, is slightly different. This is because
the MLR correction factor depends on the parameterization
of the model and the two parameterizations are different.
The ML chi-square values are expected to always be identi-
cal between the RI-ARMA and the RI-MEAR models, but
the MLR chi-square values may differ slightly.

All 3 well fitting non-invariant models ARMA/RI-
ARMA/RI-MEAR might be considered over-saturated.
Time-invariant restrictions, for the AR parameters, the MA
parameters or the residual variance parameters can be con-
sidered to improve the parsimony of the model. Time
invariant restrictions can be explored for the entire observa-
tional period or for some particular period of time: for
example, the entire period without the initial few time
points. The results for the two invariant models we consid-
ered are also given in Table 7. The chi-square did not reject
the two models and the BIC is better than all non-invariant
models. The random intercept in RI-ARMA(inv) is still
statistically significant in terms of a Z-score near 4.
Nevertheless, in this particular example in the invariant and
the non-invariant settings, removing the random intercept
showed no substantial drawbacks in terms of overall fit. The
eight time points appear to be insufficient for firmly estab-
lishing the need for a random intercept variable, i.e., for
firmly establishing substantial variation in the average stress
measurement across individuals.

3.4. Residual Variables as Predictors

In certain situations it is possible to use the residual varia-
bles as predictors for other variables. As an example we

Table 7. Empirical study comparison for various auto-regressive models.

Model Chi-square DF P-value LogL BIC CFI RMSEA p(RMSEA� :05)

ARMA 18.38 15 0.243 –19921 40051 0.999 0.013 1.000
RI-ARMA 15.24 14 0.362 –19919 40054 1.000 0.008 1.000
RI-MEAR 15.25 14 0.362 –19919 40054 1.000 0.008 1.000
D-RI-ARMA 13.93 13 0.379 –19918 40060 1.000 0.007 1.000
RI-AR(2) 33.18 14 0.003 –19928 40073 0.995 0.032 0.985
RI-AR 71.67 20 0.000 –19951 40076 0.987 0.044 0.819
D-RI-AR 86.02 20 0.000 –19964 40102 0.983 0.049 0.520
ARMA(inv) 42.73 30 0.062 –19937 39975 0.997 0.018 1.000
RI-ARMA(inv) 39.37 29 0.095 –19934 39976 0.997 0.016 1.000
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consider a factor analysis model where the factor and some
of the residuals can be used to predict a distal outcome vari-
able. The factor analysis model is given by the following
equation. For p ¼ 1, :::, P

Yp ¼ �p þ kpgþ ep (31)

ep�Nð0, hpÞ (32)

g�Nð0, 1Þ: (33)

We can now use the latent factor g as well as the resid-
uals ep to predict a distal outcome variable Z as follows

Z ¼ aþ b0gþ
XP
p¼1

bpep þ f, (34)

where f�Nð0,wÞ: Not all of the bi parameters can be identi-
fied. A maximum of P regression parameters can be identi-
fied in the above equation and therefore at least one of
these must be fixed to zero. Within the BSEM framework of
Muth�en and Asparouhov (2012), it is possible to estimate all
of the regression parameters in an exploratory sense where
tiny priors are specified for b1, :::, bP:

The above model allows us explore predictive relations
between the indicator variables Yp and the distal outcome
variable that go beyond the predictive effect of the measured
factor. In principle, in the above model, one can use Yp dir-
ectly instead of ep: In certain situations, however, it is pref-
erable to use the independent predictors ep and g because
additional predictors would not affect the existing regression
coefficients.

Note also that Equation (34) is equivalent to the follow-
ing model

Z ¼ aþ b0gþ Ẑ (35)

Ẑ ¼
XP
p¼1

bpep þ f: (36)

Even though these models are equivalent, they are coded
differently in Mplus. Model (34) would be specified as Z on
Y1^ - YP^ while model (35–36) would use the Z^ on Y1^ -
YP^ specification. There are two important differences
between these two versions. First, the two models will not
be equivalent if the residual of Z is used as a predictor in
an another equation. That is because in model (34) the
residual of Z is f, while in model (35–36) the residual of Z
is Ẑ: The second difference is specific to the estimators.
With the current capabilities in Mplus, the Bayesian estima-
tion allows residual variables to be regressed only among
each other. That means that only model (35–36) can be esti-
mated with the Bayesian estimator. The ML estimator can
be used to estimate both models and residual variables can
be used as predictors for all variables in the model.

Figure A16 in Appendix B shows an example of a simu-
lation input file for the above model where the third and
the fourth residuals of the factor model are used as predic-
tors for a distal outcome. Table 8 shows the results from
this simulation for a selection of the parameters. The results
indicate that the model estimation performs well.

The models discussed in this section extend to categorical
variables as well. The Bayesian estimator as well as the
WLSMV estimator can be used to estimate models where
the residuals of categorical variables are used to predict dis-
tal outcomes.

3.5. Incomplete variance Covariance Blocks with the
Bayesian Estimation

The Bayesian estimation is most efficient when conjugate
priors are used for all model parameters. For the variance
covariance parameters, the conjugate prior is the Inverse-
Wishart prior. However, that prior is only available when
the variance covariance matrices are block diagonal, see
Asparouhov and Muth�en (2010). If a variance covariance
structure is not block diagonal, conjugate priors are not
available. In such situations, the Mplus Bayesian estimation
uses the much less efficient algorithm of random walk based
Metropolis-Hastings (MH). This algorithm is specified in
Mplus with the option algo5 gibbs(rw). In simpler models,
the MH algorithm performs well, although it usually takes a
very large number of MCMC iterations to converge. In
more complex models, however, where other estimation
challenges may exist, the MH algorithm will simply fail to
converge even with a very large number of
MCMC iterations.

The block-diagonal model restriction can be formulated
in practical terms as follows. If a variable Z is correlated
with variables Y1 and Y2, then Y1 and Y2 must also be cor-
related. In certain modeling situations, however, the covari-
ance between Y1 and Y2 can not be estimated. If for
example Y1 is regressed on Y2, the covariance between Y1

and Y2 can not be estimated because the model would
become unidentified. In such situations, the only alternative
would be to use the inefficient MH algorithm. The RSEM
model, however, appears to provide a solution to this prob-
lem. Regressing the residual of Z on the residuals of Y1 and
Y2 produces a variance covariance matrix of the desired
non-block diagonal pattern. That is, by using Z^ on Y1^

Y2^ model specification, we obtain a variance covariance
matrix for the residuals of Z, Y1 and Y2, where Z is corre-
lated with Y1 and Y2, but Y1 is not correlated with Y2.

We consider two more practical examples. The first
example is related to auxiliary variables that are used for
improving the missing data handling, see Asparouhov and
Muth�en (2008). In particular, formula (1) in that article
shows how adding auxiliary variable to a model, for the
purpose of improving the missing data handling, leads to
incomplete/non-block diagonal variance covariance matrices.
Consider again the model given in Equations (31–36). For

Table 8. Simulation study where residual variables are used as predictors.

Parameter True Value Abs. Bias Coverage

k1 1 .01 .95
k2 1 .01 .97
k3 1 .00 .95
b0 .5 .01 .91
b3 .1 .00 .92
b4 .3 .00 .94
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the purposes of this illustration, however, we interpret the
variable Z as an auxiliary variable that may contain informa-
tion related to the missing values of the factor indicators Yp.
We want Z to be correlated with all residual variables ep: If
we are to form a complete block diagonal matrix in such an
example, we would have to model all correlations among all
the residual variables ep as well. This of course will make
the factor model unidentified. Thus, it is important to cor-
relate Z with ep without introducing any correlations among
the residuals. The RSEM model in Equation (36) provides
exactly that. In fact, the example provided in Figure 16
(Appendix B) implies precisely that kind of incomplete vari-
ance covariance matrix between Z, e3 and e4: The model
implied variance covariance shows that Covðe3, e4Þ ¼ 0 while
both CovðZ, e3Þ and CovðZ, e4Þ are not zero.

The second practical example is related to growth mod-
els, similar to the model given in Equation (7). It is a fairly
common practice to include in that model all correlation
parameters between consecutive observations, i.e., the
parameters Covðei1, ei2Þ, Covðei2, ei3Þ, etc. Such a model
would technically not be an autoregressive model but
because the correlations in the neighboring observations are
the strongest, a vast portion of the autocorrelations would
be modeled with the inclusion of these parameters. The
resulting variance covariance matrix is not block diagonal as
the only parameters that are not zero in that variance
covariance matrix are on the diagonal next to the main
diagonal. Estimating such a model would require the use of
the MH algorithm and would frequently become impossible
to estimate due to the inefficiency of the algorithm. We
clearly cannot estimate the full variance covariance matrix
for the residuals as the growth model will become unidenti-
fied. The solution to this problem is given precisely in the
RSEM model given in Equation (11) and is illustrated in
Figure A1 (Appendix B). We can replace the neighboring
correlation model with a full auto-regressive model. While
the two models are clearly not the same model as the autor-
egressive model implies non-zero (but diminishing) correla-
tions even in non-neighboring residuals, for all practical
purposes the RSEM model (11) resolves the prob-
lem completely.

3.6. Bsem Estimation with Unconstrained Variance
Covariance for the Residuals

The BSEM methodology described in Muth�en and
Asparouhov (2012) and Asparouhov et al. (2015) can be
used to discover residual correlation in a general SEM
model. Such a methodology is the Bayesian equivalent to
the modification indices methodology used with the ML
estimator, see S€orbom (1989). The method is based on esti-
mating all residual covariance parameters within the SEM
model. Because the SEM model becomes unidentified when
all residual correlations are included, a very restrictive prior
is specified for the residual variance covariance matrix. The
prior would generally hold the residual correlation near
zero, unless, within the estimation, substantial information
is found in the data to indicate that a covariance parameter

is not zero. This is an iterative process that requires multiple
model estimations with varying degree of prior restrictive-
ness. The process is described in detail in Asparouhov et al.
(2015). Specifying a restrictive prior for a variance covari-
ance matrix, however, is somewhat difficult. Typically, the
Inverse Wishart prior is used for these parameters as this is
the conjugate prior needed for the most efficient Bayesian
estimation. The Inverse Wishart prior is a multivariate prior
which makes the process difficult for two reasons. First, the
prior is specified not just for the covariances but also for
the variances in the variance/covariance matrix. Second, the
level of prior restrictiveness is the same for both the cova-
riances and the variances. Thus, if we want the covariances
to be nearly fixed to 0, then we will need the variances to
also be nearly fixed. The values to which the variances must
be nearly fixed should be carefully picked as to not obstruct
the SEM estimation. Within the BSEM iterative process, this
becomes cumbersome as the priors must be carefully cali-
brated with every level of prior restrictiveness.

These complexities can be avoided with the RSEM model
where conjugate priors can be specified separately for all the
variance covariance parameters because they are essentially
converted to regression among the residuals. Restrictive
conjugate priors for regression parameters are simply the
normal priors with mean zero and small variances. In the
RSEM model, restrictive conjugate priors are not given for
the variances.

We illustrate the BSEM methodology utilization of the
RSEM model with a simple factor analysis model with P
indicators Yp, p ¼ 1, :::, P and one factor g. The factor
model is given by the following equation

Yp ¼ �p þ kpgþ Ŷ p, (37)

where as usual Ŷ p are the residual variables and g�Nð0, 1Þ:
To explore possible non-independence between the residuals
we introduce the following RSEM model

Ŷ p ¼
Xp�1

i¼1

bpiŶ i þ fp: (38)

In this RSEM model, every residual is regressed on all
the previous residuals. The model is equivalent to estimating
the full variance covariance matrix for the residuals. Next
we impose the BSEM style prior on all the regression
parameters bpi

bpi�Nð0,rÞ, (39)

where r is the intended to be a small value which controls
the level of prior restrictiveness.

We conduct a simulation study to illustrate the above
process. We use P¼ 7 factor indicators in the simulation
study and sample size of N¼ 1000. In the data generation
we include 3 residual variances between indicators: the
residual correlation of Y1 and Y3 is 0.3, the residual correl-
ation of Y3 and Y5 is 0.3, and the residual correlation of Y6

and Y7 is 0.6, as illustrated in Figure A17 (Appendix B).
This figure also illustrates the BSEM utilization of RSEM
and the tiny priors for the residual regression parameters
with r ¼ 0:01: As usual, we have to vary the value of r in
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this estimation process. With r¼ 0 (i.e. the pure factor analysis
model without the RSEM extension), r ¼ 0:0001 and r ¼
0:001, the PPP rejects all 100 of the replications in this study.
With r ¼ 0:01, the PPP rejects 0 of the replications.
Therefore, we select r ¼ 0:01 as the level of prior restrictive-
ness that would enable us to select the most promising residual
covariances. The results of this simulation study are shown in
Table 9, which contains the top 6 in order of magnitude
residual regression parameters. All other residual regression
parameters are smaller than 0.1 by absolute value. The top 3 of
these are precisely the ones used in the data generation model,
i.e., the most promising residual correlations reported by this
BSEMþRSEM analysis are exactly those that are needed. The
final step in such an analysis would be to include only those
top few residual correlations (or residual regressions) in the fac-
tor analysis model, without any restrictive priors.

3.7. LCA analysis with Conditional Dependence

LCA analysis can be combined with the RSEM methodology
to explore conditional dependence between the class indica-
tors. Suppose that Y1,… ,Yp are categorical variables that
measure a latent class variable C with K categories. The
standard LCA model is given by the following equations

PðYp ¼ ljC ¼ kÞ ¼ UðspklÞ�Uðspk, l�1Þ (40)

PðC ¼ kÞ ¼ Exp ðakÞPK
i¼1ExpðaiÞ

(41)

where l ¼ 1, :::, Lp represents the observed values for Yp and
the threshold parameters spkl determine the prevalence of
every category for every class. As usual, we assume that
spk0 ¼ �1, spkLp ¼ 1 and aK ¼ 0: The standard LCA
model assumes that all observed variables are conditionally
independent, i.e., within each class or conditional on the
class variables, the Yp variables are independent. This
assumption is also sometimes referred to as the local inde-
pendence assumption. The latent class variables C is used to
model all correlations among the indicator variables. In
practical applications, however, the assumption is often vio-
lated. As an unfortunate consequence, spurious classes that
are difficult to interpret are introduced in the model to
achieve good model fit. One way to introduce local depend-
ence, without additional spurious classes, is via continuous
latent variables that influence pairs of variables to create
correlations between them. This approach, however, is lim-
ited in the number of correlations that can be modeled. The
ML estimation will use numerical integration for each con-
tinuous latent variable and therefore the modeling will be
limited to a maximum of 3 or 4 correlations. With the

Bayes estimation, it is possible to add more latent variables
but the model estimation efficiency will decrease as more
latent components are added to the model. With the ML
estimation, it is possible to use the association model,
Asparouhov and Muth�en (2015), using the Mplus option
param5 rescov, however, such a model does not accommo-
date any additional predictors for the observed variables at
this time and will become computationally intensive when
the size of the variance/covariance matrix is larger. In add-
ition, the parameter estimates of the association model are
on a somewhat of a different metric than the standard LCA
model which makes it a bit difficult to use from a practical
perspective. The most straight forward way to address the
local dependence is to simply add the correlation model for
Y�, see Asparouhov and Muth�en (2011), as follows. We
replace Equation (40) by

Yp ¼ l () spk, l�1<Y�
p � spkl (42)

Y�jC ¼ k½ � ¼ ½Y�
1 , :::,Y

�
p jC ¼ k��Nð0,RkÞ (43)

where Rk is a correlation matrix with 1 on the main diag-
onal. Currently this model can be estimated only with the
Bayesian estimator. For binary variables, the model is dis-
cussed in detail in Asparouhov and Muth�en (2011) and in
Mplus 8.7 it can also be estimated with ordered categorical
variables. The model can also include continuous latent var-
iables which would essentially amount to estimating the
model with Rk being a full variance covariance matrix rather
than a correlation matrix.

The algorithmic advance that allows us to now estimate
the model with ordered categorical variables can be
described as follows. When the Y� variance covariance
matrix Rk is diagonal, the most efficient MCMC estimation
method is based on estimating the model by grouping Y�

and C in one updating block, using Method 3 in
Asparouhov and Muth�en (2010) for updating the latent class
variable. This way, the latent class variable is updated dir-
ectly from Y. When Rk is not diagonal, C and Y� are not
grouped together because their joint conditional distribution
is not explicit. They are two separate blocks that will be
updated conditional on each other. Method 3 is not avail-
able and instead Method 2 is used which is less efficient
and has the potential to create convergence problems due to
high correlations between C and Y�: This can happen not
just on the population level, where the model is estimated,
but also on the individual level. This would be difficult to
detect as one would have to evaluate the mixing quality of
the estimation for each individual. Furthermore, an individ-
ual may be clearly categorized in one of the classes where
the posterior probability is 100%. This leads to no mixing,
i.e., the latent variable remains constant during the MCMC
estimation for that one individual. It would be difficult to
distinguish if such an individual is” clearly categorized” or
the MCMC estimation for that individual involving Y� and
C is” poorly mixing”, due to for example poor starting val-
ues for C and Y� (neither of which are provided as starting
values of the estimation but are randomly generated; start-
ing values can be provided in Mplus only for the model
parameters). Because of these complexities when using

Table 9. BSEM utilization of RSEM simula-
tion study.

Parameter Average value

b53 0.27
b76 0.25
b31 0.24
b63 –0.14
b73 –0.14
b75 –0.11
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Bayesian Mixture estimation based on Method 2 (which will
be used with residual covariances), it is important to use
long MCMC sequences, multiple chains, and repeating the
estimation with a different random seed generation. The
estimation quality can also be evaluated with
Montecarlo simulation.

If the variables Y are binary, we can re-parameterize the
model by replacing the threshold parameter in the model
with the mean of Y� (with opposite sign), i.e., the threshold
parameter can be assumed to be zero and then
½Y�jC��Nðlk,RkÞ, where lk ¼ �ðs1k1, :::, spk1Þ: The condi-
tional distribution ½CjY ,Y�, lk,Rk� is the same as
½CjY�, lk,Rk� because Y is determined by Y�: Finally, the
conditional distribution ½CjY�, lk,Rk� is easy to compute
because Y� is multivariate normal. With ordered categorical
variables, this construction does not carry over as there are
multiple threshold parameters. In Mplus 8.7 we have imple-
mented an approximation method which is designed to
mimic the binary variables implementation. As a mean for
Y� we use the negative of the average threshold value, i.e.,
we use a reparameterization where the mean of Y� is esti-
mated but the threshold parameters are constrained to add
up to zero. If spk: ¼ ðspk1 þ :::spkLpÞ=Lp is the average thresh-
old, and s0pkl ¼ spkl�spk: are the centered thresholds then
½Y�jC��Nðlk,RkÞ where lk ¼ ð�s1k:, :::,�sPk:Þ: With this
reparameterization, we approximate ½CjY ,Y�, lk,Rk, s0pkl�
with ½CjY�, lk,Rk� and avoid using the computationally
intensive multivariate probit function.

Note also that the non-diagonal Rk can be the result of
multiple modeling features: direct modeling of covariances,
continuous latent variables measured by the categorical vari-
ables, residual regressions as in RSEM, as well as combina-
tions of any of the these. While these are different models,
conceptually they result in the same framework when it
comes to Bayesian Mixture estimation.

Next we illustrate the methodology with a simulation
study where a 2 class categorical latent variable is measured
by 7 categorical variables with 3 categories each. In addition,
3 residual correlations are introduced via residual regres-
sions as in Figure A18 (Appendix B). The results for some
of the parameters are reported in Table 10. Some small
biases are visible in the estimates and these will not dis-
appear asymptotically. The biases are due to the approxi-
mate nature of the computation, although with binary and
continuous variables the computation is exact. The PPP
value based on the chi-square test of fit within each class,

which can detect residual correlations, has 0% rejection rate.
The entropy in this example is 0.9. The Bayesian estimator
appears to work well only when the entropy is on the high
end, i.e., the classes are somewhat well separated. This is
particularly so when Method 2 for the latent class updating
is used. When the entropy is low, mixture models tend to
have multiple solutions which are often blurred together by
the Bayesian estimator. Label switching is also a possible
estimation problem when the entropy is low and the sample
size is small. Nevertheless, this simulation example illustrates
that the Bayesian Mixture estimation is often feasible and is
especially valuable for those situations where the maximum-
likelihood estimation is not available.

3.8. Pearson Posterior Predictive p-Value

The standard chi-square PPP value can be used to evaluate
the fit of RSEM and RSEM mixture models. With categor-
ical data, however, this test of fit is limited to testing the
model fit to the underlying latent variables Y� and not to
the observed categorical variables Y. In the Bayesian estima-
tion framework, we can construct multiple PPP tests based
on different fit functions. In Mplus 8.7 a new PPP is intro-
duced based on the fit function formed by summing the
Pearson statistics for all univariate and bivariate contingency
tables. This fit function tests the model directly against the
observed categorical data Y. The fit function is given by the
following equation

F ¼ N
XP
p¼1

XLp
i¼1

ðopi�epiÞ2
epi

þ N
XP
p1¼1

Xp1�1

p2¼1

XLp1
i1¼1

XLp2
i2¼1

ðop1p2i1i2�ep1p2i1i2Þ2
ep1p2i1i2

: (44)

Here N is the sample size, opi is the observed proportion
of Yp ¼ i, epi is the model estimated probability PðYp ¼
iÞ, op1p2i1i2 is the observed proportion of Yp1 ¼ i1,Yp2 ¼ i2 in
the bivariate observed joint distribution of Yp1 and Yp2 , and
ep1p2i1i2 is the model estimated probability PðYp1 ¼ i1,Yp2 ¼
i2Þ: The Pearson PPP can be obtained in Mplus with the
specification output:tech10. The Pearson PPP obtained
using the Figure A18 in Appendix B simulation study has
0% rejection rate.

To illustrate the Pearson PPP, using the same data gener-
ation as in Figure A18 (Appendix B), we estimate the two-
class model excluding the residual correlations. In that case,
the chi-square PPP rejects the model in 100% of the replica-
tions while the Pearson PPP rejects the model in 97% of the
replications. Using the data generation in Figure A18
(Appendix B), we also estimate the single class model where
all residual correlations are included in the model. This is
essentially the unconstrained multivariate probit model for
the observed variables. This model represents the most flex-
ible model we can estimate without Mixture modeling. In
that case, the chi-square PPP rejects the model in 0% of the
replications while the Pearson PPP rejects the model in
100% of the replications. Note here, that such an outcome is

Table 10. LCA analysis with conditional dependence simulation study.

Parameter True value Abs. Bias Coverage

b15 0.3 .02 .90
b26 0.3 .01 .99
b37 0.3 .02 .90
s111 –1 .03 .92
s112 1 .04 .83
s211 –1 .03 .93
s212 1 .03 .92
s121 0.5 .00 .92
s122 1.5 .14 .67
s221 0.5 .01 .95
s222 1.5 .11 .74
a1 .5 .03 .91
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not a contradiction. A Bayes test of fit can be constructed
using any meaningful fit function. A model is acceptable fit
for the data if all such tests yield acceptable PPP values. The
unrestricted multivariate probit model is the saturated single
class model and therefore we can expect that the model will
never be rejected by the chi-square PPP value. The model,
however, has very few parameters when compared to full
contingency table for the categorical variables. When the
unrestricted multivariate probit model is rejected by the
Pearson PPP, the only option for improving the model fit is
to introduce latent classes in the model. This further
emphasizes the need to efficiently estimate LCA models
with conditional dependence.

The Pearson statistic based on the univariate and bivari-
ate contingency tables can be used to compare models
across different estimators. In Mplus, all estimators (ML,
WLSMV and Bayes) compute the Pearson statistic in the
tech10 output. The Pearson PPP in the Bayes estimator is
the only case, however, that provides a direct test of fit pro-
cedure. With the ML and WLSMV estimators, the Pearson
statistic is not a chi-square statistic and it will not provide a
formal p-value. Those statistics can be used, however, for
comparative purposes, among different estimators and mod-
els, similarly to how BIC criterion is used. At this time,
however, we have no way of determining what constitutes a
significant improvement in the statistic. The full multivariate
Pearson statistic does provide a formal chi-square test but
that procedure is useful only when the multivariate contin-
gency table is smaller. For larger models, the multivariate
contingency table has very large number of parameters,
compared to the estimated model, and the Pearson test will
have very large DF. In that case, the asymptotic argument
that supports the Pearson testing will require extremely
large sample size, beyond what is practical. The tech10 out-
put contains also very detailed information for all quantities
used in (44). Standardized residuals are computed for every
cell in the univariate, bivariate and multivariate contingency
tables. These can be used to pinpoint where a model is
inadequate representation of the data.

If data is missing and it is not missing completely at ran-
dom (MCAR), the utilization of the Pearson PPP and the
standardized residuals in the contingency tables is somewhat
complex. Two things can occur when data is missing at ran-
dom (MAR) and not MCAR. First, the observed proportions
need not agree with the estimated proportions even when
the model is correct. Observed proportions in the univariate
and bivariate tables are essentially obtained with listwise
deletion, i.e., using an inferior estimation method. We can
expect that the multivariate model estimated quantities,
which yields unbiased estimated under MAR, will be more
accurate than the observed proportions. Therefore, discrep-
ancies between the observed and estimated quantities can be
due to strong MAR effects rather than to incorrect model.
The second thing that occurs is that the Pearson PPP may
not perform well. The Pearson PPP is based on comparing
the Pearson statistic for the sample data and for hypothetical
(replicated) data generated from the estimated model. We
have no way of producing similar MAR missing data for the

replicated data, since the missing data mechanism is not
estimated with likelihood based approaches. Therefore, the
replicated data would have MCAR missing data and the two
data sets would not be entirely comparable. Thus, if the
missing data is MAR, the discrepancy between the observed
and the estimated contingency tables can artificially cause
the Pearson PPP to reject the model, even when the model
is correct. In practical applications, however, this is a rela-
tively unlikely scenario. If the amount of missing data is
relatively small or the MAR effects are not very strong, the
Pearson PPP is expected to perform well. In the rare situ-
ation where the amount of missing data is large and strong
MAR effects are suspected, the Pearson PPP should not be
used. Further discussion on Bayesian PPP methodology in
the presence of MAR missing data is available in
Asparouhov and Muth�en (2021).

The Pearson PPP and the chi-square PPP may often dis-
agree in terms of model fit. Consider the case when the
Pearson PPP does not reject the model but the chi-square
PPP rejects the model. In this case, the unrestricted correl-
ation model will fit both the Pearson PPP and the chi-square
PPP. That means that some modifications in the structural
model can be implemented to resolve the chi-square PPP
rejection. When the unrestricted correlation model is not
rejected by both PPP procedures we can assume that this
model fits the data well. In that case, i.e., when the multivari-
ate probit model is true, the chi-square PPP has bigger power
to detect misspecifications as it is more directly connected to
the concept of polychoric correlation., which need to be fit-
ted. The Pearson PPP will consider the fit of many more
quantities, than the chi-square PPP and as a results of that
some model misfits will be washed off as insignificant. In the
case when the Pearson PPP does not reject the model but the
chi-square PPP rejects the model, the results can be traced to
the lower power of the Pearson PPP when the multivariate
probit model is correct.

Note also that, models which include categorical and
continuous dependent variables may have different PPP out-
comes for a different reason. The Pearson PPP tests the
contingency tables for the categorical variables only, while
the chi-square PPP tests the entire model. If the Pearson
PPP does not reject the model but the chi-square PPP
rejects the model, the reason may be that the continuous
part of the model is misfitted or that the part of the model
that correlates the categorical variables with the continuous
variables is misfitted. In that case, the difference between
the two PPP procedures may not be due to the difference in
power at all.

Next, consider the case when the Pearson PPP rejects the
model but the chi-square PPP does not. To decide how to
proceed in that case, one needs to estimate the unrestricted
correlation model and obtain the Pearson PPP for that
model. If the Pearson PPP does not reject that model, modi-
fications in the structural model can be implemented to
resolve the Pearson PPP rejection. If, however, the unre-
stricted correlation model is rejected by the Pearson PPP,
no model modification will be available to resolve the prob-
lem. The cause of the Pearson PPP rejection can then be
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traced in the failure of the multivariate probit model. There
are two different interpretations in that case, which are
actually mathematically equivalent. The first interpretation
is that the Pearson PPP rejects the model because the
underlying continuous variables Y� does not have a multi-
variate normal distribution. The second interpretation is
that a single-class structural model does not provide a good
fit for the data and a mixture model with more than one
class must be estimated. The reason, the two interpretations
are equivalent is because any non-normal multivariate dis-
tribution (for Y�) can be approximated by a mixture of
multivariate normal distributions. Regardless of which inter-
pretation is used, however, the only option in this case is to
use mixture modeling, i.e., increase the number of classes
until the Pearson PPP does not reject the model. Further
discussion on testing categorical variable models is available
in Muth�en (1993). The Bayesian Pearson PPP proposed here
is very similar to the bivariate tables ML chi-square test of
fit discussed Maydeu-Olivares and Joe (2006).

3.9. Mixture RI-AR Model with Categorical Variables

In this section we illustrate the Bayesian Mixture methodology
with a more advanced mixture model: a two-class mixture RI-
AR model where all the dependent variables are ordered cat-
egorical variables. In this model, there are three completely
different and competing modeling components attempting to
model the dependencies among the categorical variables.
These three modeling components are: the latent class vari-
able, the random intercept and the auto-regressive residuals.
Separating these three sources of correlational dependencies
generally requires a fairly rich data set and in many practical
situations this might not be available. This kind of analysis,
should always be preceded by analyzing the data first with
one and then two of the modeling components. In addition,
we recommend that any mixture RI-AR analysis with ordered
categorical data be accompanied by a Montecarlo simulation
study that verifies the quality of the estimation.

As in the previous example, the model can be estimated
only with the Bayesian estimator. Figure A19 in Appendix B
shows the Mplus input file for a mixture RI-AR simulation
study and Table 11 gives the results for some of the model
parameters. As in the previous case, small biases are visible
in some of the parameter estimates but the overall perform-
ance is satisfactory and all three of the correlation compo-
nents were allocated properly. In this simulation study, we
held the auto-regressive parameter equal across time and
across classes. This helps with the model identification,
although it is not necessary in general. Also, in this simula-
tion study, the effect of the latent class variable and the ran-
dom intercept on the observed variables are orthogonal to
each other. The random intercept always weighs equally on
all indicators. If the latent class variable does so as well, it
will be difficult to distinguish between the effect of C and
the effect of I. In the simulation study given in Figure A19
(Appendix B), the orthogonality is achieved by giving com-
pletely different sets of threshold parameters for indicators
Y1�Y4 and Y5�Y8: Because of that, the latent class variable

affects the class indicators differently and it would be distin-
guishable from the effect of the random intercept variable.

3.10. Structural Residual Modeling in RDSEM

The residual dynamic structural equation model (RDSEM),
as defined in Asparouhov et al. (2018), allows for lagged
modeling of the residuals. The residuals from the current
time period in RDSEM can be predicted by residuals from
the previous periods. The model, however, did not allow for
the residuals to be structurally modeled within the same
period (contemporaneous relations). Such modeling how-
ever is sometimes necessary, see Hamaker et al. (2021). In
Mplus 8.7 we have extended the RDSEM model to accom-
modate such structural models among the residuals. This
extension applies to single and two-level RDSEM models.
Since the two-level RDSEM model can be viewed as a gen-
eralization of the standard two-level SEM model (where the
lag is 0), this extension can be viewed as the two-level ver-
sion of RSEM. Both categorical and continuous variables
can be used in this RDSEM extension.

The RDSEM model allows for contemporaneous relations
not just between the residuals but also between the varia-
bles. In principle, this creates a methodological challenge.
When a contemporaneous relationship between two varia-
bles must be modeled, it may not be clear whether the rela-
tionship should be between the variables or whether it
should be between the residuals. In some practical applica-
tions, a compelling substantive argument may be available
to make that choice. When a substantive argument is not
available, one can use statistical techniques, such as the DIC
criterion, for guidance in that decision.

We illustrate the contemporaneous residual modeling in
RDSEM with a bivariate example that mimics the modeling
in Hamaker et al. (2021). Suppose that Ypit is the p�the
variable, p¼ 1, 2, for individual i at time t. Suppose that Xit

is a covariate for individual i observed at time t. The
RDSEM model is given by the following equations

Ypit ¼ api þ bpiXit þ Ŷ pit (45)

Ŷ 1it ¼ ciŶ 2it þ r1iŶ 1i, t�1 þ e1it (46)

Ŷ 2it ¼ r2iŶ 2i, t�1 þ r3iŶ 1i, t�1 þ e2it: (47)

There are 8 random effects in this model: api and bpi are
the random intercept and slope in the regression of Ypit on
Xit, ci represents the contemporaneous relationship between
the residuals Ŷ 1it and Ŷ 2it , and rji represent the lagged

Table 11. Mixture RI-AR with ordered categorical simulation study.

Parameter True value Abs. Bias Coverage

q2 0.225 .00 .96
w 0.4 .02 .90
s111 –1 .07 .74
s112 1 .01 .91
s211 –1 .07 .82
s212 1 .02 .92
s121 1 .02 .94
s122 2 .03 .92
s221 1 .02 .94
s222 2 .03 .95
a1 –0.4 .03 .93
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relationships in the residuals. Figure A20 in Appendix B
shows a simulation study setup for this model. Table 12
shows the results of the simulation study. The Bayesian esti-
mation performs well in this example.

4. Conclusion

In this article, we illustrate how the residual variables in a
structural equation model can be used for constructing a
secondary structural model. The residual variables can also
be used as additional variables and predictors in the original
model. Using this residual structural equation modeling
framework, we enhance the utility of the primary structural
model. The new Mplus hats language notation, previously
used only for RDSEM, is expanded in Mplus 8.7 to standard
SEM models. The hats notation allows us to construct
RSEM models in an efficient and compact way. In addition,
the hats notation will guarantee that the most efficient esti-
mation method is used, particularly so with the Bayesian
estimator. This compact presentation will also help with
proper model interpretation and conceptualization.
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Appendix A

In this section we discuss the equivalence of the RI-MEAR and RI-
ARMA models. We determine the parameter space for which this
equivalence holds and show how to obtain the parameters for one
model from the parameters of the other model. Out of the total 4T�2
model parameters, 2T parameters: at, qt and w are identical between
the two models. That leaves us with the 2T�2 parameters (rt and vt)
of the RI-MEAR model and the 2T�2 parameters (ht and bt) of the
RI-ARMA model. We want to show that there is a reparameterization
of these 2T�2 parameters for which the two models are equivalent.

The models will be equivalent if the variance covariance matrix for
Ŷ it in the RI-MEAR model is the same as the variance covariance
matrix for eit in the RI-ARMA model. This is because the random
intercept part of the model is the same for the two models. For con-
venience, in this discussion we drop the index i which refers to the
individual i data and we will refer to Ŷ it as simply Ŷ t , etc.

First, we algebraically rewrite the RI-MEAR model as follows. For
t¼ 1

Ŷ 1 ¼ n1: (48)

For t¼ 2

Ŷ 2 ¼ q2Ŷ 1 þ e2 þ n2: (49)

For t> 2

Ŷ t ¼ qtŶ t�1 þ et þ nt�qtet�1: (50)

The RI-MEAR model can be given in matrix form as follows.
Define A to be the following matrix

A ¼

1 0 0 0 � � � 0 0
�q2 1 0 0 � � � 0 0
0 �q3 1 0 � � � 0 0
0 0 �q4 1 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � �qT 1

0
BBBBBBB@

1
CCCCCCCA
:

Let Ŷ be the vector of all hat variables Ŷ t: The RI-MEAR model
becomes

AŶ ¼

n1
n2 þ e2

n3 þ e3�q3e2
n4 þ e4�q4e3

..

.

nT þ eT�qTeT�1

0
BBBBBBB@

1
CCCCCCCA
:

Similarly, the RI-ARMA model can be written as

Ae ¼

ê1
ê2

ê3 þ b3ê2
ê4 þ b4ê3

..

.

êT þ bT êT�1

0
BBBBBBB@

1
CCCCCCCA
:

The variance covariance of Ŷ and e will be the same when the vari-
ance covariance matrices of the RHS vectors in the above two equa-
tions are the same. Both of these vectors have fairly simple variance
covariance matrices and both take the form of MA (moving-average)
processes. Inspecting both vectors reveals that there are precisely 2T�2
non-zero entries in these MA variance covariance matrices. If we
denote that variance covariance matrix by X, the non-zero entries are
the T diagonal entries xðt, tÞ, and the T� 2 off diagonal entries
xðt, t�1Þ for t> 2. All other entries are zero for both vectors. Setting
these 2T�2 variance covariance elements to be equal between the two
models provides precisely the 2T�2 equations needed for the repara-
meterization between the RI-ARMA and the RI-MEAR models. These
equations are given below. For t¼ 1

xð1, 1Þ ¼ h1 ¼ v1: (51)

For t¼ 2

xð2, 2Þ ¼ h2 ¼ v2 þ r2: (52)

For t> 2

xðt, tÞ ¼ ht þ b2t ht�1 ¼ vt þ rt þ q2trt�1 (53)

xðt, t�1Þ ¼ btht�1 ¼ �qtrt�1 (54)

The RI-MEAR parameters can be obtained from the RI-ARMA
parameters as follows

v1 ¼ h1 (55)

v2 ¼ h2ðq3 þ b3Þ=q3: (56)

For t ¼ 3, . . . , T�1

vt ¼ htðqtþ1 þ btþ1Þ=qtþ1 þ ðqt þ btÞbtht�1: (57)

For t¼T
vt ¼ ht þ ðqt þ btÞbtht�1: (58)

For t ¼ 2, . . . , T�1
rt ¼ �btþ1ht=qtþ1: (59)

Conversely, the RI-ARMA parameters can be obtained from the
RI-MEAR parameters in the following recursive sequence

h1 ¼ v1 (60)

h2 ¼ v2 þ r2: (61)
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For t> 2

bt ¼ �qtrt�1=ht�1 (62)

ht ¼ vt þ rt þ qtrt�1ðbt þ qtÞ: (63)

One key question about this reparameterization is whether all vari-
ance component parameters will remain positive. The ML estimator,
unless restricted, can estimate negative residual variances, even though
such a thing would not be interpretable. Thus, the RI-ARMA to RI-
MEAR conversion can always be done as long as we allow residual
variances to be negative. In general, however, if one of the two models
has negative residual variances but the other does not, one should
clearly prefer the model with all positive residual variances.

Here we analyze this issue through the above conversion formulas.
We restrict ourselves to the most common scenario qt � 0: First, we
consider the situation when the RI-ARMA model is estimated and all
variance components are positive. We want to know under what cir-
cumstance the RI-MEAR variance components will also be positive.
Equation (59) implies that all bt (moving average) parameters in the
RI-ARMA model must be negative to produce positive rt. The situ-
ation with vt, however is much more complex. In DSEM-ARMA to
DSEM-MEAR conversion, one of the parameter requirements is that
bþ q>0: In this situation, however, assuming bt þ qt>0, bt<0 for
every t, would not be enough to guarantee positive vt. That is because
in Equation (57) the second term is negative. The additional equality
that must be satisfied by the RI-ARMA parameters to guarantee posi-
tive vt is as follows

ht
ht�1

>
qt þ bt

qtþ1 þ btþ1
ð�btÞqtþ1: (64)

If all parameters are time-invariant and the process is stationary
and invertible, i.e. q<1 and b<1, the above inequality is satisfied.

The opposite situation is simpler. If we estimate the RI-MEAR
model and all variance components are positive, the variance

components in the RI-ARMA model are always guaranteed to be posi-
tive. To see this, going through Equations (60–63) we can inductively
establish the following inequalities: ht>rt , bt<0, bt þ qt>0: Since rt is
positive, ht must be positive as well.

With the Bayesian estimator negative variances can not be esti-
mated. This means that the RI-MEAR and RI-ARMA equivalence in
the Bayesian framework is subject to the parameter space restriction
where the RI-ARMA to RI-MEAR conversion yields positive variance
components. Furthermore, the inequality constraints must be satisfied
for the entire posteriors distribution and not just for the point esti-
mates. If for a portion of the posterior distribution of the RI-ARMA
parameters, the implied RI-MEAR parameters have negative variances,
the equivalence between the RI-ARMA and RI-MEAR will not hold.
This is particularly consequential when the sample size is small or
moderate and the posterior distributions are wide enough to cross over
in the parameter space that doesn’t support the RI-ARMA to RI-
MEAR conversion.

The RI-ARMA and RI-MEAR equivalence is very specific to the
model we discussed above. It applies precisely when all parameters are
non-invariant and there are exactly 4T�2 parameters. In practical set-
tings, some simplifications of these models may be desirable, such as
holding parameters equal across time or fixing some insignificant
parameters to zero. Such simplifications do not translate from one of
the models to the other. A simplified RI-ARMA model may not result
in a simplified RI-MEAR model and vice versa. The reparametrization
formulas given above must be used to determine how parameter
restrictions in one model translate into parameter restriction for the
other model. An example of such a situation is given in Figure A9
(Appendix B). In that figure, the models are applied to categorical
data, which require residual variances to be fixed to 1. Residual varian-
ces fixed to 1 in one of the models then results in a completely differ-
ent restriction for the other model.

Appendix B

Figure A1. Input file for RSEM AR(1) linear growth model.
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Figure A2. Output results for RSEM AR(1) linear growth model.

Figure A3. Mplus input file for RI-CLPM simulation study with continuous variables.
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Figure A4. Mplus RI-CLPM input file.

Figure A5. Mplus input file for RI-CLPM simulation study with categor-
ical variables.

Figure A7. Mplus RI-MEAR model statement.

Figure A6. Mplus RI-ARMA model statement.

Figure A8. Alternate (preferred) Mplus RI-MEAR model statement.
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Figure A9. RI-MEAR to RI-ARMA conversion for categorical data.
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Figure A10. D-RI-ARMA simulation study.

Figure A11. D-RI-ARMA simulation study with categorical variables.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 25



Figure A12. RI-ARMA simulation study with categorical variables.
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Figure A13. Bivariate RI-ARMA simulation study.
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Figure A14. Zyphur, Allison, et al. (2020) GCLM model specification.
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Figure A16. Input file for a simulation study where residual variables are used
as predictors.

Figure A15. Zyphur, Allison, et al. (2020) GCLM simplified model specification
using RSEM hats language.

Figure A17. BSEM utilization of RSEM simulation study to determine the
residual variances needed for acceptable model fit.
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Figure A18. LCA analysis with conditional dependence simulation study. Figure A19. Mixture RI-AR with ordered categorical simulation study.
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Figure A20. Contemporaneous residual modeling in RDSEM simulation study.
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