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Expanding the Bayesian structural equation, multilevel and mixture models to logit, 
negative-binomial, and nominal variables
Tihomir Asparouhov and Bengt Muthén

Mplus

ABSTRACT
Recent work on the Polya-Gamma distribution provides a breakthrough for the Bayesian modeling of 
logit, count, and nominal variables. We describe how the methodology is incorporated in the Mplus 
modeling framework and illustrate it with several examples: logistic latent growth models, multilevel IRT, 
multilevel time-series models for count data, multilevel nominal regression, and nominal factor analysis.
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Introduction

The Bayesian estimation of the structural equation modeling 
framework implemented in Mplus is described in Asparouhov 
and Muthén (2010a). The framework includes mixture models 
as well as multilevel models. The observed endogenous vari
ables can be continuous normally distributed outcomes as well 
as categorical outcomes based on the probit link function. In 
this note we describe how the Mplus framework is extended to 
include these new types of variables: count variables based on 
the Poisson and the negative-binomial distributions, nominal 
variables as well as binary variables based on the logit link 
function. This expanded framework is similar to the ML esti
mation framework implemented in Mplus, see Muthén and 
Asparouhov (2007). The model is largely unchanged, but we 
can now utilize the more efficient Bayesian estimation. 
Numerical integration is typically required in the ML estima
tion of latent variable models with non-normal outcomes. 
Therefore, the number of latent variables and random effects 
in the model cannot exceed 3 or 4 because the computational 
speed grows exponentially with the number of latent variables. 
In the Bayesian estimation, the computational speed grows 
linearly with the number of latent variables, and generally, an 
unlimited number of latent variables can be used without 
substantially increasing the computational time.

Categorical variables in the Asparouhov and Muthén 
(2010a) framework, based on the probit link function, utilize 
the conceptualization of an underlying latent variable. For each 
categorical variable Y , there is a latent variable Y� that is cut 
according to certain threshold parameters to obtain the cate
gorized observed variable Y . The existence of such an under
lying latent variable is immediately provided by the probit link 
function. The latent variable construct is very important in the 
Bayesian estimation. Any structural model that can be formu
lated for Y , can also be formulated as a linear model for Y�. For 
this linear model, all conditional distributions (for structural 
parameters, latent factors, random effects, and missing data) in 

the MCMC estimation are explicit. Provided with conjugate 
priors, the MCMC estimation is fast and efficient.

For other types of variables such as count, logit-categorical, 
or nominal, a conceptualization of such underlying latent 
variable had not been found until very recently. Fox’s (2010) 
work on item response modeling, for example, in the absence 
of underlying latent variables, utilizes the Metropolis-Hastings 
algorithm as a part of the MCMC algorithm. Such an approach 
tends to be more computationally demanding, less efficient 
than explicit conditional distributions, more difficult to imple
ment in a generalized framework, and more prone to slow 
mixing estimation. Groundbreaking recent work by Pillow 
and Scott (2012) and Polson et al. (2013) yields a underlying 
latent variable methodology for negative-binomial and Poisson 
count variables, logit-binary variables and nominal variables. 
The approach utilizes the Polya-Gamma (PG) distribution and 
is uniquely suited for structural, multilevel and mixture mod
els. With the PG method, regression parameters with conjugate 
normal priors can be updated in the MCMC estimation from 
explicit conditional normal distributions. Similarly, normally 
distributed latent variables or random effects (random slopes, 
loadings or intercepts) can be updated from explicit condi
tional normal distributions. These explicit conditional distri
butions produce highly efficient MCMC estimation. Kim et al. 
(2018) compare the Polya-Gamma based estimation method to 
other Bayesian methods in the context of structural equation 
models with logit-binary variables and found that the Polya- 
Gamma method yields superior performance.

For Mixture models, the categorical latent class variables 
are generally modeled as nominal variables. Using the PG 
methodology, we can now also extend the Mplus Bayesian 
mixture framework to include latent class variable regression 
on other variables. Within the MCMC estimation, where the 
latent class variable is imputed in each iteration, the latent 
class regression is simply a nominal variable regression and the 
PG methodology applies.
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Missing data on count/nominal/categorical variables are 
typically easy to resolve in likelihood based methods (Bayes 
and ML). However, missing data on the predictors/covariates 
of such variables is not. In the ML estimation for example, such 
missing data lead to additional dimensions of numerical inte
gration. Even for a simple logit regression model, the dimen
sions of numerical integration could easily become substantial 
depending on the amount of missing data in the covariates. In 
this situation the PG methodology can be utilized as well. The 
missing values can be imputed in the MCMC estimation from 
explicit conditional distributions. This also extends to the 
mixture modeling situation where the latent class variable has 
missing predictors. Furthermore, the method can be applied to 
the three-stage estimation, see Asparouhov and Muthén 
(2014a), where the final step in the estimation is conducted 
with the Bayes estimator instead of the ML estimator. An 
illustration of that approach is provided in Asparouhov and 
Muthén (2020a).

There is one drawback of the PG methodology that makes 
the Bayesian estimation slower, however. If categorical data are 
modeled with the probit link function, the underlying normal 
variable has a conditional distribution that varies linearly with 
the model covariates. The model parameters remain the same 
across individuals, which makes matrix manipulations effi
cient. This does not apply to the PG methodology. The under
lying variable for count/nominal/logit variables has 
a conditional distribution that varies across observations. 
Matrix manipulation must be performed separately for each 
observation. This affects the computational speed of the esti
mation but it does not affect the generality of the methodology 
or the mixing efficiency.

In the next section we describe the PG methodology and 
how it is implemented in Mplus 8.5. We then illustrate the 
Bayesian estimation with several simulation studies.

Bayesian estimation for models with logit, count and 
negative-binomial variables

We begin by providing a formal definition for the PG distribu
tion. A random variable W has a Polya-Gamma distribution 
with parameters b and c, i.e. W,PGðb; cÞ, if W is obtained as 
the following infinite sum 

W ¼
1

2π2

X1

k¼1

Gk

ðk � 0:5Þ2 þ ðc=ð2πÞÞ2
(1) 

where Gk are independent gamma random variables with dis
tribution Gaðb; 1Þ. It is not possible to simplify the above 
infinite sum, but in most cases the sum can be approximated 
as a finite sum. For example, the first 500 terms of the above 
sum provide a good approximation for most values of b and c. 
The PGðb; cÞ distribution takes only positive values and has 
mean 

EðWÞ ¼ ðb=ð2cÞÞ tanhðc=2Þ (2) 

and variance 

VarðWÞ ¼ ðb=ð4c3ÞÞðsinhðcÞ � cÞ=ðcoshðc=2ÞÞ2: (3) 

For large values of b and c (> 200) the PG distribution can be 
approximated by a normal distribution. Also, for large values 
of c, the variance of the distribution goes to 0 and so the 
distribution becomes approximately equal to a constant. Note 
also that the parameter b is always positive, while the parameter 
c can be positive and negative and the PG distribution is 
independent of the sign of c.

To be able to use this distribution in the MCMC estimation, 
an efficient method for generating PG random variables is 
needed. Multiple such methods have been proposed in 
Windle et al. (2014). Mplus utilizes four of these methods: 
finite sum approximation, normal approximation, saddle 
point approximation, and Devroye’s approximation. 
Depending on the parameters b and c, one of the four methods 
is used. Such a hybrid approach is designed to find an optimal 
compromise between the speed of the computation and the 
quality of the approximation.

Next we describe how the PG distribution is used to facil
itate the Bayesian estimation for logistic, negative-binomial, 
and nominal regressions. Note that the PG distribution is not 
used to model a dependent variable. It is used only to construct 
a normally distributed underlying latent variable from an 
observed logit, count, or nominal variable.

Logistic regression

Consider the logistic regression for a binary outcome Y (with 
outcome values of 0 and 1) given by the equation 

PðY ¼ 0Þ ¼
1

1þ ExpðβXÞ
(4) 

where X represents a set of covariates and β represents a set of 
parameters that are to be estimated.

The underlying variable Y� in this case is constructed in two 
step. In the first step we generate 

W,PGð1; βXÞ: (5) 

In the second step we compute Y� as follows: 

Y� ¼
Y � 0:5
ffiffiffiffiffi
W
p : (6) 

The logistic regression model (4) for Y implies the following 
linear regression model for Y�

Y� ¼ β
ffiffiffiffiffi
W
p

X þ ε; (7) 

where ε is a standard normal random variable. This linear 
regression can be used to estimate the regression coefficients 
β. Note that the predictor variables in the linear regression are 
ffiffiffiffiffi
W
p

X rather than the original covariates X used in the logistic 
regression. Once the underlying latent variable Y� is generated, 
the logistic regression equation for Y is replaced by the linear 
regression for Y�. Thus any structural/multivariate/multilevel 
model involving the logistic regression for Y is transformed 
into a structural/multivariate/multilevel model for Y�. Such 
models are then estimated as in Asparouhov and Muthén 
(2010a).
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To be more specific, the MCMC estimation proceeds as 
follows. In each MCMC iteration, we generate W and com
pute Y�. We then update any structural parameters, random 
effects, latent variables and missing data, using the linear 
model for Y�. Note again that the covariates in the logistic 
equation are changed to 

ffiffiffiffiffi
W
p

X. If those same covariates are 
used as predictors in another equation, they are unchanged 
for that other equation or are changed according to 
a different PG deviate. Also note that if the covariates X 
must be updated due to missing values or if the covariates 
include latent variables, the scale coefficient 

ffiffiffiffiffi
W
p

is then 
attached to the regression parameters, i.e., in the Gibbs 
sampler step that updates X, the coefficients β in the logistic 
regression are replaced with the coefficients β

ffiffiffiffiffi
W
p

in the 
linear regression of Y�.

In the above description, we did not use the intercept in the 
logistic regression. The intercept is a special case of a regression 
parameter for a covariate that is the constant 1. In the Mplus 
implementation, however, the intercept is actually used and is 
called a threshold τ. In line with the probit regression, the 
actual Mplus parameterization for the logistic regression is as 
follows 

PðY ¼ 0Þ ¼
Expðτ � βXÞ

1þ Expðτ � βXÞ
¼

1
1þ Expð� τ þ βXÞ

: (8) 

Thus the logistic regression intercept is equivalent to the 
threshold parameter in Mplus but is with the opposite sign.

The PG methodology does not extend to nonbinary ordered 
polytomous variables with the logit link function. The Mplus 
implementation allows for the simultaneous modeling of binary 
variables with the logit link function and nonbinary ordered 
polytomous variables with the probit link function. To use such 
modeling the option LINK = PROBIT LOGIT must be specified 
in the ANALYSIS command. The natural extension of the PG 
methodology to nonbinary categorical variables leads to nom
inal variables rather than ordinal. We discuss the PG methodol
ogy for nominal variable further below.

In a multivariate model where a binary variables Y is used to 
generate an underlying latent variables Y�, a natural question 
arises regarding the possible correlation between Y� and other 
variables in the model. Such correlation can easily be esti
mated, however, the correlation does not naturally translate 
into some kind of an association between the observed binary 
variables Y and the other variables. In the Mplus implementa
tion, such correlations are not pursued at this time. The main 
tool for correlating binary variables in this logit based model
ing framework is to use normally distributed latent variables 
that predict the binary variables, as in item response theory, for 
example. The same logic applies to structural parameters where 
the underlying latent variable Y� is used as a predictor for 
another variable. While it is possible to estimate such 
a structural parameter within the MCMC estimation, the para
meters would not translate easily into an interpretable model 
for the observed variable Y and thus are not included in this 
modeling framework. The latent variable Y� must only be used 
as a dependent variable. These observations apply also to the 
rest of the PG-based types of variables: negative-binomial, 
Poisson, and nominal variables.

Negative-binomial regression

First, we discuss the properties of the negative-binomial dis
tribution and then we will extend that discussion to the nega
tive-binomial regression model.

Suppose that a variable Y has a negative-binomial distribu
tion. The probability distribution function for Y is given by 

PðY ¼ kÞ ¼ kþ r � 1
r � 1

� �

prð1 � pÞk; (9) 

where r and p are the parameters of the distribution. The 
interpretation of this distribution is that Y represents the 
number of successes in a sequence of Bernoulli (binary) trials 
before the occurrence of the r � th failure, where the parameter 
p represents the failure probability. Such an interpretation 
requires that r is an integer parameter but in fact the negative- 
binomial distribution is defined for any positive value r using 
the notation that 

kþ r � 1
r � 1

� �

¼
Γðkþ rÞ

Γðkþ 1ÞΓðrÞ
¼
Yk

i¼1

r � 1þ i
i

; (10) 

where Γ is the Gamma function. The mean of Y is 

μ ¼ EðYÞ ¼
rð1 � pÞ

p
(11) 

and the variance is 

v ¼ VarðYÞ ¼
rð1 � pÞ

p2 : (12) 

Instead of using the parameter r, the Mplus implementation 
uses the parameter α 

α ¼
1
r

(13) 

which is called the dispersion parameter. It can be shown that 

p ¼
1

1þ αμ
(14) 

v ¼ μþ αμ2: (15) 

The above equation has a symbolic meaning as it explicates how 
the negative-binomial distribution differs from the Poisson dis
tribution. For the Poisson distribution, the variance is equal to 
the mean. This is often viewed as an impractical limitation, 
which would rarely be satisfied in real data. When α> 0, the 
variance of the negative-binomial distribution is bigger than 
the mean and the term αμ2 represents the difference between 
the variance and the mean. It should be noted, however, that the 
Poisson distribution limitation does not extend to Poisson 
regression in the following sense. In a Poisson regression, con
ditional on all predictors, the variance and the mean are equal. 
However, the marginal/unconditional mean would not be equal 
to the marginal/unconditional variance. Regardless, the nega
tive-binomial distribution yields a more flexible modeling fra
mework for the count variables than the Poisson distribution. If 
the dispersion parameter α converges to 0 and ð1 � pÞ=α 
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converges to λ, the negative-binomial distribution with para
meters α and p converges to the Poisson distribution with 
parameter λ.

Next we discuss how the negative-binomial distribution is 
used to construct regression models. Several such methods/ 
parameterizations are described in Hilbe (2011). The first para
meterization that we describe here is the NB-2 parameteriza
tion. In this parameterization, the relationship between a count 
variable Y and a set of predictors X is defined by the following 
equation 

p ¼
1

1þ αExpðβXÞ
; (16) 

where β is a vector of regression parameters. The intercept is 
not included in this discussion again as the intercept is simply 
the special case of a regression parameter for the constant 
covariate of 1. From (14) and (16) we derive that 

μ ¼ EðYÞ ¼ ExpðβXÞ: (17) 

We denote this model by Y,NB2ðβX; αÞ. Conditional on a set 
of covariates X, the variable Y has a negative binomial distri
bution with probability function given in (9), where p is com
puted as in (16) and r is computed as in (13). When α 
converges to 0, ð1 � pÞ=α converges to λ ¼ ExpðβXÞ and thus 
the NB2ðβX; 0Þ model is the same as the standard Poisson 
regression model, usually denoted by PoðβXÞ.

Mplus implements also a different negative-binomial 
regression parameterization which we refer to as the PG para
meterization. In this alternative parameterization, equations 
(16–17) are replaced by 

p ¼
1

1þ ExpðβXÞ
(18) 

μ ¼ EðYÞ ¼
ExpðβXÞ

α
: (19) 

We denote this model by Y,NBPGðβX; αÞ. Conditional on 
a set of covariates X, the variable Y has a negative binomial 
distribution with probability function given in (9), where p is 
computed as in (18) and r is computed as in (13).

The difference between the two parameterizations is quite 
simple and it is only in the intercept of the regression model. If 
the intercept of the NB-2 model is denoted by αNB2 and the 
intercept of the NBPG model is denoted by αPG, the two 
parameters are related by the following equation: 

αNB2 ¼ αPG � logðαÞ (20) 

where α is the dispersion parameter. The change in the para
meterization has no effect on any other parameter, i.e. regres
sion coefficients or the dispersion parameter.

In the Mplus software, the NB-2 parameterization is also 
implemented with the ML estimator, while the PG parameter
ization is only available with the Bayesian estimator. A variable 
can be specified as an NB-2 variable using the option 
COUNT = Y(nb). A variable can be specified as PG variable 
using the option COUNT = Y(nbpg). A Poisson distribution 
variable can be specified simply as COUNT = Y. The Bayesian 
implementation for the Poisson distribution is simply 

a negative-binomial variable, using the NB-2 parameterization, 
with the dispersion parameter α fixed to 0.01, i.e. this imple
mentation is an approximation to the Poisson distribution. The 
PG methodology does not directly extend to the Poisson dis
tribution and it must be approximated that way as a negative- 
binomial distribution. The dispersion parameter cannot be 
fixed directly to 0 as that will cause numerical problems in 
the estimation; see equation (24) below, where the log of the 
dispersion parameter is evaluated.

The original work by Polson et al. (2013) uses the PG 
parameterization of the negative-binomial distribution. This 
is one reason why we implemented this parameterization in 
Mplus as well. The NB-2 parameterization was also implemen
ted as this would be considered the most commonly used 
parameterization, due to the simplicity of (17). The MCMC 
algorithms for the two parameterizations are very similar, with 
the exception of the updating of the dispersion parameter, 
which we discuss below. Simulation studies revealed that the 
mixing quality of the Bayesian estimation is not the same 
between the two parameterizations for models that involve 
constraints on the intercept parameters, i.e. where the intercept 
parameters are held fixed to a particular value, such as in 
growth models, or where intercept parameters are held equal 
to other parameters. In addition, models involving intercept 
constraints are not equivalent between the two parameteriza
tions. Intercept constraints in the NB2 parameterization trans
late into a different set of constraints for the NBPG 
parameterization. The NB-2 parameterization appears to have 
slightly worse mixing performance as compared to the PG 
parameterization but in most situations the difference would 
be ignorable.

The Bayesian estimation of the negative-binomial 
regression
The Bayesian estimation of the negative-binomial regression is 
very similar to that of the logistic regression. Each negative- 
binomial variable Y is augmented with an underlying latent 
variable Y� and the negative-binomial regression model is 
transformed to a linear regression model for Y�. At that 
point, as in the logistic regression case, the model is estimated 
with the standard methodology.

First we describe the construction of Y� for the PG para
meterization. The first step is to generate W as 

W,PGðr þ Y; βXÞ: (21) 

In the second step, Y� is computed as follows: 

Y� ¼
Y � r
2
ffiffiffiffiffi
W
p : (22) 

The negative-binomial regression for Y implies a linear regres
sion model for Y�

Y� ¼ β
ffiffiffiffiffi
W
p

X þ ε; (23) 

where ε is a standard normal random variable.
The construction of the underlying Y� in the NB-2 para

meterization is as follows. In the first step we generate W as 

W,PGðr þ Y; βX þ logðαÞÞ: (24) 
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In the second step Y� is computed as follows: 

Y� ¼
Y � r
2
ffiffiffiffiffi
W
p � logðαÞ

ffiffiffiffiffi
W
p

: (25) 

Again, the negative-binomial regression for Y implies a linear 
regression model for Y�

Y� ¼ β
ffiffiffiffiffi
W
p

X þ ε; (26) 

where ε is a standard normal random variable.
As in the logistic regression, in each MCMC iteration a new 

value for W is generated based on the current model para
meters, Y� is computed, the covariates X are multiplied by 

ffiffiffiffiffi
W
p

and the parameters β are estimated using the linear regression 
model for Y�.

Estimating the dispersion parameter
The negative-binomial regression has one additional para
meter to be estimated: the dispersion parameter. Here we 
follow the approach described in Zhou and Carin (2015) and 
Neelon (2019) based on the Chinese restaurant table (CRT) 
distribution. We begin with the PG parameterization. 
Conditional on all model parameters, we augment the data 
with the following variable: 

A ¼
Xn

i¼1

XYi

j¼1
Aij (27) 

where n is the sample size, Yi is the value of the negative- 
binomial variable for the i � th observation, and Aij is 
a binary 0/1 variable with the following distribution: 

PðAij ¼ 1Þ ¼
r

r þ j � 1
; (28) 

where r ¼ 1=α. If the dispersion parameter is given the con
jugate Inverse-Gamma prior IGða; bÞ, the conditional distribu
tion of α given all model parameters and data, including the 
above augmented variable A, is the following Inverse-Gamma 
distribution: 

½αj��,IGða þ A; b �
Xn

i¼1
logðpiÞÞ (29) 

where pi is the probability given in equation (18) computed for 
the i � th observation.

For the NB-2 parameterization, the estimation is slightly 
more complex. The data augmentation for the variable A 
remains the same. However, the probability pi computed in 
(16) for the NB-2 parameterization clearly contains the value of 
α. Thus, the above explicit conditional distribution computa
tion breaks down. The RHS in equation (29) should not con
tain α. To work around this problem, we internally use αPG as 
the model parameter instead of αNB2. If αPG is the model 
parameter, then pi no longer contains α and is simply com
puted from the rest of the model parameters. This internal 
reparameterization, however, implies certain limitations on 
the structural model that can be estimated with the CRT dis
persion updating and the NB-2 parameterization. Here we list 
these limitations. The intercept in the negative-binomial 
regression cannot be a fixed parameter since that parameter 

is needed for the internal reparameterization. The intercept in 
the negative-binomial regression cannot be held equal to other 
parameters because that kind of equality constraint will not 
hold in the internal reparameterization. The intercept in the 
negative-binomial regression cannot have an informative prior 
as that will also break down in the internal reparameterization.

When these model limitations apply, we use a different 
updating procedure for the dispersion parameter. Namely, we 
use the Metropolis-Hastings (MH) method, also discussed in 
Neelon (2019). The Mplus implementation of the MH method 
is as follows. At each MCMC iteration, a random deviate ε is 
drawn from the normal distribution Nð0; v0Þ. If the current 
dispersion parameter is α, the proposal dispersion parameter 
α� is computed as follows: 

α� ¼ αExpðεÞ: (30) 

The proposal parameter is then accepted with probability 

minð1;
P0ðα�Þ

Qn
i¼1 PðYijα�Þ

P0ðαÞ
Qn

i¼1 PðYijαÞ
Þ; (31) 

where P0 is the prior density function for the dispersion para
meter, n is the sample size, Yi is the i � th observed value and 
PðYijαÞ and PðYijα�Þ are computed using (9) and (16).

The initial value for the proposal variance v0 is set to 0.01 
and it is adjusted every 50 iterations to maintain approximate 
rate of acceptance of the new parameters around 50%. This 
variance can be adjusted only in the burnin period which by 
default is set to the first 1000 MCMC iterations. The proposal 
variance v0 does not change beyond the burnin period to 
preserve the validity of the MH method. Subsequently, more 
iterations are conducted to achieve convergence and to obtain 
the posterior distribution of the parameters. In addition, the 
first 50 iterations in this process are computed using the con
jugate CRT method discussed above, which tends to give good 
starting values for the estimation.

The MH method can be used for any model estimation; 
however, the conjugate CRT method yields a more efficient 
mixing approach. In the CRT method, every MCMC iteration 
provides a new draw from the posterior distribution of the 
dispersion parameter. In contrast, the MH method provides 
a new draw every other iteration on average. Thus, Mplus uses 
the CRT method, unless the model includes intercept con
straints, as discussed above, in which case we use the less 
efficient MH method.

Model extensions
In some practical applications, count data may contain an 
excessive amount of 0 values. In such cases, it is desirable to 
model the 0 category separately from the count distribution. 
One such simple approach is described in Kang et al. (2020) 
and is based on two-part modeling. A count variable Y with 
an excessive amount of zeros can be modeled as a set of two 
variables: a 0/1 binary variable U which serves as an indi
cator for when Y is positive, and a count variable 
Y0 ¼ Y � 1, which can be modeled as a Poisson or 
a negative-binomial variable. When Y ¼ 0, the binary vari
able U ¼ 0 and the count variable Y0 is missing. When Y > 0, 
the binary variable U ¼ 1 and the count variable 
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Y0 ¼ Y � 1. This modeling approach allows the 0 category 
to be modeled independently from the rest of the count 
categories and that includes a separate probit or logit regres
sion for the binary variable U. The Bayesian framework 
described above can be used for this two-part modeling 
approach.

Several alternative models are implemented in Mplus with 
the maximum-likelihood estimation such as the negative bino
mial hurdle model, the zero-inflated Poisson model and the 
zero-inflated negative-binomial model, see Hilbe (2011). These 
models are currently not implemented in Mplus with the 
Bayesian estimation, however, the PG methodology can be 
used for the zero-inflated models as well, see Neelon (2019).

Nominal regression

Suppose that a nominal variable Y takes k unordered values 
and that X is a vector of predictors. The nominal regression 
model is described by the following equation: 

PðY ¼ jÞ ¼
ExpðβjXÞ

Pk
i¼1 ExpðβiXÞ

; (32) 

where for identification purposes βk ¼ 0 and βj for j ¼
1; . . . ; k � 1 are vectors of regression parameters. If k ¼ 2, 
the nominal regression model is the same as the logistic regres
sion model for a binary variable. The Bayesian estimation of 
the nominal regression parameters can be obtained by estimat
ing the regression parameters for a sequence of k � 1 binary 
logistic regressions. To estimate β1, we form a new binary 
variable 

Z ¼ 1; if Y ¼ 1
0; if Y > 1

�

: (33) 

Given (32), we get that 

PðZ ¼ 0Þ ¼
1

1þ Expðβ1X þ AÞ
(34) 

where 

A ¼ � logð
Xk

i¼2
ExpðβiXÞÞ (35) 

does not depend on β1. Equation ((34)) is a binary logistic 
regression for Z and can be estimated with the PG method, i.e. 
we can obtain the conditional distribution of ½β1jβ2; . . . ; βk� 1�

needed in the Gibbs sampler. Similarly, we can obtain the 
conditional distribution ½β2jβ1; β3 . . . ; βk� 1� by forming a new 
binary variable and logistic regression based on the second 
category of the nominal variable. The process is repeated k �
1 times.

The above estimation method does not allow for the simul
taneous estimation of β1, β2, . . ., βk� 1. Therefore the Bayesian 
estimation method cannot accommodate constraints that 
involve all of the nominal regression parameters. In general, 
this appears to be a minor limitation. Equality constraints 
modeling among the nominal regression parameters is rare. 
However, the limitation is important in the general SEM 
model. Two situations in particular are hindered by the 

sequential estimation of the model parameters. The first one 
is when one of the predictors has missing values. The second 
situation is when one of the predictors is a continuous latent 
variable. To update the latent variable (or equivalently the 
missing predictor), the regression parameters and the predic
tors switch roles. The regression parameters become the pre
dictors and the predictors are estimated as regression 
parameters that are equal across the categories. The situation 
creates equality constraints across the regression parameters 
because the predictor is the same in all categories. This pro
blem must be resolved with a different method. The MH 
method can be utilized here as well. Consider the updating of 
a latent variable η which is a predictor for a set of nominal 
variable Y1; . . . ;Ym. First we compute the conditional distribu
tion of η given all other variables except the nominal variables. 
This can be computed as in Asparouhov and Muthén (2010a) 
and the result is a normal distribution with mean μ and var
iance σ2. If the current value of the latent variable is repre
sented by η, the new proposal value η� is computed as 

η� ¼ ηþ ε (36) 

where ε is drawn from a normal distribution Nð0; v0Þ. The 
proposal value is accepted with probability 

minð1;Expðððη � μÞ2 � ðη� � μÞ2Þ=ð2σ2ÞÞ

Qm
i¼1 PðYijη�Þ
Qm

i¼1 PðYijηÞ
Þ:

(37) 

Here, the Nðμ; σ2Þ distribution essentially takes the role of the 
prior. The probabilities PðYijη�Þ and PðYijηÞ are computed as 
in (32). The same proposal distribution variance v0 is used for 
all observations in the sample. That variance is adjusted in 
every MCMC iteration during the burnin phase to maintain 
a rejection/acceptance ratio near 50% across the entire 
population.

The second situation where the MH method is needed is the 
case when a normally distributed predictor of nominal vari
ables has missing values. The computation in that case is 
similar.

Note here that the MH method is not needed when the 
nominal variable is binary. The problem with equalities across 
the categories occurs only for nominal variables with more 
than two categories. In the Mplus implementation it is best to 
specify a binary nominal variable as a logit binary. This way the 
more efficient estimation with the explicit conditional distribu
tions is utilized.

Missing data

There are two distinct types of missing data that must be 
addressed. Missing data on the dependent nominal/count/ 
logit variables and missing data for predictors of nominal/ 
count/logit variables.

First we consider the missing data on the dependent 
variables. There are two different variations in the 
Bayesian estimation. In the first approach, the missing data 
is imputed within each MCMC iteration from the current 
model estimates. Thereafter, the imputed values are used the 
same way as the observed values and are essentially used to 
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update model parameters, missing data, etc. The second 
approach, which is equivalent to the first approach, does 
not impute missing values. Instead when a quantity must be 
updated conditional on the dependent variable, we only 
condition on the actual observed values. The first approach 
has the advantage of somewhat simpler computations and it 
also provides imputed values for the missing dependent 
variables if such are needed. The second approach has the 
advantage that it mixes more efficiently as it has fewer 
unknown quantities to update and is computationally faster. 
Mplus implements the second approach. When multiple 
imputations are requested, however, the values are imputed 
as in the first approach but those values are not used in the 
estimation.

In the current Mplus 8.5 implementation, missing values of 
predictors of nominal/count/logit variables are allowed when 
the predictor is normally distributed. The estimation in the 
nominal cases was discussed earlier. The estimation for the 
count and logit case is as follows. From the observed count or 
logit value Y , we generate the underlying variable Y�, using the 
current imputed values for the missing predictors. The missing 
predictor for Y is a missing predictor for Y�. In that case, the 
conditional distribution for the missing predictor (conditional 
on Y�) is obtained from the multivariate normal distribution 
(for Y� and the missing predictor) and is an explicit normal 
distribution. The missing predictor is updated from this con
ditional normal distribution.

Mixture modeling

In Asparouhov and Muthén (2010a), three different Bayesian 
estimation methods are described for mixture models. The 
methods differ in how the latent class variable is updated: as 
a separate group, together with the latent continuous variables, 
or together with the underlying continuous variables when the 
model includes categorical variables. All three approaches 
extend naturally to the nominal/count/logit variables because 
of the construction of the underlying latent variables described 
above. Not all methods are available for all models and not all 
methods are equally efficient. Mplus automatically selects the 
most efficient among the available methods, although it is 
possible for a specific method to be requested for a particular 
estimation via the ANALYSIS option CGENERATION.

Priors

In this section we discuss the choice of priors for the model 
parameters as well as the default settings in Mplus. For all 
regression parameters we use normal priors which are the 
conjugate priors for the above computation. The dispersion 
parameter prior is the inverse gamma prior which is also 
a conjugate prior. The default prior for the negative-binomial 
regression parameters is the improper and uninformative prior 
Nð0;1Þ. For the logit and nominal regression parameters, the 
default prior is set to the weakly informative prior Nð0; 5Þ. This 
weakly informative prior prevents estimation problems that 
sometimes occur when there is a categorical predictor and 
the contingency table of the dependent variable and the 

predictor contains empty cells. The weakly informative prior 
is also in line with the default priors used in Mplus for the 
probit regression parameters. The default prior for the disper
sion parameter is IGð� 1; 0Þ, which is an improper and unin
formative prior with a constant density function over the 
interval ð0;1Þ.

Model fit

At this time model fit tools are fairly limited in Mplus 8.5. 
Significance of parameters can be evaluated through the cred
ibility intervals and hypothesis involving multiple parameters 
can be evaluated via the Bayesian Wald test implemented in 
Mplus MODEL TEST, see Asparouhov and Muthén (2020b). 
For a pair of nested models, the significance of the additional 
parameters in the more general model can be evaluated with 
the Bayesian Wald test. Model estimated distribution tables are 
also computed in Mplus and can be obtained with the 
RESIDUAL option of the OUTPUT command. These distribu
tion tables can be compared to the observed distribution tables 
to evaluate fit.

The general model – SEM, multilevel, and mixture models

In this section, we described the general model implemented in 
the Bayesian framework of Mplus and show how nominal/ 
count/logit variables are incorporated in that model.

We begin with the single level SEM model. Let Y be a vector 
of p observed continuous dependent variables, η be a vector of 
m latent variables, and X be a vector of q independent observed 
variables. The structural equation model for these variables is 
given by the following equations 

Y ¼ νþ Ληþ KX þ ε (38) 

η ¼ αþ Bηþ ΓX þ ζ: (39) 

To include categorical variables via the probit link function in 
the above model, we construct the underlying continuous 
variable as usual. For each categorical variable Yj in the 
model, taking the values from 1 to k, we assume that there is 
a normally distributed latent variable Y�j and threshold para
meters τ1j; . . . ; τk� 1j such that 

Yj ¼ t , τt� 1j � Y�j < τtj; (40) 

where τ0j ¼ � 1 and τkj ¼ 1. This construction converts 
a categorical variable Yj into an unobserved continuous variable 
Y�j . To include categorical variables in the above SEM model, we 
use Y�j in (38) instead of Yj. For identification purposes the 
residual variance of Y�j is fixed to 1. This model represents the 
Bayesian SEM model implemented in Mplus Version 8.4.

Next we describe the inclusion of the nominal/count/logit 
variables in the model. Suppose that N is a nominal variable 
taking values from 1; . . . ; k. The SEM model extend to the 
nominal variable as follows 

PðN ¼ jÞ ¼
ExpðνN;j þ βN;jY þ ΛN;jηþ ΓN;jXÞ

Pk
i¼1 ExpðνN;i þ βN;iY þ ΛN;iηþ ΓN;iXÞ

; (41) 
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where for identification purposes the parameters 
νN;j; βN;j;ΛN;j; ΓN;j are fixed to 0 if j ¼ k.

The model for a binary logistic link variable L is a special 
case of the nominal variable model (k ¼ 2) and reduces 
down to 

PðL ¼ 1Þ ¼
1

1þ ExpðνL þ βLY þ ΛLηþ ΓLXÞ
: (42) 

The general SEM model extends to a negative-binomial vari
able P as follows. The distribution of P is as in equation (9) 
where 

p ¼
1

1þ αExpðνP þ βPY þ ΛPηþ ΓPXÞ
(43) 

if the variable is based on the NB-2 parameterization and 

p ¼
1

1þ ExpðνP þ βPY þ ΛPηþ ΓPXÞ
(44) 

if the variable is based on the PG parameterization.
Note that in the above model the nominal/count/logit vari

ables do not have residual correlations the way continuous 
(observed and latent) and Probit-categorical variables do, i.e., 
through the covariances of ε and ζ. The main way to model 
nonindependence between such variables is through their 
common predictors. In particular, using common latent vari
ables in the model leads to conditional nonindependence the 
same way residual correlations do. Note also that the model as 
specified above does not allow for the nominal/count/logit 
variables to be mediators, i.e. predictors for another variable 
in the model. This to some extent can also be remedied by 
specifying a latent continuous variable behind the variable and 
then the latent continuous variable can be used as a proxy 
mediator. Such an approach is often used with continuous 
observed variables where in addition, the residual variance is 
fixed to zero so that the continuous observed variable becomes 
identical to the latent variable. With nominal/count/logit vari
ables, we cannot fix the “residual” to zero as such a residual 
does not exist. Therefore a latent variable proxy is equivalent to 
a latent factor measured by a single observed variable, which is 
usually an unidentified model. Further model restrictions must 
be devised to resolve this problem. Note also that the under
lying continuous variable for nominal/count/logit variables is 
not in the model. This is in contrast to the Probit-categorical 
variables where the underlying continous variable can be used 
as a predictor for other variables. The underlying continuous 
variable for nominal/count/logit variables is simply a tool that 
is used in the Bayesian estimation, but it bares no special 
meaning or interpretation in the actual SEM model.

Multilevel and mixture model extensions
The extension of the SEM model to a two-level model is done 
as usual. Every regression or intercept parameter can be 
a cluster specific normally distributed random effect. On the 
between level, all random effects can be regressed on each other 
and other variables or be correlated with each other. The 
extension of the SEM model to a general mixture model is 

also done as usual. A latent categorical variable C is included in 
the model and every model parameter can be class-specific, i.e., 
the SEM model is different for every latent class. The latent 
class variable is treated as a nominal variable and can be 
regressed on other variables. If k is the number of classes in 
the model, the latent class distribution is given by 

PðC ¼ jjXÞ ¼
ExpðνC;j þ ΓC;jXÞ

Pk
i¼1 ExpðνC;i þ ΓC;iXÞ

: (45) 

Further discussion on the multilevel and mixture model exten
sions is available in Asparouhov and Muthén (2010a) and 
Asparouhov and Muthén (2019).

Examples

In this section we illustrate the Bayesian estimation with sev
eral simulation studies. All of the Mplus scripts used for these 
analyses for are available online.1

Logistic latent growth model

A quadratic logistic growth model is given by the following 
equation 

PðYt ¼ 1Þ ¼
1

1þ Expðiþ st þ qt2Þ
; (46) 

where i, s and q are normally distributed random effects 
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We generate 8 equally spaced binary observations at times t, 
starting at −1.4 and ending at 1.4. In practical applications, the 
times of observations are often set to integer values. With eight 
observations the times can be set to 0,1, . . ., 7 or 1,2, . . ., 8. 
Using such alternative time scores yields equivalent models, 
however, there are certain implications that concern the 
Bayesian estimation. If the values of t are larger such as 7 or 
8 (as compared to 1.4), the value of t2 will be as large as 49 or 
64. This leads to a dramatic reduction in the scale of the 
quadratic term q and the variances of q could become very 
small. The implications of that are twofold. First, the small 
variance of q may lead to slow convergence, worse mixing 
and larger model parameter autocorrelations across the 
MCMC iterations. Second, the quadratic effect may erro
neously be deemed to be substantively minor. It is preferable 
to have the time scale be set so that the times of observations 
are approximately on a standard normal scale. With our choice 
of time scale, the mean of the time scores is 0 and the variance 
is 0.96, i.e. approximately standardized.

We conduct the simulation study using 100 replications for 
several different sample sizes N ¼ 100; 200; 500; 1000. The 
results are presented in Table 1. Most parameters estimates 
appear to be unbiased and the coverage is near the nominal 
levels. For smaller sample sizes, however, the variance of the 

1http://statmodel.com/download/lcn.zip.
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quadratic random effect has some bias. This bias occurs also 
with the ML estimator. For optimal performance, the model 
needs medium or higher sample sizes. For small sample sizes, 
the results should be interpreted cautiously. A more thorough 
simulation study would involve varying the number of time 
points in the growth model. Having fewer time points would 
likely require even bigger sample sizes. Note also that the 
sample size requirements depend on the growth curve. 
A linear growth model would require less time points and 
smaller sample sizes than a quadratic curve model.

The above model can be estimated in two other completely 
different ways. First, the model can be estimated using the 
probit link function and then the mean parameter estimates 
can be multiplied by D ¼ 1:749 while the variance covariance 
estimates are multiplied by D2. The value of D is chosen as in 
Camilli (2017). This approach provides an approximation to 
the logistic growth model and is based on the fact that the logit 
and the probit distribution functions are quite similar. In most 
applications, this approximation works sufficiently well. The 
advantage of the probit-based model estimation is that it is 
faster when using Bayesian methods.

The second estimation alternative is the multilevel 
approach. The above model can be estimated as a two-level 
model where each cluster has eight observations while t and t2 

are treated as predictors for the binary variable. In this setup, s 
and q are simply the random coefficients for the predictors 
while i is the random intercept. In the Mplus language the 
variable i is also the between part of the binary variable.

To illustrate these alternative methods, we generate one data 
set using the above model with sample size N ¼ 2000 and we 
estimate the model using the three different approaches. The 
results are reported in Table 2. All three approaches use 
Bayesian estimation and some of the small variation in the 
results can be attributed to randomization. We used 10,000 
MCMC iterations in this estimation to ensure that such varia
tion is minimal. The logit growth model and the two-level logit 

model yield almost identical results as expected because the 
two models are the same. The probit growth model also yields 
similar results but some larger differences are visible in the 
estimates of the variances of the random effects.

Multilevel IRT

Multilevel IRT models have been discussed in Fox (2010), 
Asparouhov and Muthén (2016), and Muthén and 
Asparouhov (2018). With the Bayesian implementation of the 
logit link for binary variables, we can now estimate these 
models in the logit scale, instead of probit, which is tradition
ally used with the IRT models.

Consider the IRT model where P binary items measure 
a single latent variable. Observations are nested within groups, 
such as countries or regions, and all IRT model parameters are 
allowed to vary across the groups. This setup can be viewed as 
multiple-group IRT model or as multilevel IRT model. In 
multiple-group IRT models, the group specific parameters are 
treated as fixed, i.e., nonrandom parameters. In a multilevel 
IRT model, the parameters are treated as group specific ran
dom effects. Suppose that Ypij is the p-th binary item for 
individual i in cluster or group j. The multilevel IRT model is 
given by the following equations: 

PðYpij ¼ 1Þ ¼
1

1þ Expðτpj � λpjηijÞ
(48) 

ηij ¼ ηwij þ ηbj (49) 

ηwij,Nð0; ExpðψjÞÞ (50) 

ψj,Nð0;ψwÞ (51) 

ηbj,Nð0;ψbÞ (52) 

τpj,Nðτp; vpÞ (53) 

λpj,Nðλp;wpÞ: (54) 

The difficulty parameter τpj varies across clusters and its mean 
across all the groups is the average difficulty parameter τp. The 
discrimination parameter λpj varies across clusters and its 
mean across all the groups is the average difficulty discrimina
tion λp. The factor mean in group j is ηbj, i.e., we can estimate 
a group specific factor mean. Also ηwij ¼ ηij � ηbj is the indi
vidual-specific factor deviation from the group specific mean 
ηbj. The factor variance in group j is ExpðψjÞ, i.e., we can 
estimate a group specific factor variance through the random 
effects ψj ¼ logðVarðηwijjjÞÞ. In a standard IRT model, the 
factor mean is fixed to 0 and the factor variance is fixed to 1 
for identification purposes. These identification restrictions are 
now replaced by fixing the mean of the random effect ηbj to 0 
and by fixing the mean of the random effect ψj to 0, respec
tively. The above model is able to estimate group specific factor 
mean and variance without having to assume metric or scalar 

Table 1. Quadratic logistic growth model: absolute bias(coverage).

Parameter True Value N = 100 N = 200 N = 500 N = 1000

μ1 −.3 .00(.95) .00(.96) .00(.99) .00(.98)
μ2 .2 .01(.97) .00(.99) .00(.93) .00(.95)
μ3 .25 .00(.93) .00(.95) .00(.94) .00(.95)
σ11 .5 .01(.98) .00(.98) .01(.94) .00(.98)
σ12 .1 .02(.92) .00(.95) .01(.93) .01(.93)
σ13 .05 .02(.98) .02(.99) .00(.98) .00(.92)
σ22 .3 .08(.96) .05(.95) .01(.95) .00(.96)
σ23 .05 .01(1.00) .01(1.00) .01(.95) .00(.95)
σ33 .2 .14(.96) .10(.93) .04(.94) .02(.91)

Table 2. Alternative estimation for quadratic logistic growth model: estimate 
(standard error).

Parameter True Value Logit Growth Two-level Logit Probit Growth

μ1 −.3 −.31(.03) −.31(.03) −.34(.03)
μ2 .2 .15(.02) .15(.02) .16(.03)
μ3 .25 .23(.03) .23(.03) .24(.03)
σ11 .5 .48(.07) .48(.07) .60(.07)
σ12 .1 .09(.03) .09(.03) .10(.04)
σ13 .05 .08(.04) .07(.04) .04(.04)
σ22 .3 .27(.04) .28(.04) .34(.04)
σ23 .05 .01(.03) .01(.04) .01(.04)
σ33 .2 .19(.05) .20(.05) .27(.05)
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measurement invariance. The model has 4P þ 2 parameters: 
τp, λp, vp, wp, for p ¼ 1; . . . ; P as well as ψw and ψb. The 
number of random effects in the model is 2P+2, which are 
given in equations (51–54).

We conduct a simulation study to illustrate the quality of 
the Bayesian estimation using the following parameter values 
τp ¼ :3, λp ¼ 1:4, vp ¼ wp ¼ ψw ¼ ψb ¼ 0:1. Using P ¼ 8 
indicators, we generate 100 samples with 200 groups of size 
30. The results of the simulation study for some of the para
meters are reported in Table 3 and show minimal bias and 
coverage near the nominal level.

In practical applications, the above model should be fol
lowed up by further analysis. Random effects with insignificant 
variance estimates should be eliminated from the model. If the 
credibility interval of the variance of a random effect is very 
close to zero, it should be considered insignificant and the 
random effect should be replaced by a nonrandom group 
invariant parameter. The reduced model flexibility will actually 
improve the accuracy for all other model parameters.

It is important to note here that all the parameters in the 
above model are between level parameters. This implies that 
the sample size used in the estimation of the parameters is the 
number of groups. With very few groups, this model would not 
be feasible. For example, with less than 30 groups, the model 
would be difficult to estimate and even if it is possible to 
estimate it, the random effect variance estimates would depend 
on the priors. In addition, the standard errors are likely to be 
large and most if not all random effect variances would not be 
significant. When the number of groups is small, the alignment 
methodology described in Asparouhov and Muthén (2014b) 
can accomplish the same multiple group flexibility without 
relying on random effects.

Alternatively, with a small number of groups, one can 
pursue somewhat less-flexible multilevel IRT models along 
the line of traditional multilevel SEM models. One such for
mulation is as follows 

PðYpij ¼ 1Þ ¼
1

1þ Expðτpj � λwpηwij � λbpηbjÞ
(55) 

ηwij,Nð0; 1Þ (56) 

ηbj,Nð0; 1Þ (57) 

τpj,Nðτp; vpÞ: (58) 

This model does not include random loadings and random 
factor variances. The between factor ηbj can be interpreted as 
a cluster specific mean but only if the between and within level 
loadings are proportional. More specifically, if λbp ¼ sλwp for 

a proportionality scale parameter s, then 
λwpηwij þ λbpηbj ¼ λwpðηwij þ sηbjÞ. The last expression allows 
us to interpret sηbj as the cluster specific factor mean. The 
proportionality of the loadings can be tested with MODEL 
TEST in Mplus. If the proportionality is rejected, allowing for 
different within and between level loadings becomes an advan
tage over the multilevel IRT model given in (48–54).

Next we conduct a simulation study to evaluate the perfor
mance of model (55–58) for small samples. We use the follow
ing parameter values for this simulation study λwp ¼ 1:4, 
λbp ¼ 0:5, τp ¼ 0:3 and vp ¼ 0:1. Again using P ¼ 8, we gen
erate 100 samples for several combinations of number of 
groups and group sizes. In this simulation study, we also 
illustrate the effect of weakly informative priors for the random 
effect variance parameters vp. The Mplus default prior is the 
improper prior with density function of 1 on the interval from 
0 to infinity, which is specified as IGð� 1; 0Þ. As an alternative, 
we also estimate the model using two different weakly infor
mative priors for vp. The first prior is IGð3; :4Þ, which has 
a mode at the true value of .1 and standard deviation of 0.2. 
The second prior is IG(3,1), which has a mode at 0.25 and 
standard deviation of 0.5.

The results of the simulation study for some of the para
meters are reported in Table 4. Some bias can be found in the 
estimates and the bias generally appears to decrease depending 
on how the sample size is increased. If we increase the groups 
sizes, the within level loadings improve. If we increase the 
number of groups, the between level loadings improve. If 
the number of group increases, the bias will disappear even if 
the group sizes stay small. Such a result is in line with asymp
totic theory, which guarantees unbiased model estimates as the 
number of groups increases, regardless of the size of the 
groups.

The weakly informative prior has a fairly substantial effect 
on the random effect variance parameter estimates for the 
sample with 40 groups. The results illustrate that the estimates 
can be improved with such priors. However, if the prior is not 
set well, the bias can actually become worse. This is exactly 
what happened with the IGð3; 1Þ prior. The effect of the prior is 
intuitively easy to understand. If the noninformative prior 
yields a posterior distribution with standard deviation of 0.2 
and we add a weakly informative prior with the same standard 
deviation, the estimate of the variance would then become 
approximately the average of the noninformative prior esti
mate and the median of the weakly informative prior. The 
underlying issue here is that little information is extracted 
from the data regarding the variance of the random threshold. 
Large standard errors for these parameters, relative to the size 
of the variance, essentially results in nonsignificant variance 

Table 3. Two-level IRT.

Parameter Absolute bias(Coverage)

τ1 .01(.92)
λ1 .03(.92)
v1 .01(.96)
w1 .00(.95)
ψw .01(.93)
ψb .00(.95)

Table 4. Two-level IRT, multilevel SEM style: Absolute bias (Coverage).

Groups 40 40 40 40 80 200

Group sizes 15 15 15 30 15 15
vp priors – IG(3,0.4) IG(3,1) – – -
τ1 .01(.98) .00(.96) .01(.99) .02(.98) .00(.95) .00(.96)
λw1 .09(.93) .08(.93) .10(.91) .02(.97) .06(.94) .02(.94)
λb1 .01(.98) .03(.94) .01(.96) .04(.98) .02(.93) .01(.96)
v1 .10(.94) .04(1.00) .15(.07) .04(.96) .05(.92) .02(.92)

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 631



parameters. In fact, in the particular setting of the first column 
of Table 4, if we fix the vp parameters to zero, we get the same 
estimates for the remaining parameters. This also confirms that 
at this sample size and level of threshold noninvariance, the 
random effects τpj are not essential.

Next, we consider an even simpler multilevel IRT model. In 
this model the thresholds and the loadings are group invariant 
as well a the factor variance. Only the factor mean is allowed to 
vary across groups. The model is described as follows 

PðYpij ¼ 1Þ ¼
1

1þ Expðτp � λpηijÞ
(59) 

ηij ¼ ηwij þ ηbj (60) 

ηwij,Nð0; 1Þ (61) 

ηbj,Nð0; vÞ: (62) 

Because of its simplicity, the model can be estimated with very 
small samples fairly well. Using the earlier setup with P ¼ 8, 
τp ¼ 0:3, λp ¼ 1:4, and v ¼ 0:2, we conduct a simulation study 
with varying number of groups and group sizes across 100 
replications. The results for some of the parameters are 
reported in Table 5.

Multilevel autoregressive model for count data

Polson et al. (2013) describe an autoregressive model for count 
data. The model is based on single time-series data using the 
PG negative-binomial parameterization. Here we describe 
a multilevel version for that model where the data consists of 
multiple time-series count data for a group of individuals 
observed across time. We use the NB-2 and Poisson parame
terizations for this illustration.

Suppose that Yit is a count observation for individual i at 
time t. We consider the following autoregressive model: 

Yit,NB2ðνi þ ηit; αÞ (63) 

νi,Nðν; v1Þ (64) 

ηit ¼ ρηi;t� 1 þ εit; for t ¼ 2; . . . ;T (65) 

εit,Nð0; v2Þ: (66) 

The model has a total of five parameters: ν, ρ, α, v1, and v2, and 
can be viewed as an adaptation of the DSEM methodology 
described in Asparouhov et al. (2017) to count data. The main 

attribute of this modeling approach is the ability to separates the 
correlation due to observations nested within person (modeled 
via parameter v2) from the correlation that is due to observations 
taken in proximity of time (modeled via parameter ρ).

To evaluate the performance of the Bayesian estimation, we 
generate and analyze 100 data sets with N ¼ 500 individuals and 
T ¼ 10 observations. The results of the simulation study are 
reported in Table 6 and show that the estimator performs well.

The autoregressive coefficient in this model is time invar
iant. It is possible to estimate a model with time-specific auto
correlation coefficients, however, such a model is somewhat 
poorly identified and it is not recommended. The model is 
estimated in Mplus as a single level multivariate model. Full 
DSEM model flexibility as in Asparouhov et al. (2017) is 
currently not implemented. This has two implications. First, 
models with T > 50 are going to be very slow to estimate. 
Second, the autocorrelation coefficient ρ cannot be subject 
specific. The above model also does not perform very well 
with smaller values of T. Using T ¼ 5 for example, yields larger 
biases and lower coverage.

In practical applications, especially when T is not large, it is 
recommended that an additional parameter is estimated for the 
variance of the initial starting value ηi;1. Assuming a stationary 
time-series model for ηi;t , the variance Varðηi;tÞ ¼ v2=ð1 � ρ2Þ. 
At the first time point, however, ηi;1 is not predicted by another 
variable and thus the residual variance for εi1 should be set to 
v2=ð1 � ρ2Þ. This would involve a complex parameter constraint, 
however. A simpler alternative is to just estimate the first residual 
variance as a separate model parameter, i.e. constrain the residual 
variance of ηi;t to be time invariant only for times 2; . . . ;T.

The above model performs better with the Poisson distribu
tion instead of the negative-binomial distribution, particularly 
for smaller sample sizes. That is because the autoregressive 
model is imposed on the latent variables and the variances of 
the latent variables are somewhat confounded with the disper
sion parameters. Recall that a Poisson distribution where the 
mean parameter is a Gamma distributed random effect is 
a negative-binomial distribution, i.e. a random effect essentially 
introduces and models overdispersion. In the autoregressive 
model, the latent variables are primarily identified through the 
across-time correlations between the variables, i.e. the autore
gressive process is truly identified by the across time correlations 
rather than by fitting the overdispersion in the variables. When 
the time series is short (T is small), however, the autoregressive 
information is weak (due to small T the model has difficulty in 
distinguishing between correlation that is due to observations 
nested within person and due to observations taken in proximity 
of time2) and could become conflated with the overdispersion.

Table 5. Simple two-level IRT: Absolute bias (Coverage).

Groups 40 20 10

Group sizes 15 20 30
τ1 .02(.93) .01(.93) .03(.98)
λ1 .03(.92) .06(.92) .09(.91)
v .02(.98) .04(.93) .10(.90)

Table 6. Multilevel autoregressive model for count data, N = 500, T = 10.

Parameter True Value Absolute bias(Coverage)

ν .3 .01(.92)
ρ .5 .01(.87)
α .4 .02(.88)
v1 .2 .00(.93)
v2 .3 .02(.87)

2If T ¼ 2, there is only one correlation CorrðYi1; Yi2Þ which cannot identify both v2 and ρ. If T ¼ 3, the model implied correlation based on v2 is only marginally different 
from the model implied correlation based on ρ and to distinguish between the two a large sample size N is needed.
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To illustrate this point we conduct a simulation study with 
T ¼ 5 and N ¼ 100 for auto-regressive Poisson model and 
autoregressive negative-binomial model. The autoregressive 
Poisson model is described as the autoregressive negative- 
binomial model given above with α ¼ 0, i.e., 

Yit,Poðνi þ ηitÞ (67) 

νi,Nðν; v1Þ (68) 

ηit ¼ ρηi;t� 1 þ εit; for t ¼ 2; . . . ;T (69) 

εit,Nð0; v2Þ: (70) 

We generate 100 replications for each of the two distribution 
types and analyze the data with the same distribution type. The 
results of the simulation study are reported in Table 7. The 
Bayesian estimation for the Poisson autoregressive model per
forms well, while for the negative-binomial it does not. For 
small T, the Poisson autoregressive model is a well identified 
model that can be used in practice. The negative-binomial 
model for small T is somewhat poorly identified and cannot 
be recommended for practical applications. In the negative- 
binomial model, the dispersion parameter estimates are close 
to 0. This implies that the Poisson autoregressive model pro
vides sufficient fit for the data even when it is generated by the 
negative-binomial autoregressive model when T is small.

The above model can be incorporated into a cross-lagged 
panel model (RI-CLPM) as in Hamaker et al. (2015). In parti
cular, having a second time series, for example, with contin
uous items, could actually improve the identifiability of the 
model. That is because the cross-lagged relations can contri
bute to the measurement of the latent factors ηit used in the 
count time series.

Multilevel nominal regression

In this section we consider the nominal regression model in 
two-level settings. In particular, we illustrate the concepts of 
latent centering for the covariates, see Asparouhov and 
Muthén (2019), contextual effect, as well as random regression 
coefficients and intercepts.

Let Nij be a nominal variable for individual i in cluster j and 
Xij be the corresponding predictor. Let K be the number of 
unordered categories for the nominal variable. The two-level 
nominal regression model is given by the following equations: 

Xij ¼ Xw;ij þ Xb;j (71) 

Xw;ij,Nð0;ψwÞ (72) 

Xb;j,Nðμ;ψbÞ (73) 

PðYij ¼ kÞ ¼
Expðαjk þ βjkXw;ij þ γkXb;jÞ

PK
i¼1 Expðαjk þ βjkXw;ij þ γkXb;jÞ

(74) 

αjk,Nðαk; θkÞ (75) 

βjk,Nðβk; σkÞ: (76) 

The parameters αjK , βjK and γK are all fixed to zero for 
identification purposes. In this model, Xb;j is the mean of Xij 
in cluster j. This mean is an unobserved latent variable. In 
principle, it is possible to use the average of Xij in cluster j as 
the mean. However, it has been shown that such an approach 
yields biased estimates due to not accounting for the measure
ment error in that average, see Lüdtke et al. (2008), 
Asparouhov and Muthén (2006), and Asparouhov and 
Muthén (2019). The variable Xw;ij is the group centered cov
ariate. In the above model, the effect of the covariate has two 
separate effects: the effect of the cluster mean Xb;j as well as the 
effect of the group centered covariate Xw;ij. The difference 
between these two effects is called the contextual effect, see 
Lüdtke et al. (2008). If the covariate Xij is not decomposed as 
the centered portion and the centering portion, and is used 
directly in the nominal regression, we would estimate an 
“uninterpretable blend” between the two different effects, see 
Raudenbush and Bryk (2002). Since Xw;ij varies within cluster, 
we can estimate a cluster specific random effect βjk. Similarly, 
the intercept in the nominal regression can be estimated as 
a random effect αjk. The effect of Xb;j cannot be cluster specific. 
The model has a total of 2K � 1 random effects: αjk, βjk and 
Xb;j. Correlations between these random effects can be added to 
the above model with one exception. The correlation between 
αjk and Xb;j would not be identified because it is confounded 
with the parameters γk. If we want to estimate the correlation 
between these two random effects we must remove γk from the 
model, otherwise the model would not be identified.

We conduct a simulation study to evaluate the performance 
of the Bayesian estimation for the above model. Using K ¼ 3, 
we generate 100 samples with 200 groups of size 30. In this 
simulation study we include the parameter ρ ¼ Covðα1j; α2jÞ. 
The results, reported in Table 8, show that the bias is minimal 
and the coverage is near the nominal levels.

Model (71–76) has a large number of random effects and is 
expected to require a fairly large sample for optimal perfor
mance. For smaller samples, simpler two-level nominal regres
sion should be explored. One such model is the model where 
the random slope variance σk is fixed to 0, i.e. the random effect 
for Xw;ij is replaced by a nonrandom regression. We conduct 
a simulation study to evaluate the performance of the Bayesian 
estimation for that model using different number of clusters C 
and cluster sizes L. The results of this simulation are reported 
in Table 9. The bias is minimal and the coverage is near the 
nominal levels. Slightly larger bias is visible for the variance of 

Table 7. Multilevel autoregressive model for count data, N = 100, T = 5: Absolute 
bias (Coverage).

Parameter True Value Poisson Negative-binomial

ν .3 .00(.92) .14(.58)
ρ .5 .06(.94) .26(.65)
α .4 – .31(.44)
v1 .2 .02(.88) .03(.93)
v2 .3 .02(.90) .28(.50)
convergence rate 100% 72%
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the random intercept when the number of clusters is 100. As 
for other multilevel models with smaller number of clusters, 
weakly informative priors can be used to reduce that bias.

Nominal factor analysis

Revuelta et al. (2020) discusses factor analysis models where all 
the factor indicators are nominal variable. Such models can be 
estimated with the ML estimator using numerical integration 
as long as the number of factors is not large. Models with up to 
three factors can be estimated fairly well with the ML estima
tor. However, for models with more than three factors, the ML 
estimation will be very slow and will be prone to convergence 
problems. The Bayesian estimator can be used as an alternative 
to the ML estimator, because it will not be limited by the 
number of factors. In this section we evaluate the performance 
of the Bayesian estimator for such models and provide some 
insights into this fairly novel modeling technique.

Using nominal factor indicators, instead of ordinal, is 
necessary for those situations when the outcome cannot be 
regarded as ordinal. Nominal variables are also a useful 
modeling alternative when the proportional odds ratio, 
assumed with the ordinal logistic model, does not hold. 
The nominal model, however, has some drawbacks as well 
and it should not be used routinely instead of ordinal mod
els. One drawback is that the nominal model is less parsi
monious. Many more parameters will be estimated with the 
nominal model, and very likely, some loss of power will 
occur. A nominal model will likely require bigger sample 
size than an ordinal model. Currently, there is no simple 

statistical tool that can be used to determine whether 
a variable should be treated as ordinal or as nominal. This 
is particularly the case in factor analysis where the predictors 
is not observed and the proportionality of the odds ratio 
cannot be easily evaluated. Potentially, one can lean into the 
substantive interpretation of the indicator and assume that 
the substantive interpretation is the correct choice. Such an 
approach, however, has some limitations as well. First, the 
substantive interpretation can be ambiguous and both nom
inal and ordinal may be viable options. Second, the substan
tive interpretation does not necessarily have to match with 
the best statistical model. This issue is particularly acute for 
small samples, where lack of power is bound to interfere 
with an attempt to make a rigorous choice. The Bayesian 
estimation of the nominal factor analysis model has one 
advantage over the ML estimation in this regard. Plausible 
values can be imputed for the factor, which can subsequently 
be used to study the nominal vs. ordinal nature of the 
variable in separate analysis.

Another practical aspect in the nominal vs. ordinal dilemma 
is the fact that the categories can be ordered in L! different ways 
where L is the number of categories. This means that the 
comparison between the nominal model and ordinal model is 
essentially a comparison between the nominal model and L!

ordinal models. If the latent factor is imputed, log-likelihood 
comparison could potentially be used to guide an informed 
choice. Note, however, that if there is only one predictor for the 
categorical variable, the best ordering for the categories of the 
nominal variable is easy to obtain. Suppose that we have 
a nominal variable N regressed on a covariate X and the 
regression coefficients are β1, . . ., βL� 1, βL ¼ 0. To find the 
best ordering of the categories most suitable for an ordinal 
logistic regression of N on X, we have to order the categories so 
that the regression coefficients βi become a monotonic 
sequence. Increasing or decreasing sequence works equally 
well. This is because in a logistic regression with a positive 
coefficient, higher values of the predictor implies an increase in 
the likelihood for the higher values of the categorical variable. 
In the nominal regression, such a relationship between the 
categorical variable and the covariate exist only when the 
regression coefficients are monotonic. To be more specific, if 
a set of data is generated from a logistic regression and is then 
analyzed with a nominal regression, the regression coefficients 
will appear in a monotonic order. Conversely, if we have 
a categorical variable that is treated as nominal, and we con
sider the question of whether or not the variable can be treated 
as ordinal variable, the best fitting model would be obtained 
when the categories are ordered so that the nominal regression 
coefficients are monotonic.

In the presence of multiple covariates, if the same category 
ordering yields monotonic regression coefficients for every 
covariate, then clearly that ordering would be optimal. 
However, it is certainly possible that the nominal regression 
coefficients of one covariate yields ordering that is different 
from the ordering implied by another covariate. This could be 
a clear sign that ordinal regression is not appropriate. 
However, the ordering of the coefficients is subject to these 
coefficients standard errors and the mismatch in the ordering 
of the coefficients may not be statistically significant. In such 

Table 8. Two-level nominal regression.

Parameter True Value Absolute bias(Coverage)

α1 1 .01(.95)
α2 .5 .00(.95)
β1 .4 .01(.95)
β2 −.4 .01(.96)
γ1 .6 .01(.96)
γ2 .2 .01(.96)
θ1 .5 .05(.94)
θ2 .5 .05(.92)
σ1 .2 .02(.95)
σ2 .2 .01(.97)
ρ .2 .03(.97)
ψw 1 .00(.96)
ψb .3 .03(.86)
μ 0 .00(.96)

Table 9. Two-level nominal regression with non random slopes: Absolute bias 
(Coverage).

Parameter True Value C ¼ 100; L ¼ 15 C ¼ 200; L ¼ 20

α1 1 .02(.98) .01(.93)
α2 .5 .02(.94) .00(.95)
β1 .4 .01(.91) .00(.91)
β2 −.4 .00(.95) .00(.96)
γ1 .6 .01(.93) .04 (.96)
γ2 .2 .02(.97) .00(.92)
θ1 .5 .10(.96) .03(.91)
θ2 .5 .06(.96) .03(.94)
ρ .2 .04(.92) .02(.93)
ψw 1 .00(.95) .01(.95)
ψb .3 .01(.91) .01(.90)
μ 0 .01(.94) .01(.95)
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situations, comparing the log-likelihoods among the L! differ
ent ordinal logistic regressions may be necessary.

On the opposite spectrum of this discussion is the propor
tional odds assumption underlying the ordinal logistic model. 
Suppose that a categorical variable U is a measurement indi
cator for a factor η through an ordinal logistic regression. The 
model implies that 

logðPðU � jÞ=PðU > jÞÞ ¼ αj þ λη: (77) 

The proportional odds assumption refers to the fact that the 
coefficient λ is independent of j, i.e it is the same across all 
j ¼ 1; . . . ; L � 1, see Agresti (1990). If this assumption does 
not hold, the ordinal logistic measurement model should be 
replaced with a nominal measurement model.

Here we describe three different ways to test the propor
tional odds assumption for a latent variable η. The first method 
is as follows. Using the ML estimator, the factor analysis model 
is estimated as well as the factor scores. At this point, we can 
simply use Brant’s (1990) test for the proportional odds 
assumption. This will be obtained in Mplus by estimating the 
logistic regression of U on the factor score with the ML esti
mator. The drawback of this method is that the uncertainty/ 
measurement error in the factor score is not accounted for, 
which can result in underestimation of the p value in Brant’s 
test. It would be preferable, to impute the factor, and then use 
Brant’s test using the plausible values. However, currently 
Brant’s test is not available in Mplus for multiple imputed data.

The second and the third method we describe here can be 
used with multiple imputed data. To obtain plausible values for 
the factor, the factor model must be estimated with the 
Bayesian estimator, using the probit link function for all ordi
nal indicators. Currently, the logit link function is not available 
in the Mplus Bayesian framework for nonbinary variables and 
thus we must switch to the probit link function for those 
indicators. It is unlikely that such a switch will create estima
tion issues for the purpose of testing the proportional odds 
assumption. Given the plausible values for the factor, 
the second method proceeds as follows. We define L � 1 binary 
variables Wj for j ¼ 1; . . . L � 1 as follows 

Wj ¼
0; if U � j
1; if U > j:

�

(78) 

The next step involves simultaneously estimating the L � 1 
logistic regressions of Wj on the plausible values η, using the 
multiple imputed data for η and the ML estimator. In this 
estimation, we include Wald’s test for the hypothesis that all 
L � 1 regression coefficients are equal. For the validity of 
Wald’s test for multiple imputed data see Asparouhov and 
Muthén (2010b). The Wald’s test in Mplus is specified using 
the MODEL TEST command and is our second method for 
testing the proportional odds assumption.

The third method also uses the multiple imputed data for 
the factor and Wald’s test. For this method, we estimate the 
following nonproportional odds ratio logistic regression model 

PðU ¼ jÞ ¼
1

1þ Expð� τj þ βηÞ
�

1
1þ Expð� τj� 1 þ βηÞ

;

(79) 

where as usual τ0 ¼ � 1, τL ¼ 1. To make this model into 
a nonproportional odds ratio model, we introduce the follow
ing additional model constraints. For j ¼ 2; . . . ; L � 1 

τj ¼ αj þ βjη: (80) 

In the ML estimation of Mplus, such model constraints are 
introduced using the CONSTRAINT option of the VARIABLE 
command where η is specified. In addition, the parameters αj 
and βj are declared as NEW parameters in the MODEL 
CONSTRAINT command, where also equation (80) is speci
fied. Finally, the proportional odds ratio test is obtained using 
Wald’s test on the hypothesis that βj ¼ 0 for j ¼ 2; . . . ; L � 1.

Next we illustrate the Bayesian estimation of the nominal 
factor analysis model with a simulation study. The model we 
consider has four nominal variables N1; . . . ;N4 and a covariate 
X. The latent factor η is measured by the four indicators and is 
predicted by the covariate. Let Li denote the number of cate
gories for the nominal variable Ni. In this example, we set 
L1 ¼ L2 ¼ 3, L3 ¼ 2, and L4 ¼ 4. The model is described by 
the following equations: 

PðNi ¼ jÞ ¼
Expðαij þ λijηÞ

PLi
j¼1 Expðαij þ λijηÞ

(81) 

η ¼ βX þ ε: (82) 

For identification purposes, the intercept in (82) is fixed to zero 
and ε is assumed to have a standard normal distribution, i.e. the 
residual variance of the factor is fixed to 1. In addition, both αij 
and λij are fixed to 0 when j ¼ Li. We generate 100 data sets 
with sample size N = 1000 and N = 2000 and the following 
parameter values α11 ¼ :5, α12 ¼ � :5, α21 ¼ :7, α22 ¼ 0, 
α31 ¼ � 1, α41 ¼ :4, α42 ¼ � :2, α43 ¼ :2, λ11 ¼ 1, λ12 ¼ :7, 
λ21 ¼ :3, λ22 ¼ :5, λ31 ¼ � :5, λ41 ¼ :6, λ42 ¼ :3, λ43 ¼ � :5, 
β ¼ :4. The results for a subset of the parameters are reported 
in Table 10. Some small biases are visible for some of the 
loadings parameter in the N ¼ 1000 case and some rather 
large MSE values can be seen for those parameters. 
Increasing the sample size to N ¼ 2000 appears to resolve 
both. The reduction in the MSE is dramatic. This indicates 
that the Bayesian estimation of the nominal factor analysis 
model may need larger samples for optimal performance. In 
fact, the ML estimator appear to perform better for smaller 
sample sizes. With the alternative factor analysis parameteriza
tion, where a loading is fixed and the factor variance is esti
mated, the Bayesian estimation appears to perform even worse 

Table 10. Nominal factor analysis with 4 indicators: Absolute bias/Coverage/MSE.

Parameter N = 1000 N = 2000 N = 1000 + Z

α11 .01/.93/.01 .00/.94/.00 .00/.96/.01
α21 .01/.94/.01 .01/.90/.00 .00/.93/.01
α31 .00/.93/.01 .00/.95/.00 .01/.93/.01
α41 .00/.96/.02 .00/.93/.01 .01/.91/.01
λ11 .06/.92/.22 .01/.95/.03 .03/.91/.02
λ21 .00/.94/.02 .01/.93/.01 .00/.97/.01
λ31 .02/.94/.01 .00/.98/.01 .01/.94/.01
λ41 .08/.89/.15 .02/.91/.03 .00/.94/.02
β .03/.91/.01 .02/.93/.00 .00/.98/.00
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in terms of convergence rates, quality of mixing, as well as bias 
and MSE.

For comparison purposes, we also conduct the following 
simulation study. To the above model with 4 nominal indica
tors, we add one additional continuous factor indicator Z. We 
set the mean of the indicator to 0, the factor loading to 1 and 
the residual variance to 1. We generate and analyze 100 data 
sets with N ¼ 1000 observations. The results of this simulation 
study, also shown in Table 10, indicate that the biases in the 
parameters are resolved as well as the large MSE. The addi
tional continuous factor indicator appears to have stabilized 
the Bayesian estimation. This simulation study also suggests 
that a factor analysis that includes not just nominal indicators, 
but a mixture of different types of indicators, may be the most 
practical modeling approach, particularly when the sample 
sizes are small or moderate. In fact, the estimation of the 
nominal factor analysis can be improved by also adding ordinal 
indicators, i.e. indicators that help with measuring the latent 
factor but are less demanding than nominal variables in terms 
of the number of additional parameters that are to be esti
mated. This further emphasizes the need to improve our 
understanding of when a categorical variable should be speci
fied as nominal or as ordinal variable. The estimation is also 
improved by the presence of factor predictors, which in a way 
also improve the uncertainty in the measurement model.

The model estimation can also be improved by simply 
adding more nominal indicators. To illustrate this, we conduct 
a simulation study with 10 nominal indicators each with three 
categories, measuring 1 latent factor (and no covariates). We 
generate and analyze 100 samples with N ¼ 1000, 500 and 300 
observations, using the following parameter values: λi1 ¼ 1, 
λi2 ¼ 0:5 and αij ¼ 0. The results for a subset of the parameters 
are reported in Table 11. The bias is minimal and the coverage 
is near the nominal levels. Note, however, that in practical 
situations, some of the nominal indicators may carry very little 
information. If some of the categories are rare, the data will 
contain very little information about those category-specific 
parameters. In turn, those parameters will have large posterior 
distributions that likely will lead to slow convergence. To avoid 
such convergence issues it may be necessary to add stronger 
weakly informative priors for the problematic parameters. For 
example, the Mplus default prior of Nð0; 5Þ could be replaced 
by a prior of Nð0; 1Þ. Having indicators with rare categories 
will naturally lead to poor estimation for these category- 
specific parameters, however, this will not compromise the 
estimation of the rest of the model parameters.

Conclusion

The Bayesian estimation described here for structural, multi
level and mixture models with logit, count and nominal 

variables provides a valuable alternative to the ML estimation 
which is often limited by the number of latent variables that 
can be included in the model. Many models that are compu
tationally intractable with the ML estimation are now feasible 
with the Bayesian estimation. The methodology can be further 
combined with the BSEM technique described in Muthén and 
Asparouhov (2012) to enhance model fit and explore model 
modifications. The underlying latent variable technique facili
tated by the PG methodology has expanded our ability to 
structurally model these new types of variables.

Some questions and challenges remain and clearly there 
are many opportunities for further methodological research. 
In this article, the underlying latent variables Y� are treated 
only as an auxiliary estimation technique. Clearly, however, 
these variables contain information that could be used for 
model testing and modifications. Substantial residual correla
tions between Y� and other model variables would indicate 
the need for modeling such correlations via additional latent 
variables. Note, however, that the Y� correlations would not 
be identical to the model implied correlations obtained by the 
introduction of additional latent variables. The relationship 
between these two types of correlations must be explored 
further. The potential to include Y� correlations in the struc
tural model should not be ruled out completely as well, and it 
may be possible to do so in the future. Similarly, the question 
remain regarding how Y� can be included as a moderator in 
the structural model. Furthermore, a discrepancy between the 
model estimated variance covariance for Y� and the average 
sample variance covariance for Y� (across the MCMC itera
tions) can be interpreted as model deficiency or the lack of it 
as evidence for well fitting model. This could potentially lead 
to a posterior predictive p value model test evaluation similar 
to what is available for SEM models with continuous out
comes. Other model fit evaluation techniques, based on the 
contingency tables for example, should be studied further as 
well.

In this expanded modeling framework, it is fairly easy to 
incorporate a large number of latent variables and random 
effects. Further research is needed to enhance our ability to 
test the statistical significance of these latent variables and 
random effects. The current most used methodology based 
on the credibility intervals of the variance parameters appears 
to work well only for large sample sizes. Further practical 
methodological development is clearly needed to address this 
issue.

Finally, we note again that currently there is no simple 
adaptation of the PG methodology for the case of ordinal 
logistic modeling. One such attempt is described in 
Montesinos-Lopez et al. (2015). However, the level of complex
ity appears to be prohibitive in terms of adapting that approach 
in a generalized framework such as the one implemented in 
Mplus.
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