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In this note we describe several of the IRT modeling features implemented
in Mplus, namely the the item characteristic curves, the item information
curves, the total information curve, item difficulty parameter and item dis-
crimination parameter. Different estimators and parameterizations are con-
sidered. We also provide details on the Mplus implementation of the Partial
Credit Model (PCM), the 3PL-Guessing model and the 4PL Guessing with
upper asymptote model.

1 ICC curves

1.1 Logit Link, ML/MLR/MLF Estimators

Let U; be a categorical indicator for a latent factor f in the presence of a
categorical latent class variable C. The item characteristic curves (ICC) for
the item Uj;, given that C' = k are computed as follows using the logistic
model. If the category j is the first category
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In the presence of other covariates/other latent variables X the formulas are
modified as follows. If the category 7 is the first category
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1.2 Probit Link, ML/MLR/MLF Estimators

Let ® be the standard normal cumulative distribution function. The ICC
curves are given as follows. If the category j is the first category

Pyi(f) = P(Ui = j|f,C =k, X =2) = ®(7ijx — Air.f — Buz).  (7)
If the category j is the last category

L — ®(7ij-11 — Aie.f — Bir). (8)
If the category j is a middle category
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1.3 Probit Link, WLS/WLSM /WLSMYV /ULS Estima-
tors, Theta Parametrization

In this situation the model does not include latent categorical variable C
however multiple group models are included. Let G denote the group vari-
able. With the Theta parametrization the residual parameter 6, is an actual
parameter in the model. For basic models this parameter is fixed to 1 since it
will not be identified without model restrictions, however for multiple group
and growth models the parameter could be identified. If these parameters
are not printed in the results section that means that they are fixed to 1.
The ICC curves are given as follows. If the category j is the first category

Air.] — Birx
el ) (10)

Pir(f) =PU; =j|f,G =k, X = x) :¢<Tz‘jk—

If the category j is the last category
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If the category j is a middle category
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P Tijk — )\ikf — BirT _ Tij—1k — )\ikf — BirT ' (12)
Ok ik

1.4 Probit Link, WLS/WLSM/WLSMYV /ULS Estima-
tors, Delta Parametrization

With the Delta parametrization the 6;. are not actual parameters but are
dependent parameters that are obtained from the following equation

O, = AyY — Var(Nif)

where A, are actual parameters that can be either free or fixed. Again
the A, are typically not identifiable and are fixed to 1, however in growth
and multiple group models the parameter can be free and identified. When
the A;r parameters are not present in the results, they are fixed to 1. The
;. parameters are always reported in the results section and are typically
smaller than 1. For example when the A;, parameters are fixed to 1 the 0
are smaller than 1. The ICC curves are given as in the previous section.
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2 IIC curves

The item information curves (IIC) for a categorical indicator U; and a latent
factor f in class C' = k (or group k) is computed as in Samejima (1974).
Definefor 1 <3 <[1—-1

J
Qijk = Y Pk (13)
r=1
and Q;or = 0, Qi = 1. The IIC is defined as follows
l a-Pzr o 2
() = 3 el O (14
r=1 F)irk

For the ML/MLF /MLR estimators with the logit link functions the IIC curve
is given by
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For binary items the above formula reduces to
L (f) = N Pak(1 = Pag). (16)

For the ML/MLF /MLR estimators with the probit link functions, we use the
logit to probit approximation and give the IIC curve by
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For the WLS/WLSM/WLSMV /ULS estimators with the probit link func-
tions and either theta or delta parametrization the IIC curve is given by

I (f —3.99. 1k Z erk erk) - Qi,r—l,k(l - Qi,r—l,k))Q' (18)
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The total information function is obtained by adding all item information
functions and the prior information

L) = 10+ 3 Tal). (19)



where 1 is the variance of the factor f. The term 1/t is minus the second
derivative of the log-likelihood of the prior. The meaning of prior here is
simply the part of the likelihood that specifies the factor as a N(0,1) latent
variable or more generally as a N(«, ) latent variable. The above formulas
are obtained using the logit link function and are exact in this case. They are
simply an approximation for the probit link function. The constant 3.29 used
with the probit link function is simply the 72/3 constant which is needed to
adjust the scale of the loadings.

The information function I(f) can be used to calculate approximate stan-
dard errors for the factor score estimates

This is because I(f) is the expected information function. To obtain the
standard errors for the factor score in the presence of missing data the total
information function in the above formula is replaced by the sum of the 1IC
for the indicators that are present for that observation. These factor score
standard errors can also be obtained in Mplus directly using the SAVEDATA
command and the ML/MLF/MLR estimators with numerical integration
from the estimated posterior distribution of the factor. The two methods
differ to some extent but generally yield approximately the same results.
A third method for computing the factor score standard errors is with the
Bayes estimator where the posterior distribution for each factor can also be
estimated.

3 IRT Parameterization

For binary items with a single factor we provide the parameter estimates also
in the traditional IRT scale. Let the factor mean be a and the factor variance
be 1. Thus f = a+ /18 where 0 is the IRT standard normal latent variable
with mean 0 and standard deviation 1. For the ML/MLF/MLR estimators
with the logit link function
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where a;; is the item discrimination parameter and b is the item difficulty
parameter. These parameters are computed as follows

Qi = Aik@ (21)
Tik — Aik

AV
For the other estimators, links and parametrization, the IRT parametrization
is obtained by the same approach. The resulting formulas for b;;, is the same
as (22) in all cases, while the parameter a;, is obtained as follows. For the

ML/MLF/MLR estimators with the probit link function, equation (20) is
replaced by

PU; = 1|f) = ®(—7i + Nirf) = P(aw(0 — bix,)). (23)

Thus, the discrimination parameter is the same as in (21), i.e., the parameter
is not rescaled by D=1.7 to match the logit scale.

For the WLS/WLSM/WLSMV /ULS estimators with the probit link func-
tions and the theta parametrization, equation (20) is replaced by

—Tik + Nir f

P(Uizllf):(b< o

) = ®(a;x(0 — bix))- (24)

Thus, the discrimination parameter is

Qg = A“fﬁ. (25)

For the WLS/WLSM/WLSMV /ULS estimators with the probit link func-

tions and the delta parametrization, equation (20) is replaced by

—Tik + Nir f

Hw=Hﬂ=®(
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Thus, the discrimination parameter is
1
VAR Y -1

The standard errors of these parameters are computed by the delta method.

(27)

Qi =
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Note that this parameterization will be computed precisely when all fac-
tor indicators are binary and there is just one factor. The parameterization is
not computed if there are negative residual variances, zero loadings, negative
factor variance, additional structural relationships between the indicators
such as direct regressions between the indicators, or when there are predic-
tor variables in the model. The parametrization is also not available for
montecarlo simulations, multiple imputations, or two-level models.

4 The Partial Credit Model (PCM)

Mplus supports both the Partial Credit Model (PCM) and the Generalized
Partial Credit Model (GPCM). These models are described in chapters 7 and
8 of van der Linden (2016).

Suppose U is an ordered categorical variable and X is a vector of ob-
served or latent predictors. Suppose that U takes m possible observed values
0,...,m — 1. The partial credit model implemented in Mplus is a general
model that accommodates any number of observed and latent predictors as
well as mixture and two-level models, such as random intercept and slope
models. The model is given by the following equation. For £ =0,...,m — 1

X Eap(XL (BX — 7))

where [ is a set of regression coefficients and 7; are a set of threshold values.
For identifiability purposes 79 = 0. The above model can also be rewritten
as

Erp(kBX —¥F 7))
S Exp(gBX — Y0, 7))

It is shown in Huggins-Manley and Algina (2015) that this model is a special
case of the multinominal regression model implemented in Mplus. In the case
where the variable U has only 2 categories the model becomes equivalent to
the logistic regression model. The above PCM model is an alternative model
and a competing model to the logistic regression model described in Section
1.1 and the probit regression model described in Section 1.2. It has the
special property that the log-odds is linear in terms of the predictors X, that
is, log(P(U = | X)/P(U = j|X)) is a linear function in terms of X. This
property does not hold for either of the logistic or probit regression models.

P(U =k|X) = (29)




The regression coefficients in the PCM model are not equal to the probit
or logit regression coefficients but they behave similarly, that is, positive
regression coefficient § implies that higher vales of X leads to higher values
of U. The logit, the probit and the PCM regression use the same number of
parameters. The three models can be compared using the BIC criterion.

In the special case when there is a single factor n measured by several
PCM items Uj, taking values from 0 to m; — 1, Mplus also computes the
model parameters in the standard IRT metric.

The Generalized Partial Credit Model (GPCM) is given by the following

equation

_ Bap(Sh \(n = b; + diy))
Yo Eap(Sioy Aj(n — by + diy)))

where the ability factor n is assumed to have a standard normal distribution

with mean zero and variance 1. The parameters d;; are constrained for
identification purposes by the following equations

P(U; = kln) (30)

do,j =0 (31>

mj;—1

Y di;=0 (32)
=1

The parameter A; is the Item Discrimination parameter, the parameter b; is
the Item Location, and the parameters d; ; are the Item Categories. All of
these parameters can be found in the IRT PARAMETERIZATION section
of the Mplus output. Note that model (30) is a reparameterization of the
general model (28). To obtain the GPCM parameters, Mplus first computes
the model estimates for the general model

Exp(37,(Bin — 7iy))
Sy Bap(SLy (B — 7))

Suppose that the estimates for the mean and the variance of the latent vari-
able n are o and ¥. The GPCM reparametrization is derived by

A = B/ (34)

P(U; = kln) =

. (33)

mj—l

b= Y (1ij — Bja)/((m; — 1)) (35)

i=1



d@j = bj — Ti,j/)\j' (36)

The item information function for the GPCM is computed as in Reckase
(2009)

mj—1

I(Ujm) = Aj > (k= E(U;n))*P(U; = kln). (37)
k=1
5 The Guessing (3PL) and the Guessing with
Upper Asymptote Models (4PL)

Suppose U is a binary variable, with possible values 0 and 1, and X is a set
of observed or latent predictors. The 3PL Guessing model implemented in
Mplus is given by the following equation

PU=01X) = 1+ E:z:lp(—Tg) 1+ El‘p(iﬁ + 8X)’ (38)
The guessing parameter is
1
c=1-— 1T Bopl—y) (39)
An equivalent way to write the above model is
P(U=1X)=c+ L-c (40)

1+ Exp(r — BX)

The 3PL model has 2 threshold parameters 7 and 75 as well as the regression
coefficients 3. If 75 > 15 then ¢ = 0 and the 3PL model essentially becomes
equivalent to the logistic regression model. This model arises naturally in
modeling testing items that are multiple choice, with no penalty for guessing.
With probability ¢ an item is answered correctly due to guessing irrespective
of the person’s ability or the difficulty of the item. The model is particularly
useful when modeling a difficult item and the item is answered correctly
even though the person’s ability indicates that it is unlikely that this has
happened due to their ability. The guessing parameter c is also referred to
as a lower asymptote for the item. Even if nobody in the population is able
to solve correctly the test item, a minimum of ¢ percentage of the population
is expected to answer the item correctly due to guessing.



The 4PL model is a further generalization of the guessing 3PL model and
provides an upper asymptote for the item, entirely symmetric to the lower
asymptote. The model is given by the following equations

1
T T B )

1
R i (42)
P(U:O]X):1—c—(d—c)1+Exp(1ﬁ_ﬁX): (43)
b=d= <d_c)1+Exp(i7'1 + BX) (44)
P(U:1|X):C+(d_c)1+E:1:p(1ﬁ—5X): (45)
d—(d—c) L (46)

1+ Exp(—m + 6X)

The 4PL model has 3 threshold parameters 7, 75 and 73 as well as the
regression coefficients #. If 73 < —15, then d = 1 and the 4PL model
becomes equivalent to the 3PL model. A special case when only the upper
asymptote is present is of interest as well, see Loken and Rulison (2010) for
an application where the upper asymptote is the more important asymptote.
In that case, 7 > 15, ¢ = 0, and the variable U has only upper asymptote.
Then the distribution of 1—U is described by the 3PL model. This symmetry
between the asymptotes is useful in understanding the properties of the model
and to provide proper interpretation for the parameters. Items that are
worded in a tricky way may cause incorrect answer due to carelessness even
when the item is within the person’s ability range. Such items can be fitted
better by the 4PL model because that model allows for incorrect answer even
when the person’s ability would align more with a correct answer.

The above 3PL and 4PL models allow for multiple observed and unob-
served predictors. When there is only one latent variable predictor n the
results are also reported in the standard IRT parametrization scale. The
parameters § and 77 are reparameterized the same way as in the 2PL model
in equation (20), i.e., by computing the item discrimination parameter and
the item difficulty parameter as in equations (21) and (22). The threshold
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parameter 7, is reparameterized as the guessing parameter ¢ and the thresh-
old 73 is reparameterized as the upper asymptote parameter d. The item
information function is computed as in Magis (2013)

A2 (P(n) = *(d = P(n))°
H(d=c)?P(n)(1 = P(n)

where P(n) = P(U = 1|n). Note that if ¢ = 0 and d = 1 the formula reduces
down to formula (16) for the 2PL model.

The 3PL model is equivalent to a 2-class mixture model where in the first
class the outcome follows a logistic regression while in the second class the
outcome is always 1. Similarly the the 4PL model is equivalent to a 3-class
mixture model where in the first class the outcome follows a logistic regression
while in the second class the outcome is always 1 and in the third class the
outcome is always 0. Note however that the latent class variable is defined for
each item rather than for each person as in a typical mixture model, i.e., the
model can be viewed as a grade of membership model, see Asparouhov and
Muthén (2008) for example. Due to this connection with Mixture models
the 3PL and 4PL likelihoods can be prone to multiple local optima and it
may be necessary in certain situations to explore random starting values in
the optimization using the STARTS option of the ANALYSIS command in
Mplus.

The guessing parameter ¢ and the upper asymptote parameter d are not
identified when there is no observed or latent covariate in the model. Even
in the presence of an observed covariate sufficient sample size is needed to
obtain good parameter estimates. Often the parameter ¢ will converge to
0 and the parameter d will converge to 1 which essentially reduces the 4PL
model to the standard 2PL model. A sample size of N = 5000 might be
needed to estimate well a model with one asymptote and N = 20000 might
be needed to estimate well a model with both asymptotes. For an unobserved
covariate such as an ability factor model measured by 4PL items, around 10
items or more are needed to measure the ability factor well enough to be
able to replicate the identifiability of the 3PL and 4PL models with observed
covariate.

It is possible to add priors for the model parameters to improve identifia-
bility of the 3PL and 4PL models or to incorporate additional information in
the model that is not a part of the observed data. The maximum-likelihood
estimation in the presence of priors simply maximizes the combined likeli-

(U, ) = (47)
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hood
L = P(datal|@) - Prior(0) (48)

where 6 represents the vector of model parameters. Priors can be given for
all or only for some of the model parameters. To improve identifiability
however for the 3PL and 4PL models, priors might be needed for all model
parameters

The priors in this maximum-likelihood based estimation are similar to the
priors in the Bayesian estimation and are specified in Mplus via the MODEL
PRIORS command. Only normal priors are implemented in Mplus for the
3PL and 4PL models. The priors are specified for the native parametrization,
meaning that to specify a prior for the guessing parameter ¢, one has to
specify a prior for the second threshold parameter 7. Using the delta method
one can use the following approximation to obtain the appropriate prior for
Ty9. Suppose that a prior is desired for ¢ with mean m and variance v. One
can approximately accomplish this by specifying a prior for 7 with mean
—log(m/(1—m)) and variance v/(m(1 —m))?. Similarly if a prior is desired
for d with mean m and variance v, a prior is specified for 73 with mean
log(m/(1 —m)) and variance v/(m(1 — m))2.

The likelihood of the 3PL and the 4PL models can be fairly flat even for
larger sample sizes. That means that the priors may actually have unusually
large effect on the parameter estimates. There are four consequences of that
fact. First, sensitivity of the priors should be examined. Second, priors
should be selected as meaningfully as possible rather than as mathematical
artifacts. Third, it should be noted that even when parameter estimates
differ quite substantially due to different prior specification, the estimated
models might not differ substantially. One should examine TECH10 for the
estimated contingency tables, Pearson chi-square, univariate and bivariate
contingency tables and univariate and bivariate Pearson chi-squares. Fourth,
due to the flatness of the likelihood priors may become unintentionally too
informative. The TECH10 results should be compared for models with priors
and models without priors to make sure that the final estimated model is
not pulled away from the data too severely by the prior specifications. Thus
priors should generally be set as weakly informative priors.

The main advantage of using priors with the ML estimation is the ability
of the priors to stabilize the estimation, minimize MSE of the estimates
and improve coverage. Consider the following univariate example with one
binary outcome and one observed standard normal covariate in a guessing
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Table 1: Comparing ML estimation with and without priors.

Bias/Coverage/MSE
N | Parameter | With Prior | Without Prior
500 c .01/.85/.006 | .01/.77/.020
1000 c .00/.89/.004 | .02/.90/.012
5000 c .00/.91/.002 | .00/.95/.003
500 T .07/.90/.11 .05/.84/.23
1000 T .03/.91/.06 .01/.91/.11
5000 T .02/.92/.02 .01/.96/.03
500 B .10/.98/.08 A1/.91/.11
1000 g .03/.97/.03 .02/.93/.04
5000 g .00/.94/.01 .00/.96/.01

Absolute

3PL model. The three parameter in the model are set as follows 73 = 0,
79 = 1 which yields a guessing parameter ¢ = 0.27, and § = 1. We estimate
the model with and without prior. Prior is set only for 7. We used a normal
prior with mean 1 and variance 1. Table 1 reports the bias, coverage and
MSE for the model parameters for 3 sample sizes N = 500, 1000 and 5000.

The results are based on a simulation study with 100 replications.

This

simulation shows that the main effect of the prior is on the MSE, which is
consistently better when the prior is included. In small sample size it appears
also that the prior improves the coverage as well.
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The following references can be used for additional information on the

IRT models.
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