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In this document we describe the Mixture EFA model estimated in Mplus.
Four types of dependent variables are possible in this model: normally dis-
tributed, ordered categorical with logit or probit link, Poisson distributed
with the exponential link function, and censored variables. Inflation is not
available for the Censored and Poisson variables.

Suppose that we estimate a K class model with M factors and P de-
pendent variables. Denote the variables by Y1, ..., YP and the normally dis-
tributed factors by η1, ..., ηM . Let η be the vector of all latent factors η =
(η1, ..., ηM). The Mixture model is based on a single categorical latent class
variable C.

For a normally distributed variable Yp we estimate the following model
in class k

Yp = νkp + λkpη + εp

where νkp is the intercept parameter, λkp is a vector of loadings of dimension
M , and εp is a zero mean normally distributed residual with variance θkp.

For an ordered categorical variable Yp we estimate the following model in
class k

P (Yp = j) = F (τkpj − λkpη)− F (τkpj−1 − λkpη)

for j = 1, ..., rp where rp is the number of categories that the variable Yp takes.
The parameters τkpj are monotonically increasing for j and for identification
purposes τkprp = ∞ and τkp0 = −∞. The function F is either the standard
normal distribution function, for probit link, or the logit distribution function
F (x) = 1/(1 + Exp(−x)), for logit link. Alternatively we can specify the
model as follows

Yp = j ⇐ τkpj−1 ≤ Y ∗
p < τkpj
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where
Y ∗

p = λkpη + εp

where εp is a residual with distribution F .
For Poisson distributed variables we estimate the following model in class

k

P (Yp = j) = e−Y ∗
p

(Y ∗
p )j

j!

where
Y ∗

p = νkp + λkpη

and the parameters to be estimated are again the intercept νkp and the
loading vector λkp.

For censored variables Yp we estimate the following model in class k

Yp =

{
Y ∗

p if Y ∗
p > cp

cp if Y ∗
p ≤ cp

where cp is the censoring limit and Y ∗
p is latent normally distributed variable

Y ∗
p = νkp + λkpη + εp

where νkp, λkp, and the variance θkp of the zero mean residual εp are to be
estimated. The above model is for censored variables with a lower end bound.
Similar model is available for censored variables with an upper end bound.

We also estimate an unrestricted correlation matrix Ψk for the factors η in
class k when we estimate the model with oblique rotation. If we estimate the
model with orthogonal rotation the correlation matrix is fixed to the identity
matrix, i.e., the factors are assumed standard normal and orthogonal in all
classes. Finally we estimate an unrestricted distribution for the latent class
variable C, i.e., we estimate the parameters pk = P (C = k).

The above model is not identified in principle. To be identified the model
has to include an additional M(M − 1) restrictions for oblique rotations or
M(M − 1)/2 restrictions for orthogonal rotations. Before we proceed with a
loading rotation algorithm however we standardize the loadings with respect
to the V ar(Y ∗

p ). For normally distributed Yp we assume that Y ∗
p = Yp. We

construct the standardized loadings λ∗kp as follows

λ∗kp = λkp/
√

(V ar(Y ∗
p ))
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where
V ar(Y ∗

p ) = λkpΨpλ
T
kp + θkp

where for censored and normal variables θkp is as specified in the model, for
categorical probit link variable it is θkp = 1, for categorical logit link variable
θkp = π2/3 and for Poisson variables θkp = 0. Similarly we standardize the
θkp parameter

θ∗kp = θkp/V ar(Y ∗
p )

Note also that as constructed the standardized loadings are on the correlation
scale, that is, if Λ∗

k is the matrix of all standardized loadings and Θ∗
k is the

diagonal matrix with all θ∗kp on the diagonal, the estimated correlation matrix
of Y ∗ = (Y ∗

1 , ..., Y ∗
P ) is

Λ∗
kΨΛ∗T

k + Θ∗
k.

We now define the rotation criteria that will identify the loadings and
the factor correlation Ψ. All oblique factor rotations are defined by a square
matrix H of dimension M such that HHT has ones on the diagonal. All
orthogonal rotations are defined by orthogonal square matrices of dimension
M , i.e., HHT = I, where I is the identity matrix. All such factor rotations
lead to equivalent factor models with M factors. We estimate the rotation
that minimizes the simplicity function, i.e., the rotation criteria

Q(Λ∗H)

across all rotation matrices H, where the rotation criteria can be any rotation
criteria such as cf-varimax, quartimin, geomin etc, supported by Mplus. With
this additional constraint the loadings and factor correlation are uniquely
defined.

We now focus on the output reported by Mplus. For each class the rota-
tion is performed independently, since all loadings and residual covariances
are class specific. In the Mplus output we report the rotated standardized
loadings Λ∗H, where H is the optimal rotation. Standard errors for the ro-
tated standardized loadings are also reported. In addition the class specific
intercepts νkp are reported, as well as the threshold parameters τkpj. These
parameters are reported in their original metric, however the threshold pa-
rameters τkpj are also reported in the standardized correlation metric. Denote
these by τ ∗kpj. Consequently the estimated probabilities for each category is
computed as follows

P (Yp = j|C = k) = Φ−1(τ ∗kpj)− Φ−1(τ ∗kpj−1).
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This computation is exact for the probit link function, however it is only
approximate for the logit link function.

The Mixture EFA model estimation can be challenging in some instances.
When all dependent variables are normally distributed there is no numerical
integration involved in the estimation and the computation is fairly quick,
however sufficient number of random starts should be used to ensure that
the global log-likelihood maximum is reached. When some of the variables
are not normally distributed, i.e., Poisson, censored, and ordered categorical
variables, numerical integration is used for all factors and thus the com-
putation will be significantly slower. With Poisson, censored, and ordered
categorical variables the Mixture EFA model is possible but because of the
numerical integration and the random starts perturbation the computational
time might be substantial. Mixture EFA with binary variables is a particu-
larly difficult model to estimate because of the flexibility of the model and
fairly little information provided by binary variables - in particular it is fairly
easy to exceed or approach the maximum degrees of freedom when only a
few binary variables are used. In addition for Mixture EFA models with
categorical variables, the best log-likelihood value found in multiple starting
value perturbations, can be difficult to replicate, again due to the flexibility
of the model.

Additional information on mixture factor analysis can be found in McLach-
lan and Peel (2000) and McLachlan et al. (2004). Mixture factor analysis
with categorical variables is discussed in Muthen and Asparouhov (2006).
Mixture EFA analysis is illustrated in Example 4.4, Mplus User’s Guide
(Muthen and Muthen, 1998-2007).
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