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CHAPTER 

25 Latent Class Analysis and Finite 
Mixture Modeling 

Katherine E. Masyn 

Abstract 

Finite mixture models, which are a type of latent variable model, express the overall distribution of 
one or more variables as a mixture of a finite number of component distributions. In direct 
applications, one assumes that the overall population heterogeneity with respect to a set of manifest 
variables results from the existence of two or more distinct homogeneous subgroups, or latent 
classes, of individuals. This chapter presents the prevailing "best practices" for direct applications of 
basic finite mixture modeling, specifically latent class analysis (LCA} and latent profile analysis (LPA), in 
terms of model assumptions, specification, estimation, evaluation, selection, and interpretation. In 
addition, a brief introduction to structural equation mixture modeling in the form of latent class 
regression is provided as well as a partial overview of the many more advanced mixture models 
currently in use. The chapter closes with a cautionary note about the limitations and common misuses 
of latent class models and a look toward promising future developments in mixture modeling. 

KeyWords: Finite mixture, latent class, latent profile, latent variable 

Introduction 
Like many modern statistical techniques, mix­

ture modeling has a rich and varied histmy-it 
is known by different names in different fields; it 
has been implemented using different parameteriza­
tions and estimation algorithms in different software 
packages; and it has been applied and extended 
in various ways according to the substantive inter­
ests and empirical demands of differenr disciplines 
as well as the varying curiosities of quantitative 
methodologists, statisticians, biosratisticians, psy­
chometricians, and econometricians. As such, the 
label mixture model is quite equivocal, subsuming a 
range of specific models, including, but not limited 
to: larent class analysis (LCA), latent profile analy­
sis (LPA}, latent class duster analysis, discrete latent 
trait analysis, factor mixture models, growth mixture 

models, semi-parametric group-based models, semi­
non parametric group-mixed models, regression 
mixture models, latent stare models, latent structure 
analysis, and hidden Markov models. 

Despite the equivocal label, all of the differ­
ent mixture models listed above have rwo com­
mon feamres. First, they are all finite mixture 
models in that they express the overall distribu:.. 
tion of one or more variables as a mixture of or 
composite of a finite number of component dis­
tributions, usually simpler and more tractable in 
form than the overall distribution. As an example, 
consider the distribution of adult heights li1 the 
general population. Knowing that males are taller, 
on average, than females, one could choose to 

express the distribution of heights as a mixture 
of rwo component distributions for males and 
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females, respectively. Iff(height) is the probability 
density function of the distribution of heights 
in the overall population, it could be expressed 
as: 

/(height) = Pmale · fmate(height) 

+ PJemale ffernate(height), (1) 

where Pmale and Pftmale are the proportions of males 
and females in the overall population, respectively, 
and fma/e(height) and fiemate(height) are the dis­
tributions of heights within the male and female 
subpopulations, respectively. Pm11k and Pftmale are 
referred to as the mixingproportions and finale (height) 
and /rernate(height) are the component distribution 
density functions. 

The second common feature for all the differ­
ent kinds of mixture models previously listed is 
that the components themselves are not directly 
observed-that is, mixture component membership 
is unobserved or latent for some or all individ­
uals in the overall population. So, rather than 
expressing the overall population distribution as a 
mixture of known groups, as with the height exam­
ple, mixture models express the overall population 
distribution as a finite mixture of some number, K, 
of unknown groups or components. For the dis­
tribution of height, this finite mixture would be 
expressed as: 

/(height)= PI ·fi (height)+ P2 ·fi(height) 

+ · · · + PK · /K(height), (2) 

where the number of components, K, the mix­
ing proportions, PI> ... ,pK, and the component­
specific height distributions, fi (height), ... ,fK 
(height), are all unknown but can be estimated, 
under certain identifYing assumptions, using height 
data measured on a representative sample from the 
total population. 

Finite Mixture Models As Latent 
Variable Models 

It is the unknown nature of the mixing 
components--in number, proportion, and form­
that situates finite mixture models in the broader 
category of latent variable models. The finite mix­
ture distribution given in Equation 2 can be re­
expressed in terms of a latent unordered categorical 
variable, usually referred to as a latent class variable 
and denoted by c, as follows: 

/(height)= Pr(c = 1) · f(heightjc = 1) 

+ · · · + Pr(c = K) ·f(heightlc = K), 
(3) 

where the number of mixing components, K, in 
the number of categories or classes of c (c = 
1, ... , K); the mixing proportions are the class pro­
portions, Pr(c = 1), ... , Pr(c = K); and the 
component distribution density functions are the 
distribution functions of the response variable, con­
ditional on latent class membership, f(heightic = 
1), ... ,f(heightjc = K). 

Recognizing mixture models as latent variable 
models allows use of the discourse language of the 
latent variable modeling world. There are two pri­
mary types of variables: (1) latent variables (e.g., the 
latent class variable, c) that are not directly observed 
or measured, and (2) manifest variables (e.g., the 
response variables) that are observable and are pre­
sumed to be influenced by or caused by the latent 
variable. The manifest variables are also referred to 
as indicator variables, as their observed values for a 
given individual are imagined to be imperfect indi­
cations of the individual's "true" underlying latent 
class membership. Framed as a latent variable model, 
there are two parts to any mixture model: (1) the 
measurementmodel, and {2) the structural model. The 
statistical measurement model specifies the relation­
ship between the underlying latent variable and the 
corresponding manifest variables. In the case of mix­
ture models, the measurement model encompasses 
the number oflatent classes and the class-specific dis­
tributions of the indicator variables. The structural 
model specifies the distribution of the latent vari­
able in the population and the relationships between 
latent variables and between latent variables and cor­
responding observed predictors and outcomes (i.e., 
latent variable antecedent and consequent variables). 
In the case of unconditional mixture models, the 
structural model encompasses just the latent class 
proportions. 

Finite Mixture Modeling As a 
Person-Centered Approach 

Mixture models are obviously distinct from the 
more familiar latent variable factor models in which 
the underlying latent structure is made up of one 
or more continuous latent variables. The designa­
tion for mixture modeling often used in applied 
literature to highlight this distinction from factor 
analytic models does not involve the overt cate­
gorical versus contimtous latent variable scale com­
parison but instead references mixture modeling as 
a person-certtered or person-oriented approach {in 
contrast to variable-centered or variable-oriented). 
Person-centered approaches describe similarities and 
differences among individuals with respect to how 
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variables relate w each other and are predicated 
on rhe assumption that the population is hetero­
geneous with respect w the relationships between 
variables (Laursen &.Hoff, 2006, p. 379). Smtistical 
techniques oriented toward categorizing individ­
uals by patterns of associations among variables, 
such as LCA and cluster analysis, are person­
centered. Variable-cenrered approaches describe 
associations rlmong variables and are predicated on 
the assumption that the population is homogeneous 
with respect to the relationships between variables 
(Laursen & Hoff, 2006, p. 379). In other words, 
each association between one variable and another 
in a variable-centered approach is assumed to hold 
for all individuals within the population. Smristical 
techniques oriented toward evaluating the relative 
importance of predictor variables, such as multivari­
ate regression and structural equation modeling, are 
variable-centered. 

Ald10ugh "person-centered analysis" has become 
a popular and compelling catchphrase and methods­
jingle for researchers to recite when providing the 
rationale for selecring a mixture modeling approach 
for their data analysis over a more tradirional 
variable-centered approach, the elaborated justifica­
tion, beyond the use of the catchphrase, is often 
flawed by placing person-centered and variable­
centered approaches in juxtaposition as rival or 
oppositional approaches when, in fact, they are 
complementary. To understand this false dichotomy 
at the conceptual level, imagine that the data 
matrix, with rows of individuals and columns of 
variables, is a demarcated geographic region. You 
could explore this region from the ground (person­
centered), allowing you to focus on unique, salient, 
or idiosyncratic features across the region, or you 
could explore this region from the air (variablc­
ccnrcrcd), allowing you to survey general and dom­
inant features of the full expanse (e.g., the mean 
and covariance structure). Perhaps you might even 
deer to view the region both ways, recognizing 
chat each provides a different perspccrivc on the 
same region and that both advance your undersl'alld­
ing of the region. That is, the region itself doesn't 
change but the information that can be gleaned 
about the region does change according to the type 
of search, and determining which search is more 
useful depends entirely on the objccrives of the 
explorarion. 

The false dichotomy can also be explained in ana­
lyric terms, as Horn (2000) does so effectively in 
describing the linear decomposition of an person x 
m variable data array: 

"In person-centered compared with variable-centered 

analyses, the theorem ofEd<art and Young [(1936)] 

indicates that the linear relationships among variables 

have a counterpart in relationships among people. 

Or, w put the matter the other way around, the 

relationships among people that indicate types have a 

counterpart in relarionships among variables that 

indicate fucwrs ... Quite simply, there is no variance 

in person-centered types that cannot be accounted 

for in terms of variable-centered f.'lctors, and 

vice-versa" (Horn, 2000, p. 925). 

Beyond the conceptual and analytic consider­
ations, there is also a practical rejection of the 
dichotomy between person- and variable-centered 
approaches. Although a majority of applications of 
mixture models claim and motivate an exclusive 
person-centered approach, most utilize strategies 
that combine person-centered and variable-centered 
clements. For example, it is not uncommon for a 
study to use a person-centered analysis to idenrif}r 
latent classes or groups of individuals characterized 
by different response patterns on a subset of vari­
ables and then use a variable-centered analysis to 

examine predictors and outcomes (antecedent and 
consequent correlates) of class membership. There 
are also many examples of "hybrid" models, such 
as growth mixture models, that usc both latent 
factors (variable-centered) and latent classes (person­
centered) to describe inrerindividual differences in 
imra-individual change. 

With the dichotomy between person-centered 
and variable-centered approaches dispelled, you may 
be left wondering how to determine which approach 
to take or whether, indeed, your choice matters at 
all. The fact that it is possible to represent person­
centered findings in variable-centered terms does nor 
obfuscate the choice of approach but does make the 
explicit consideration of the fundamental assump­
tions of each approach in the context of the actual 
research question and available data all the more 
important. Further, explicit consideration must also 
be given to the consequences of choosing to repre­
sent a construct as one or more latent factors versus 
latent classes for the subsequent specification and 
testing of relationships between the construct and its 
hypothesized correlates. If your planned study aims 
at a person-centered level, and you can reasonably 
assume that your target population is heterogeneous 
in that there are actual types or classes to be revealed 
by an empirical study, then you have sufficient ratio­
nale for utilizing a person-centered or combined 
person-/variable-centered approach, and the choice 
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is clear. However, these rationales are not neces­
sary for the purposed application of mixture models 
and I will touch on this topic again throughout the 
chapter, to recapitulate what constitutes principled 
use of mixture models. 

Chapter Scope 
This chapter is intended to provide the reader 

with a general overview of mixture modeling. I 
aim to summarize the current "best practices" for 
model specification, estimation, selection, evalua­
tion, comparison, interpretation, and presentation 
for the two primary types of cross-sectional mixture 
analyses: latent class analysis (LCA), in which there 
are observed categorical indicators for a single latent 
class variable, and latent profile analysis (LPA), also 
known as latent class cluster analysis (LCCA), in 
which there ate observed continuous indicators for 
a single latent class variable. As with other laten~v~i­
able techniques, the procedures for model bmldmg 
and testing in these settings readily extend to more 
complex data settings-for example, longitudinal 
and multilevel variable systems. I begin by providing 
a brief historic overview of the two primary roots of 
modern-day mixture modeling in the social sciences 
and the foci of this chapter-finite mixture modeling 
and LCA-along with a summary of the purposed 
applications of the models. For each broad type of 
model, the general model formulation is presented, 
in both equations and path diagrams, followed by an 
in-depth discussion of model interpretation. Then 
a description of the model estimation including a 
presentation of current tools available for model 
evaluation and testing is provided, leading to a 
detailed illustration of a principled model building 
process with a full presentation and interpn:t~tion 
of results. Next, an extension of the uncondmonal 
mixture models already presented in the chapter 
is made to accommodate covariates using a latent 
class regression (LCR) formulation. I conclude the 
chapter with a brief cataloging of {some of) the many 
extensions of finite mixture modeling beyond the 
scope of this chapter, some cautionary notes about 
the misconceptions and misuses of mixture model­
ing, and a synopsis of prospective developments in 
the mixture modeling realm. 

A Brief and Selective History of 
Mixture Modeling 
Finite Mixture Modeling 

Finite mixture modeling, in its most classic form, 
is a cross-sectional latent variable model in which 

the latent variable is nominal and the correspond­
ing manifest variables are continuous. This form 
of finite mixture modeling is also known as LPA 
or LCCA. One of the first demonstrations of finite 
mixture modeling was done by a father of modern­
day statistics, Karl Pearson, in 1894 when he fit a 
two-component (i.e., two-class) univariate normal 
mixture model to crab measurement data belonging 
to his colleague, Walter Weldon (1893), who had 
suspected that the skewness in the sample distribu­
tion of the crab measurements (the ratio of forehead 
to body length) might be an indication that this crab 
species from the Bay of Naples was evolving to two 
subspecies (McLachlan & Peel, 2000). Pearson used 
the method-of-moments to estimate his model and 
found evidence of the presence of two normally dis­
tributed mixing componenrs that were subsequently 
identified as crab subspecies. There weren't many 
other mixture model applications that immediately 
followed suit because the daunting moments-based 
fitting was far too computationally intensive for mix­
tures. And it would take statisticians nearly 80 years 
to find more viable, as well as superior, alterna­
tive estimation procedures. Tan and Chang (1972) 
were among the researchers of their time that proved 
the maximum likelihood solution to be better for 
mixture models than the method-of-moments. Fol­
lowing on the heels of this insight was the release of 
the landmark article by Dempster, Laird, and Rubin 
(1977) that explicated, in general terms, an iterative 
estimation scheme-the expectation-maximization 
(EM) algorithm-for maximum-likelihood estima­
tion from incomplete data. The recognition that 
finite mixture models could be easily reconceived as 
missing data problems (because latent class mem­
bership is missing for all individuals)-and thus 
estimated via the EM algorithm-represented a 
true turning point in the development of mixture 
modeling. Since that time, there has been rapid 
advancement in a variety of applications and exten­
sions of mixture modeling, which are covered briefly 
in the section on "The More Recent Past" following 
the separate historical accounting ofLCA. 

Before moving on, there is another feature of 
the finite mixture history that is worth remarking 
on, as it relates to the earlier discussion of person­
centered versus variable-centered approaches. Over 
the course of the twentieth century, there was a 
bifurcation in the development and application of 
finite mixture models in the statistical community 
following that early mixture modeling by Pearson, 
both before and after the advancement of the esti­
mation algorithms. There was a distinction that 
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Figure 25.1 Hypothetical overall univariate non-normal pop­
ulation distribution (solid line) resulting from a mixing of two 
normally distributed subpopulations (dashed lines). 

began to be made between direct and indirect appli­
cations (Tirteringron, Smith, & Makov, 1985} of 
finite mixture modeling. In direct applications, as 
in person-cenrered approaches, mixture models are 
used with the a priori as~>"Umption that the overall 
population is heterogeneous, and made up of a finite 
number of {latent and substantively meaningful) 
homogeneous groups or subpopulations, usually 
specified to have tractable distributions of indica­
tors within groups, such as a multivariate normal 
distribution. In indirect applications, as in variable­
centered approaches, it is assumed that the overall 
population is homogeneous and finite mixtures arc 
simply used as more tractable, semi-parametric tech­
nique for modeling a population distribution of 
outcome..~ for which it may nor be possible (practi­
cally or analytically speaking) to specifY a parametric 
model. Mathematical work was done to prove that 
virtually any continuous distriburion (even highly 
skewed, highly kurtotic, mulrimodal, or in other 
ways non-normal) could be approximated by the 
mixing of K normal distributions if K was permit­
red to be indiscriminately large and that a reasonably 
good approximation of most distributions could be 
obtained by the mixing of a relatively small num­
ber of normal distributions (Titterington, Smith, 
& Malmv, 1985}. Figure 25.1 provides an illustra­
tion of a univariate non-normal distribution that is 
rhe result of the mixing of two normally distributed 
components. The focus for indirect applications 
is then nor on the resultant mixture components 
nor their interpretation bur, rather, on the over­
all population distribution approximated by the 
mixing. 

I find the indirect versus direct application dis­
tinction for mixture modeling less ambiguous than 
the person-centered versus variable-centered labels 
and, rhus, will favor that language throughout the 

remainder of this chapter. Furthermore, the focus 
in this chapter is almost exclusively on direct appli­
cations of mixture models as I devote considerable 
rime to the processes of class enumeration and inter­
pretacion and give weight to matters of classification 
quality, all of which are of little consequence for 
indirect applications. 

Latent Class Analysis 
Latent class models can be considered a spe­

cial subset of finite mixture models formulated as 
a mixture of generalized linear models; that is, finite 
mixtures with discrete response variables with class­
specific multinomial distributions. However, LCA 
has a rich history within tl1e psychometric tradition, 
somewhat independent of the development of finite 
mixture models, that is worthy of remark, not unlike 
the way in which analysis of variance (AN OVA) and 
analysis of covariance (ANCOVA) models, although 
easily characterized as a special subset of multiple 
linear regression models, have their own historical 
rimeline. 

It didn't take long after Spearman's seminal work 
on factor analysis in 1904 for suggestions regarding 
categorical latent variables to appear in the litera­
ture. However, it wasn't until Lazarsfeld and Henry 
summarized their two decades of work on latent 
srrucrure analysis (which included LCA as a subdo­
main of models) in 1968 that social scientists were 
presented with a comprehensive treatment of the 
theoretical and analytic features of LCA that had 
been in serious development since the 1950s. 

Despite the expansive presentation and motiva­
tion for LCA provided by Lazarsfeld and Henry 
(1968), there were still two primary barriers to larger 
scale adoption of latent class models by applied 
researchers: (1) the categorical indicators could only 
be binary, and (2) there was no general, reli­
able, or widely implemented estimation method for 
obtaining parameter estimates (Goodman, 2002). 
Goodman (197 4) resolved the first and parr of 
the second problem with the development of a 
method for obtaining maximum likelihood esti­
mates oflatent class parameters for dichotomous and 
polytomou.s indicators. Once Goodman's estima­
tion algorithm was implemenred in readily available 
statistical software, first by Clogg in 1977, and 
Goodman's approach was shown to be closely related 
to the EM algorithm of Dempster, Laird, and Rubin 
(1977), currently the most widely utilized estima­
tion algorithm for LCA software (Collins & Lanza, 
201 0), the remaining portion of the second bar­
rier ro the application of LCA was annulled. I will 
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return to matters related to maximum likelihood 
estimation for LCA parameters later in this chapter. 

As with the history of finite mixture modeling, 
there is some comment necessary on the features 
of LCA history related to person-centered versus 
variable-centered approaches. Latent class models, 
with categorical indicators of a categorical latent 
variable, have, at different times, been described in 
both person-centered and variable-centered terms. 
For example, one of the fundamental assumptions 
in classical LCA is that the relationship among the 
observed categorical variables is "explained" by an 
underlying categorical latent variable {latent class 
variable)-that is, the observed variables are con­
ditionally {locally) independent given latent class 
membership. In this way, LCA was framed as the 
pure categorical variable-centered analog to contin­
uous variable-centered factor analysis (in which the 
covariances among the observed continuous vari­
ables is explained by one or more underlying contin­
uous factors). Alternatively, LCA can be framed as a 
multivariatedatareduction technique for categorical 
response variables, similarly to how factor analysis 
may be framed as a dimension-reduction technique 
that enables a system of m variables to be reduced to a 
more parsimonious system of q factors with q « m. 
Consider a set of 1 0 binary indicator variables. There 
are 210 = 1024 possible observed response pat­
terns, and one could exactly represent the n X 10 
observed data matrix as a frequency table with 1024 
(or fewer) rows corresponding to the actual observed 
response patterns. Essentially, in the observed data 
there are a maximum of 1024 groupings of indi­
viduals based on their observed responses. Latent 
class analysis then enables the researcher to group 
or cluster these responses patterns (and, thus, the 
individuals with those response patterns) into a 
smaller number of K latent classes (K « 1 024) 
such that the response patterns fur individuals 
within each class are more similar than response 
patterns across classes. For example, response pat­
terns ( 1 1 1 1 1 1 1 1 1 1 ) and 
( 0 1 1 1 1 1 1 1 1 ) might be 
grouped in the same latent class, different 
from ( 0 0 0 0 0 0 0 0 0 0 ) and 
( 0 0 0 0 0 0 0 0 1 0 ). The classes 
are then characterized not by exact response pat­
terns bur by response profiles or typologies described. 
by the relative frequencies of item endorsements. 
Because grouping the observed response patterns is 
tantamount to grouping individuals, this framing 
ofLCA is more person-oriented. Thus, in both the 
psychometric tradition in which LCA was developed 

and in the classical mathematical statistics tradition 
in which finite mixture modeling was developed, 
mixture models have been used as both a person­
centered and variable-centered approach, leading to 
some of the confusion surrounding the misleading 
association of mixture models as implicitly person­
centered models and the false dichotomy between 
person-centered and variable-centered approaches. 

The More Recent Past 
In both finite mixture modeling and LCA, the 

utilization of the EM algorithm for maximum like­
lihood estimation of the models, coupled with rapid 
and widespread advancements in statistical comput­
ing, resulted in a remarkable acceleration in the 
development, extension, application, and under­
standing of mixture modeling over the last three 
decades, as well as a general blurring of the line that 
delineated latent class models from more general 
finite mixture models. A few of the many notable 
developments include the placement of!atent class 
models within the framework of log linear models 
(Formann, 1982, 1992; Vermunt, 1999); LCRand 
conditional finite mixture models, incorporating 
predictors of class membership (Bandeen-Roche, 
Miglioretti, Zeger, & Rathouz, 1997; Dayton & 
Macready, 1988); and the placement of finite mix­
ture modeling within a general latent structure 
framework, enabling multiple and mixed mea­
surement modalities (discrete and continuous) for 
both manifest and latent variables (Hancock & 
Samuelson, 2008; Muthen & Shedden, 1999; Skro­
ndal &Rabe-Hesketh, 2004). Foran overviewofthe 
most recent developments in finite mixture model­
ing, see McLachlan and Peel (2000) and Vermunr 
and McCutcheon (2012). For more recent develop­
ments specifically related to LCA, see Hagenaars and 
McCutcheon {2002) and Collins and Lanza (20 1 0). 

There has also been conspicuous growth in the 
number of statistical software packages that enable 
the application of a variety of mixture models in 
real data settings. The two most prominent self­
contained modeling software packages are Mplus 
V6.11 (Muthen & Murhen, 1998-2011), which 
is the software used for all the empirical examples 
in this chapter, and Latent GOLD V4.5 (Statisti­
cal Innovations, Inc., 2005-2011), both capable of 
general and comprehensive latent variable modeling, 
including, but not limited to, finite mixture model­
ing. The two most popular modular packages that 
operate within existing software are PROC LCA and 
PROC LTA for SAS (Lanza, Dzial{, Huang, Xu, & 
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Collins, 20 11), which are limited to traditional cat­
egorical indicator latent class and latent transition 
analysis models, and GLLAMM for Srata (Rabe­
Heskerh, Skrondal & Pickles, 2004), which is a 
comprehensive generalized linear latenr and mixed 
model framework m1lizing adaptive quadramre for 
maximum likelihood esLimation. 

Access to software and the advancemems in high­
speed compuring have also led m a remarkable 
expansion in the number of disciplines thar have 
made use of mixture models as an analytic tool. 
There has been particularly notable growth in the 
direct application of mixmre models within rhe 
behavioral and educational sciences over the last 
decade. Mixture models have been used in the 
empirical investig-ations of such varied topics as 
typologies of adolescent smoking wiLhin and across 
schools (Henry & Mutlu!n, 2010}; marijuana usc 
and attitudes among high school seniors (Chung, 
Flal1erty, & Schafer, 2006); profiles of gambling 
and subsrance u.~e (Bray, 2007); risk profiles for 
overweight in adolescenr populations (BeLue, Fran­
cis, Rollins, & Colaco, 2009); patterns of peer 
victimization in middle school (Nylund-Gibson, 
Graham, & Juvoncn, 2010); liability to externaliz­
ing disorders (Markon & Krueger, 2005}; profiles of 
academic self-concept (Marsh, Ludtke, Trautwein, 
& Morin, 2009); profiles of program <.."Valuators' 
self-reponed practices (Christie & Masyn, 20 l 0); 
rater behavior in essay grading (DeCarlo, 2005); 
mathematical ability for special education students 
(Yang, Shaftel, Glasnapp, & Poggio, 2005); par­
terns of public a~'Sistance receipl among female 
high school dropouts (Hamil-Luker, 2005); marital 
expectations of adolescents (Crissey, 2005); and psy­
chosocialneeds of cancer parienrs (Soothill, Francis, 
Awwad, Morris, Thomas, & Mclllmurray, 2004). 

Latent Class Analysis 
Although latent class models-mixture models 

with exclusively categorical indicator variables for 
the latent class variable-emerged more than a half­
century after the inception of finite mixrurc models, 
I choose to usc LCA tor this initial foray into the 
derails of mixture modeling because I believe it is the 
most accessible point of entry for applied readers. 

Model Formulation 
As with any latent variable model, there are rwo 

parts to a latent class model: (1) the measurement 
model, which relates the observed response variables 
(also called indicator or manifest variables) to the 

underlying latent variable(s); and (2) the strucrural 
model, which characterizes rhe distribution of the 
latent variable(s) and the relationships among latent 
variables and between latent variables and observed 
antecedent and consequent variables. In a traditional 
larenrvariable model-building process, the uncondi­
tional measurement model for each lar.enr variable of 
inrerest is established prior to any structural model­
based hyporhesis resting. lr is rhc results of the final 
measurement model that researchers usc w assign 
meaning to the larenr classes that are then used 
in the substantive interpretations of any structural 
relationships that emerge. Thus, the formal LCA 
model specification begins here with an uncondi­
tional model in which the only observed variables 
are the categorical manifest· variables of the latent 
class variable. 

Suppose there are M categorical (binary, ordi­
nal, andlor multinomial) latent class indicarors, 
111,112, .•. , UM observed on n study participants 
where Umi is the observed response w item rn for 
participant i. It is assumed for the unconditional 
LCA that there is an underlying unordered categor­
ical latent class variable, denoted by c, with K classes 
where q =kif individual i belongs to Class k. The 
proportion of individuals in Class k, Pr(c = k), is 
denoted by rr k· The K classes are exhaustive and 
mutually exclusive such rhar each individual in the 
population has membership in exacdy one of the 
K latent classes and I'..rrk = I. The relationship 
between the observed responses on theM items and 
rhe larcnr class variable, c, is expressed as 

Pr(UJi> uz;, ... , ttM;) 

K 

= L [ 1fk · Pr(ttJi, tlli• ... , UMilci = k)]. (4) 
k=l 

The above expression is the latenr class mea­
surement model. The measurement parameters are 
all those related to the class-specific response par­
tern probabilities, Pr(uli, u.2;, ... , UMilci = k), 
and rhe structural parameters are those related to 
the distribution of the latent class variable, which 
for the unconditional model are simply the class 
proportions, 1fk· 

The model expressed in Equation 4 can be rep­
resented by a path diagram as shown in Figure 
25.2. All the path diagrams in this chapter follow 
the diagramming conventions used in the Mplus 
V6.11 software manual (Muthen & Muthen, 1998-
2011): boxes to enclose observed variables; circles to 
enclose latent variables; single-headed arrow paths 
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Figure 25.2 Generic path diagram for an unconditional latent 
class model. 

to represent direct (causal) relationships; double~ 
headed arrow paths to represent nondirection (cor~ 
relational) relationships; "u" to denote observed 
categorical variables; 'y" to denote observed con~ 
tinuous variables; "c" to denote latent categorical 
variables (finite mixtures or latent class variables); 
and "r]" to denote latent continuous variables 
(factors). 

Similarly to the typical default model specifica­
tion in traditional factor analysis, conditional or 
local independence is assumed for the M items 
conditional on class membership. This assumption 
implies that latent class membership explains all of 
the associations among the observed items. Thus, 
the formation of the latent classes (in number and 
nature) based on sample data will be driven by the 
set of associations among the observed items in the 
overall sample. If all the items were independent 
from each other in the sample-that is, if all the 
items were uncorrelated in the overall sample-then 
it would not be possible to estimate a latent class 
model with more than K = 1 classes because there 
would be no observed associations to be explained 
by class membership. Under the local independence 
assumption, Equation 4 simplifies to 

Pr(uli, U2i• ••• , UM;) 

= t [rrk · (fi Pr(U,nilci = k))]· (5) 
k=l 711=1 

This assumption is represented in Figure 25.2 by 
the absence of any nondirectional (double-headed 
arrow) paths between the us that would represent 
i tern correlations within or conditional on latent class 
membership. The tenability of the local indepen­
dence assumption can be evaluated and may also 
be partially relaxed (see, e.g., Huang & Bandeen­
Roche, 2004). However, some degree of local 
independence is necessary for latent class model 
identification. It is not possible to fully relax this 
assumption for models with K > 1 classes-that 
is, an unconditional latent class model with all 

the items allowed to co-vary with all other items 
within class is not identified for K > 1 classes 
unless other parameter restrictions are imposed. 
I will revisit this assumption in the context of 
finite mixture modeling with continuous indica­
tors. In that setting, models with K > 1 classes 
are identified even with all items co-varying within 
latent classes under certain other assumptions­
for example, the distributional assumption of 
multivariate normality of the indicators within 
class. 

Model Interpretation 
As I mentioned earlier, it is the results of 

the final unconditional LCA, the measurement 
model, that are used to assign meaning to the 
latent classes, which augments the substantive 
interpretations of any structural relationships that 
emerge. Unless you are using mixture models in an 
indirect application as a semi-parametric approx­
imation for an overall homogeneous population 
such that your attention will only be on parame­
ter estimates for the overall (re)mixed population, 
you will focus your interpretation on the sepa­
rate mixing components, interpreting each latent 
class based on the relationships between the classes 
and their indicators just as you use factor load­
ings and item communalities to interpret factors 
in a factor analysis. And just as with factor analy­
sis, to reasonably interpret the latent class variable, 
you must have "good" measures of each of the 
classes. 

A good item is one that measures the latent class 
variable well (i.e., reliably). A good latent class indi­
cator is one for which there is a strong relationship 
between the item and the latent class variable. Strong 
item-class relationships must have both of the fol­
lowing features: (1) a particular item response-for 
example, item endorsement in the case of binary 
items, epitomizes members in at least one of the K 
latent classes in the model; and (2) the item can 
be used to distinguish between members across at 
least one pair of classes among the K latent classes 
in the model. The first quality is referred to as 
latent class homogeneity and the second quality is 
referred to as latent class separation (Collins & Lanza, 
2010). 

To better understand the concepts oflatent class 
homogeneity and latent class separation, and how 
these concepts both relate to the parameters of the 
unconditional measurement model and ultimately 
qualifY the interpretation of the resultant latent 
classes, consider a hypothetical example with five 
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binary response variables (M = 5) measuring a 
three-class categorical latent variable (I( = 3). The 
unconditional model is given by 

Pr(UJi> 1t2i> u4;. U4i>U5i) = t [rrk · (fr Wmlk\], 
k=l m=1 } 

(6) 
where Wmlk is rhe probability that an individual 
belonging to Class le would endorse item m-that 
is, Pr(U111i = I lei = k) = Wmlk· 

Class Homogeneity. To imerprer each of the K 
classes, you first need ro identifY items thar epit­
omize each class. If a class has a high degree of 
homogeneity with respect to a particular item then 
there is a particular response category on that item 
that can be considered a response that typifies that 
class. In the case of binary items, strong associations 
with a particular class or high class homogeneity is 
indicated by high or low model-estimated probabil­
ities of endorsement-char is, Wntlft or I-wmlkclose 
I, with "close" defined by Wmlk > .7 or Wmik < .3. 
For example, consider a class with an estimated class­
specific item probability of 0.90. This means that 
in that class, an estimated 90o/o of individuals will 
endorse that particular item whereas only 1 Oo/o will 
nor. You could then consider this item endorsement 
as "typical" or "characteristic of" that class and could 
say that class has high homogeneity with respect to 
that item. Now consider a class with an estimated 
class-specific item probability of 0.55. This means 
that in that class, only an estimated 55o/o of indi­
viduals will endorse that particular item whereas 
45% will nor. Item endorsement is neither typical 
nor characteristic of that class, nor is lack of item 
endorsement, for that matter, and you could say that 
class has low homogeneity with respect to that item 
and would not consider that item a good indicator 
of membership for that particular class. 

Class Separation. To interpret each of the K 
classes, you must not only have class homogeneity 
with respect to the items such that the classes are each 
well characterized by the item set, you also need to 

be able to distinguish between the classes-this qual­
ity is referred to as the degree of class separation. It 
is possible to have high class homogeneity and still 
have low class separation. For example, consider two 
classes, one of which has an estimated class-specific 
item probability of 0.90 and another class with an 
estimated class-specific item probability of 0.95. In 
this case, since item endorsement is "typical" for 
both of these classes and the two classes can be char­
acterized by a high rate of endorsement for that item, 
they are not distinct from each other with respect to 

that item. Now consider two classes, one of which 
has an estimated class-specific item probability of 
0.90 and another with an estimated class-specific 
item probability of0.05. In this case, each class has 
good homogeneity with respect to the item and they 
also have a high degree of separation because the first 
class may be characterized by a high rate of item 
endorsement whereas the other class may be charac­
terized by a high rate of item non-endorsemenr. To 
quantify class separation between Class j and Class 
k with respect to a particular item, m, compute the 
estimated item endorsement odds ratio as given by: 

Thus, ORmljk is the ratio of the odds of endorse­
mem of item min Class j to the odds of endorsement 

of item m in Class k. A large ORmljk > 5 (corre­
sponding to approximately W111 ij > .7 and Wmlk < 
.3) or small ORmljk < .2 (corresponding to approx­
imately Wmij < .3 and Wmlk > .7) indicates a high 
degree of separation between Classes j and k with 
respect to item m. Thus, high class homogeneity 
with respect to an item is a necessary but not suffi­
cient condition for a high degree of class separation 
with respect to an item. 

I should note here that although simply tak­
ing the ratio of the class-specific item response 
probabilities may seem more intuitive, the use of 
the odds ratio of item response rather than the 
response probability ratio is preferred because the 
odds ratio doesn't depend on whether you empha­
size item endorsement or item non-endorsement 
separation or whether you are assessing the item­
endorsement separation for classes with relatively 
high endorsement rates overall or low endorse­
ment rates overall for the item in question. For 

example, an ORmljk of 0.44 corresponding ro 
Wmij = .80 versus Wmlk = .90 is the same as 

the ORmijk corresponding to W111ij = .10 versus 
Wmlk = .20, whereas class-specific item probabil­
ity ratios would be .80/.90 = 0.87 and .10j.20 
= 0.50. 

Class Proportions. It is possible, to a certain extent, 
to use the class proportion values themselves to 

assign meaning to the classes. Consider the case 
in which you have a population-based sample and 
one of the resultant classes has an estimated class 
proportion of greater than 0.50-that is, the class 
represents more than 50o/o of the overall popula­
tion. Then part of your interpretation of this class 
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may include an attribution of "normal," "regular," 
or "typical" in that the class represents the statisti­
cal majority of the overall population. Similarly, if 
you had a resultant class with a small estimated class 
proportion (e.g., 0.10) part of your interpretation 
of that class might include an attribution of "rare," 
"unusual," or "atypical," ever mindful that such 
attribution labels, depending on the context, could 
carry an unintended negative connotation, implying 
the presence of deviance or pathology in the sub­
population represent by that class. Also remember 
that the estimated class proportion reflects the dis­
tribution of the latent classes in the sample. Thus, if 
you have a nonrandom or nonrepresentative sample, 
exercise caution when using the estimated class pro­
portions in the class interpretations. For example, 
a "normal" class in a clinical sample may still be 
present in a nonclinical sample but may have a 
much smaller "atypical" representation in the overall 
population. 

Hypothetical Example. Continuing with the 
hypothetical example of a three-class LCA with five 
binary indicators, Table 25.1 provides hypotheti­
cal model-estimated item response probabilities for 
each class along with the item response odds ratios 
calculated following Equation 7. Classes 1, 2, and 3 
all have high homogeneity with respect to items UJ, 

u2, and u4 because all class-specific item response 
probabilities are greater than 0.70 or less than 0.30. 
Class 1 also has high homogeneity with respect to 
item u3, whereas Classes 2 and 3 do not. Thus, 
Classes 2 and 3 are not well characterized by item 
u3-that is, there is not a response to item U3 that 
typifies either Class 2 or 3. None of the classes are 
well characterized by i tern U5, and this might be an 

item that is considered for revision or elimination in 
future studies. 

Class 1 is well separated from Class 2 by all the 

items except the last, with 0Rmll,2 > 5. Class 1 is 
not well distinguished from Class 3 by items UJ and 
u2 but is well separated from Class 3 by items u3 and 
u4. Classes 2 and 3 are well separated by items UJ and 
u2 but not by items u3 and u4. Thus, as a result of 
Classes 2 and 3 not being well characterized by item 
u3, they are consequently not distinguishable from 
e3;ch other with respect to item u3. Because none 
of the classes have a high degree of homogeneity 
with respect to item u5, none of the classes are well 
separated from each other by that item. 

The class homogeneity and separation informa­
tion contained in Table 25.1 is usually depicted 
graphically in what is often referred to as a "profile 
plot" in which the class-specific item probabilities 
(y-values) are plotted in a line graph for each of 
the items (x-values). Figure 25.3 depicts a profile 
plot using the hypothetical model results presented 
in Table 25.1. I have added horizontal lines to the 
profile plot at 0.70 and 0.30 to assist in the visual 
inspection with respect to both class homogeneity 
and class separation. Class 1 can be interpreted as 
a group of individuals with a high propensity for 
endorsing items u1 - 114; Class 2, a group of indi­
viduals with a low propensity for endorsing items UJ, 

u2, and u4; and Class 3, a group of individuals with 
a high propensity for endorsing item UJ and u2 with 
a low propensity for endorsing item u4. Notice that I 
do not use items with low class homogeneity for the 
interpretation of that class nor do I use language in 
the class interpretation that would imply a class sep­
aration with respect to an item that isn't meaningful. 

Table 25.1. Hypothetical Example: Model-Estimated, Class-Specific Item Response 
Probabilities and Odds Ratios Based on a Three-Class Unconditional Latent Class Analysis 

0\nik ORmlik 

Item Class 1 (70%) Class 2 (20%) Class 3 (10%) Class 1 vs. 2 Class 1 vs. 3 

UJ 0.90* 0.10 0.90 81.00** 

U2 0.80 0.20 0.90 16.00 

ll3 0.90 0.40 0.50 13.50 

U4 0.80 0.10 0.20 36.00 

U5 0.60 0.50 0.40 1.50 

*Item probabiliries >0.7 or <0.3 are boWed to indicate a high degree of class homogeneity. 
**Odds mios >5 or <0.2 are balded to indicate a high degree of class separation. 

1.00 

0.44 

9.00 

16.00 

2.25 
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Class 2 vs. 3 

0.01 

0.03 

0.67 

0.44 

1.50 



-.- Class 1 (70'V.•) - •- Class 2 (20%) 
1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 ---
0.10 .. --
0.00 

ul uz 

Figure 25.3 H)'pothctical example: Class-spL'Cific item probability profile plot for a three-class unconditional LCA. 

For example, both Classes 2 and 3 are interpreted 
as groups of individuals with low propensity for 
endorsing item u4, bur I do not, in the interpre­
tation ofCla..~scs 2 and 3, imply that the two classes 
arc somehow distinct with respect to u4--only that 
they ;u-c both distinct form Class I with respect to 
u4. I am also careful in my inrerpreration of the 
classes with categorical indicators to use explicit lan­
guage rq,>arding the probability or propensity of item 
endorsemenr rather than language that might incor­
rectly imply continuous indicators. For example, in 
this setting it would be incorrect to interpret Class 1 
as a group of individuals with high levels of u1 and 
ttz with low levels of u4, on average. 

Based on the estimated class proportions, a..>sum­
ing a random and representative sample from the 
overall population, one might also apply a modifier 
label of "normal" or "typical" ro Class 1 because 
irs members make up an estimated 70% of the 
population. 

The next three subsections present some of the 
technical derails ofLCA related m model estimation, 
model selection, and missing data. For the novice 
mixture modelers, I suggest that you may want to 

skip these subsections on your first reading of this 
chapter and go directly to the real data example rhar 
follows. 

Model Estimation 
As discussed in the mixture modeling historical 

overview, the most significant turning point for mix­
ture modeling estimation was the development of 

the EM algorithm by Dempster, Laird, and Rubin 
(1977) for maximum likelihood (ML) estimation 
from incomplete data and the realization rhat if 
one reconceives of latent class membership as miss­
ing class membership, then the EM algorithm can 
be used to obtain maximum likelihood estimates 
(MLEs) of LCA parameters. 

The first step in any ML estimation is specifying 
the likelihood function. The complete data likeli­
hood fw1ction, pur simply, is rhe probability density 
of all the data (the array of all values on all variables, 
latent and observed, in the model for all individuals 
in the sample) given a set of parameten; values. Max­
imizing the likelihood function with respect to those 
parameters yields rhe maximum likelihood estimates 
(MLEs) of those parameters-that is, the MLEs are 
the values of the parameters that maximize the like­
lihood of the data. For a traditional LCA model, the 
complete data likelihood for a single individual i, 
with the missing latent class variable, CiJ is given by 

/;(8) = Pr(u;, c;l8) = Pr(u;lci> 8) · Pr(c;l8), 
(8) 

where 8 is a vector of all the model parameters 
to be estimated. Typically, it is assumed that all 
cases are idemically distributed such that rhe indi­
vidual likelihood function, a..~ expressed in Equation 
8, is applicable for all cases. In the hypotheti­
cal LCA example with five binary indicators and 
three classes, 8 would include 18 separate param­
eters: all the class-specific item response proba­
bilities along with the class proportions-that is, 
8 = (W.jJ, W.j2 1 W.j3 1 Jl't, 1l'2, Jr3), With W.jk = 
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(wllk> w2lk• w3lk> W4ik• W5jk). The likelihood func­
tion, L, for the whole sample is just the prod­
uct of the individual likelihoods when assuming 
that all individuals in the sample are independent 
observations-that is, L(S) = D l;(S). Usually, 
it is easier mathematically to maximize the natural 
log of the likelihood function, In (L(S)) = LL(S). 
Because the natural log is a monotonically increas­
ing function, the values for e that maximize the 
log likelihood function are the maximum likelihood 

estimates, eML· 
For most mixture models, with all individuals 

missing values for c, it is not possible obtain the 
MLEs by just applying the rules of calculus and solv­
ing a system of equations based on partial derivatives 
of the log likelihood function with respect to each 
parameter-that is, there is not a closed-form solu­
tion. Rather, an iterative approach must be taken 
in which successive sets of parameters estimates are 
tried using a principled search algorithm with a pair 
of stopping rules: ( 1) a maximum number of itera­
tions and (2) a convergence criterion. To understand 
the concept behind iterative maximum likelihood 
estimation, consider the following analogy: imagine 
that the log likelihood function is a mountain range 
and the estimation algorithm is a fearless mountain 
climber. The goal of the climber is to reach the high­
est peak (global maximum) in the range, but the 
climber can't see where the highest peak is from the 
base of the mountain range. So the climber chooses 
an informed starting point (the initial staring val­
ues for the parameter estimates), using what he can 
see (the observed data), and begins to climb. Each 
foothold is a new set of parameter estimates. After 
each step the climber stops and assesses which of the 
footholds within reach (nearby parameter estimates 
values) will give him the greatest gain in height in 
a single step and he then leaves his current posi­
tion to move to this higher point. He repeats this 
stepping process until he reaches a peak such that a 
step in any direction either takes him lower or not 
noticeably higher. The climber then knows he is at 
the peak (the convergence criterion is met), and it 
is here that he plants his flag, at the maximum log 
likelihood function value. But the climber, even as 
skilled as he is, cannot climb forever. He has limited 
food and water and so even if he has not reached the 
peak, there is a point at which he must stop climb­
ing (the maximum number ofiterations). If he runs 
out of supplies before he reaches a peak (exceeds the 
maximum number of iterations before meeting the 
convergence criterion), then he does not plant his 
flag (fails to converge). 

As previously noted, the most common estima­
tion algorithm in use for mixture models is the 
EM algorithm (Dempster, Laird, & Rubin, 1977; 
Muthen & Shedden, 1999). Each iteration of the 
EM algorithm involves an expectation step (E-step) 
in which the estimated expected value for each miss­
ing data value is computed based on the current 
parameters estimates and observed data for the indi­
vidual. In the case of LCA, the E-step estimates 
expected class membership for each individual. The 
E-step is followed by a maximization step (M-step) 

in which new parameter estimates, e. are obtained 
that maximize the log likelihood function using the 
complete data from the E-step. Those parameter 
estimates are then used in the E-step of the next 
iteration, and the algorithm iterates until one of the 
stopping rules applies. 

Although it would seem to go without saying, 
for the EM algorithm "mountain climber" to have 
even the slightest possibility of success in reaching 
the global peak of the log likelihood function, such 
a peak must exist. In other words, the model for 
which the parameters are being estimated must be 
identified-that is, there must be a unique solution 
for the model's parameters. However, this neces­
sary fact may not be as trivial to establish as it 
would initially appear. When there is not a closed­
form solution for the MLEs available, you cannot 
prove, mathematically speaking, that there is a global 
maximum. In this case, you are also unable to 
determine, theoretically, whether the solution you 
obtain from the estimation procedure is a global or 
local maximum nor can you tell, when faced with 
multiple local maxima (a mountainous range with 
many peaks of varying heights), whether the high­
est local maxima is actually the global maximum 
(highest peak). If the estimation algorithm fails to 
converge, then it could be an indication that the 
model is not theoretically identified, but it is not 
solid proof. There is also a gray area of empirical 
underidentification and weak identification in the 
span between identified models and unidentified 
models (i.e., models with no proper solution for all 
the model's parameters-failure of even one param­
eter to be identified causes the model to be under- or 
unidentified). This predicament is made more trou­
blesome by the reality that the log likelihood surfaces 
for most mixture models are notoriously difficult for 
estimation algorithms to navigate, tending to have 
multiple local maxima, saddle points, and regions 
that are virtually flat, confusing even the most expert 
"climbers." To better understand some of the chal­
lenging log likelihood functions that may present 
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themselves, I discuss some exemplar log likelihood 
fiu1ction plms for a unidimensional parameter space 
while providing some practical strategies to apply 
during the mixture model estimation process ro help 
ensure the model you specify is well idcnrilied and 
the MLR~ you obtain arc stable and trusrworrl1y 
solutions corresponding ro a global maximum. 

Figure 25.4 has six panels that reprcsenr a range 
of hypothetical log likelihood rw1ctions for a single 
parameter, e. The unimodal log likelihood func­
tion in Figure 25.4.a has only one local maximum 

that is the global maximum. 8(o)iS the MLE fore 

because ilie LL(IJ(oJ) is the maximum value achieved 
by LL(8) across all values of e. It is clear that no 
martcr what scarring position on the x-axis (start­

ing value, e(r)> for the estimate of the parameter, 
e) is selected, the mountain climber would easily 
find that global peak. This LL function reflects a 
wcll-idemified model. There is one unique global 
maximum (MLE) that would be readily reached 
from any starting poinr. Now examine the multi­
modal likelihood function in Figure 25.4.b. There 

is still a single global maximum, O(o), bur there arc 

three other local maxima, e( l) A2)' and 8(3}. You can 
imagine that if you started your algorirlun moun­

tain climber at a point IJ(s) < 8(2), then he might 
conclude his climb, reaching the convergence cri­
terion and planting his flag, on the peak of the 

log likelihood above 0(2)• never realizing iliere were 
higher peaks down range. Similarly, if you started 

your climber at a point {J(s) > 8(1)• then he might 

(a) (b) 

3 ID 
:-1' 
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0,,, 

(d) (c) 

§: ~ ..J 
:::1 ..J 
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conclude his climb on the peak of the log likelihood 

aboveHnJ• never reaching rhe global peakabovcR(O)· 
With a log likelihood function like rhc one 

depicted in Figure 25.4.b, one could expect the esti­
mation algorithm to converge on a local rather than 
global maximum. If you obtained only one solu­

tion, iJ, using one starring value, {J(s)• then you 

have no way of knowing whether 8 corresponds 
ro the highest peak in the range or just a peak of 
the log likelihood in the range of e. Because it 
isn't possible to resolve this an1biguiry mathemat­
ically, it must be resolved empirically. In keeping 
with the analogy, if you want to find me highest 
peak in the range, then ramer than retaining a single 
expert mountain climber, you could rerain the ser­
vices of a whole army of expert mountain climbers. 
You start each climber ar a differem poim in the 
range. A few will "converge" to the lower local peaks, 
but most should reach the global peak. The more 
climbers from different scarring points (random sets 
of srarting values) that converge ro the same peal< 
(solution replication), the more confident you arc 
in that particular peak being the global maximum. 
This strategy corresponds to using multiple sets of 
random starting values for the EM algoriilim, iter­
ating each set of starting values to convergence, and 
demanding a high frequency (in absolute and rela­
tive terms) of replication of the best log likelihood 
value. 

1 should note here that although replication of 
the maximum likelihood solution from different 

(c) 

<D' :r 

8 ~L~l) 8 

(l) 

8 

Figure 25.4 Hypothetical log likelihood (LL) functions for a single parameter, IJ: (a) unimodal LL; (b) multimodal LL; (c) bimodal 
LL with proximate local maxima; (d) bimodal LL with distant local maxima; (e) unbounded LL; and (f) LL with Hat region. 



sets of starting values increases confidence in that 
solution as the global optimum, replication of the 
likelihood value is neither a necessary nor a suffi­
cient requirement to ensure that a global {rather 
than a local) maximum has been reached {Lubke, 
2010). Thus, failure to replicate the best log like­
lihood value does not mean that you must discard 
the model. However, further exploration should be 
done to inform your final model selection. Consider 
the cases depicted in Figures 25.4.c and 25.4.d for 

which there is a global maximum at Bco) and a local 
maximum of nearly the same log likelihood value 
at B(l). In cases such as these, the relative frequency 
of replication for each of the two solutions across a 
random set of start values may also be comparable. 
In Figure 25.4.c, not only are the two solution very 
close in terms of the log likelihood values, they are 
also close to each other in the range of e such that 

Bco) ~ B(l)· In this case you can feel comforted by 
the fact that even if you had inadvertently missed 
the global maximum at O(o) and incorrectly taken 

0(1) as your MLE, your inferences and interpreta­
tions would be close to the mark. However, in the 
case depicted in Figure 25.4.d, B(l) is quite distant 

on the scale of e from B(o) and you would not want 

to base conclusions on the B(l) estimate. To get a 
sense of whether the highest local peaks in your log 
likelihood function are proximal or distal solutions 
in the parameter space, obtain the actual parame­
ter estimates for the best log likelihood value across 
all the sets of random starting values and make a 
descriptive comparison to the parameter estimates 
corresponding to the "second-best" log likelihood 
value. (For more about comparing local maximum 
log likelihood solmions to determine model stability, 
see, for example, Hipp & Bauer, 2006.) 

I pause here to make the reader aware of a nag­
ging clerical issue that must be tended to whenever 
different maximum likelihood solutions for mixture 
models arc being compared, whether for models 
with the same or differing numbers of classes: label 
switching (Chung, Loken, & Schafer, 2004). The 
ordering of the latent classes as they arc outputted by 
an estimation aJgorithm are completely arbitrary­
for example, "Class 1" for starting values Set 1 may 
correspond to "Class 3" for starting values Set 2. 
Even solutions identical in maximum likelihood val­
ues can have class labels switched. This phenomenon 
is not a problem statistically speaking-it merely 
poses a bookkeeping challenge. So be cognizant of 
label switchingwheneveryou are comparing mixture 
model solutions. 

Figures 46.4.e and 46.4.f depict log likelihood 
functions that would be likely to result in either 
some or all of the random sets of starting values fail­
ing to converge--that is, the estimation algorithm 
stops because the maximum number of iterations 
is exceeded before a peak is reached. In Figure 
25.4.e, the log likelihood function is unbounded 
at the boundary of the range of e (which is not an 
uncommon feature for the LL function of mixture 
models with more complex within-class variance­
covariance structures) but also has a maximum in the 
imerior of the range of e . &co) represents the proper 
maximum likelihood solution, and that solution 
should replicate for the majority of random sets of 
stating values; however, some in the army of expert 
moumain climbers are likely to find themselves 
climbing the endless peak, running out of supplies 
and stopping before convergence is achieved. The 
log likelihood function in Figure 25.4.f corresponds 
to an unidentified model. The highest portion of 
the log likelihood function is flat and there are 
not singular peaks or unique solutions. No matter 
where the estimation algorithm starts, it is unlikely 
to converge. If it does converge, then that solu­
tion is unlikely to replicate because it will be a false 
optimum. 

A model that is weakly identified or empirically 
underidentijied is a model that, although theoreti­
cally identified, has a shape with particular sample 
data that is nearly flat and/or has many, many local 
maxima of approximately the same height (think: 
egg-crate) such that the estimation algorithm fails to 

converge for all or a considerable number of random 
sets of starting values. For a model to be identified, 
there must be enough "known" or observed informa­
tion in the data to estimate the parameters that are 
not known. Ensuring positive degrees of freedom for 
the model is a necessary but not sufficient criterion 
for model identification. As the ratio of "known" 
to "unknown" decreases, the model can become 
weakly identified. One quantification of this ratio 
of information for MLE is known as the condition 
number. It is computed as the ratio of the smallest 
to largest eigenvalue of the information matrix esti­
mate based on the maximum likelihood solution. A 
low condition nUinber, less than 1 o-6' may indicate 
singularity (or near singularity) of the information 
matrix and, hence, model non-identification (or 
empirical underidentificarion) (Muthen & Muthen, 
1998-2011). A final indication that you may be 
"spreading" your data "too thin" is class collapsing, 
which can occur when you are attempting to extract 
more latent classes than your data will support. This 
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collapsing usually presents as one or more estimated 
class proportions nearing zero but can also emerge 
as a nearly complete lack of separation between two 
or more of the latent classes. 

Su·ategies to achieve identification all involve 
reducing the complexity of the model to increase the 
ratio of "known" to "unknown" information. The 
number of latent classes could be reduced. Alter­
natively, the response categories for one or more of 
the indicator variables in the measurement model 
could be collapsed. For response categories with low 
frequencies, this category aggregation will remove 
very litde information abour population heterogene­
ity while reducing the number of class-specific item 
parameters that must be estimated. Additionally, 
one or more items might be combined or elimi­
nated from the model. This item-dropping must be 
done with extreme care, making sure that removal 
or aggregation does not negatively impact the model 
estimation (Collins & Lanza, 2010). Conventional 
univariate, bivariate, and multivariate data screening 
procedures should result in careful data recodingand 
reconfiguration that will protect against the most 
obvious threats to empirical identification. 

In summary, MLE for mixture models can 
present statistical and numeric challenges that must 
be addressed during the application of mixture 
modeling. Withour a closed-form solution for the 
maximization of the log likelihood function, an 
iterative estimation algorithm-typically the EM 
algorithm-is used. It is usually not possible to prove 
that the model specified is theoretically identified, 
and, even ifitwas, rhere could still be issues related to 
weak identification or empiricalunderidentificarion 
that causes problems with convergence in estima­
tion. Furthermore, since the log likelihood surface 
for mixtures is often mulcimodal, if the estimation 
algorithm does converge on a solution, there is no 
way to know for sure that the point of convergence 
is at a global rather than local maximum. To address 
these challenges, it is recommended the following 
strategy be utilized during mixture model estima­
tion. First and foremost, use multiple random sets 
of starting values with the estimation algorithm (it 
is recommended that a minimum of 50-100 sets of 
extensively, randomly varied starting values be used 
(Hipp & Bauer, 2006}, but more may be necessary 
to observe satisfactory replication of the best max­
imum log likelihood value} and keep track of the 
information below: 

1. the number and proportion of sets of random 
starting values that converge to proper solution (as 

failure to consistendy converge can indicate weak 
identification); 

2. the number and proportion of replicated 
maximum likelihood values for each local and the 
apparent global solution (as a high frequency of 
replication of the apparent global solution across 
the sets of random starting values increases 
confidence that the "best" solution found is the 
true maximum likelihood solution); 

3. the condition number for the best model (as a 
small condition number can indicate weak or 
nonidemification}; and 

4. the smallest estimated class proportion and 
estimated class size among all the latent classes 
estimated in the model (as a class proportion near 
zero can be a sign of class collapsing and class 
overextraction). 

This information, when examined collectively, 
will assist in tagging models that are nonidentified 
or not well identified and whose maximum likeli­
hoods solutions, if obtained, are not likely to be 
stable or trustworthy. Any nor well-identified model 
should be discarded from further consideration or 
mindfully modified in such a way that the empirical 
issues surrounding the estimation for that particular 
model are resolved without compromising the the­
oretical integrity and substantive foundations of the 
analytic model. 

Model Building 
Placing LCA in a broader latent variable model­

ing framework conveniently provides a ready-made 
general sequence to follow with respect to the model­
building process. The first step is always to establish 
the measurement model for each of the latent vari­
ables that appear in the structural equations. For 
a traditional LCA, this step corresponds to estab­
lishing the measurement model for the latent class 
variable. 

Arguably, the most fundamental and critical fea­
ture of the measurement model for a latent class 
variable is the number of latent classes. Thus far, in 
my discussion of model specification, interpretation, 
and estimation, the number oflatent classes, K, has 
been treated as if it were a known quantity. How­
ever, in most all applications of LCA, the number 
of classes is not known. Even in direct applications, 
when one assumes a priori that the population is 
heterogeneous, you rarely have specific hypotheses 
regarding the exact number or nature of the subpop­
ulations. You may have certain hunches about one or 



more subpopulations you expect to find, but rarely 
are these ideas so well formed that they translate 
into an exact total number of classes and constraints 
on the class-specific parameters that would inform 
a measurement model specification similar to the 
sort associated with CFA. And in indirect appli­
cations, as you are only interested in making sure 
you use enough mixture components (classes) to 
adequately describe the overall population distri­
bution of the indicator variables, there is no pre­
formed notion of class number. Thus, in either case 
{direct or indirect), you must begin with the model 
building with an exploratory class enumeration 
step. 

Deciding on the number of classes is often the 
most arduous phase of the mixture modeling pro­
cess. It is labor intensive because it requires consider­
ation {and, therefore, estimation) of a set of models 
with a varying numbers of classes, and it is compli­
cated in that the selection of a "final" model from 
the set of models under consideration requires the 
examination of a host of fit indices along with sub­
stantive scrutiny and practical reflection, as there is 
no single method for comparing models with differ­
ing numbers oflatent classes that is widely accepted 
as best {Muthen & Asparouhov, 2006; Nylund, 
Asparouhov, & Murhen, 2007). This section first 
reviews the preferred tools available for the statistical 
evaluation of latent class models and then explains 
how these tools may be applied in concert with sub­
stantive evaluation and the parsimony principle in 
making the class enumeration determination. The 
tools are divided into three categories: {1) evalua­
tions of absolute fit; {2) evaluations of relative fit; 
and (3) evaluations of classification. 

Absolute Fit. In evaluating the absolute fit of 
a model, you are comparing the model's repre­
sentation of the data to the actual data-that is, 
the overall model-data consistency. Recall that in 
traditional LCA, the observed data for individual 
responses on a set of categorical indicator variables 
can be summarized by a frequency table where each 
row represents one of the finite number of pos­
sible response patterns and the frequency column 
contains the number of individuals in the sam­
ple manifesting each particular pattern. The entire 
n x M data matrix can be identically represented by 
R X (M + 1) frequency table where R is the number 
of total observed response patterns. For example, 
in the hypothetical LCA example with five binary 
indicator variables, there would be 25 = 32 possi­
ble response patterns with R :::;: 32. Assuming for 
the moment that R = 32, all the observed data on 

those five binary indicators could be represented in 
the following format: 

Ul U2 1l3 U4 us fr 
1 1 1 1 1 fi 
1 1 1 1 0 fi 
1 1 0 1 13 

0 0 0 0 0 /32 

where fr is the number of individuals in the sample 
with response pattern r corresponding to specific 
responses to the us displayed in row r of the table 
and 'Lfr = n. Thus, when evaluating absolute fit 
for a latent class measurement model, comparing 
the model representation of the data to the actual 
data will mean comparing the model-estimated fre­
quencies to the observed frequencies across all the 
response patterns. 

The most common test of absolute fit for 
observed categorical data and the one preferred in 
the LCA setting is the likelihood ratio (LR) chi­
square goodness-of-fit test (Agresti, 2002; Collins & 
Lanza, 201 0; McCutcheon, 1987). The test statistic, 
XfR {sometime denoted by G2 or L2), is calculated 
as follows: 

where R is the total number of observed data res­
ponse patterns; ..fr is the observed frequency count for 

the response pattern r; and j,. is the model-estimated 
frequency count for the response pattern r. Under 
the null hypothesis that the data are governed by the 
assumed distribution ofthe specified model, the test 
statistic given in Equation 9 is distributed chi-square 
with degrees of freedom given by 

'tlfx2 = R- d- 1, 
LR 

{10) 

where d is the number of parameters estimated in 
the model. When the model fits the sample data 

perfectly (i.e., fr = j,., Vr), the test statistic, XfR, is 
equal to zero and the p-value is equal to 1. Failure to 
reject the null hypothesis implies adequate model­
data consistency; rejection of the null implies the 
model does not adequately fit the data-the larger 
the test statistic, the larger the discrepancy and the 
poorer the fit between the model representation and 
the actual observed data. 
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Although it is very useful to have a way ro statis­
tical evaluate overall goodness-of-fit of a model to 
the data, the XfR rest statistic relies on large sam­
ple theory and may not work as intended (i.e., XfR 
may not be well approximated by a chi-square dis­
tribution under the null hypothesis, marking the 
p-values based on that dimibution of question­
able validity) when the data set is small or the 
data are sparse, meaning there is a non-negligible 
number of response patterns with small frequencies 
(Agresti, 2002). There are some solutions, including 
parametric bootstrapping and posterior predictive 
checking, that are available ro address this short­
coming (Collins & Lanza, 2010) bur they are not 
widely implemented for this particular goodness-of­
fit test in most mixture modeling software and are 
beyond the scope of this chapter. 

Chi-square goodness-of-fir rests, in general, are 
also known to be sensitive to what would be consid­
ered negligible or inconsequential misfit in very large 
samples. In these cases, the null hypothesis may be 
rejected and rhe model determined to be statistically 
inadequate but, upon closer pracrical inspection, 
may be ruled to have a "close enough" fit. In factor 
analysis models, there is a wide array of closeness­
of-fit indices for one to reference in addition to 
the exact-fit chi-square rest, bur this is nor the case 
for mixture models. However, you can still inspect 
the closeness-of-fit for larenr class models by exam­
ining the standardized residuals. Unlike residual 
diagnostics in the regression model, which compare 
each individual's predicted our come ro the observed 
values, or residual diagnostics in facror analysis, 
which compare rhe model-estimated means, vari­
ances, covariances, and correlations to the observed 
values, the LCA residuals are consrmcted using 
the same information thar goes imo the overall 
goodness-of-fit test statistic: rhe model-estimated 
response pattern fTequencies and the observed fre­
quencies. The raw residual for each response pattern 
is simply the difference between the observed and 

model-estimated frequency, res,. = fr - j,., and the 
standardized residual is calculated by 

(11) 

The values of the standardized residuals can be 
compared to a standard normal distribution (Haber­
man, 1973), with large values (e.g., jstdresrl > 
3) indicating response patterns that were more 
poorly fit, contributing the most to the XfR and 

the rejection of the model. Because the number 
of possible response patterns can become large 
very quickly with increasing numbers of indicators 
and/or response categories per indicator, it is com­
mon to have an overwhelmingly large number of 
response patterns, many with observed and expected 
frequencies that are very small-that is, approach­
ing or equal to zero. However, there is usually a 
much smaller subset of response patterns with rel­
atively high frequencies, and it can be helpful to 
focus your attention on the residuals of these pat­
terns where the bulk of data reside (Muthen & 
Asparouhov, 2006). In addition to examining the 
particular response patterns with large standardized 
residuals, it is also relevant to examine the overall 
proportion of response parrernswith large standard­
ized residuals. For a well-fitting model, one would 
still expect, by chance, to have some small per­
centage of the response patterns to have significant 
residual values, so you would likely only rake pro­
portions in notable excess of, say, 1 o/o to 5%, to be 
an indication of a poor-fitting model. 

Relative Fit. In evaluating the relative fir of a 
model, you are comparing the model's representa­
tion of the data to another model's representation. 
Evaluations of relative fir do not tell you anything 
about rhe absolute fit so keep in mind even if one 
model is a far bener fir to the data than another, both 
could be poor in overall goodness of fit. 

There are two categories of relative fit compar­
isons: (1) inferential and (2) information-heuristic. 
The mosrcommon ML-based inferential comparison 
is the likelihood ratio rest (LRT) for nested mod­
els. For a Model 0 (null model) ro be nested within 
a Model 1 (alternative model), Model 0 must be a 
"special case" of Model1-thar is, Model 0 is Model 
1 with certain parameter restrictions in place. The 
likelihood ratio test statistic (LRTS) is computed as 

Xlff = -2 (LLo- LLt), (12) 

where LLo and LL 1 are the maximized log likelihood 
values to which the EM algorithm converges during 
the model estimation for Model 0 and Model 1, 
respectively. Under the null hypothesis that there is 
no difference between the two models (i.e., that the 
parameter resrricrions placed on Model 1 to obtain 
Model 0 are restrictions that march the true popula­
tion model) and with certain regularity conditions 
in place (e.g., the parameter restrictions do not fall 
on the boundary of the parameter space), Xlff has 

a chi-square distribution with degrees of freedom 
given by 

(13) 



where d1 and do are the numbers of parameters 
estimated in Model 1 and Model 0, respectively. 
Failure to reject the null hypothesis implies there 
is not statistically significant difference in fit to the 
data between Model 0 and Model 1. Thus, Model 
0 would be favored over Model 1 since it is a sim­
pler model with comparable fit. Rejection of the 
null hypothesis would imply that the parameter 
restrictions placed on Model 1 to obtain Model 0 
resulted in a statistically significant decrement of fit. 
In general, this result would lead you to favor Model 
1, unless the absolute fit of Model 0 was already 
deemed adequately. Following the principle of par­
simony, if Model 0 had adequate absolute fit, then 
it would likely be favored over any more compli­
cated and parameter-laden model, even if the more 
complicated model fit significantly better, relatively 
speaking. 

There are two primary limitations of the like­
lihood ratio test comparison of relative model fit: 
(1) it only allows the comparison of two models at a 
time, and (2) those two models must be nested under 
certain regularity conditions. Information-heuristic 
tools overcome those two limitations by allowing 
the comparison of relative fit across a set of mod­
els that may or may not be nested. The downside 
is the comparisons are descriptive-that is, you can 
use these tools to say one model is "better" than 
another according to a particular criterion but you 
can't test in a statistical sense, as you can with the 
XJiff' how much better. Most information-heuristic 

comparisons of relative. fit are based on information 
criteria that weigh the fit of the model (as captured by 
the maximum log likelihood value) in consideration 
of the model complexity. These criteria recognize 
that although one can always improve the fit of 
a model by adding parameters, there is a cost for 
that improvemenc in fit to model parsimony. These 
information criteria can be expressed in the form 

- 2LL +penalty, (14) 

where LL is the maximized log likelihood function 
value to which the EM algorithm converges dur­
ing the model estimation. The penalty term is some 
measure of the complexity of the model involving 
sample size and the number of parameters being 
estimated in the model. For model comparisons, a 
particular information criterion value is computed 
for each of the models under consideration, and the 
model with the minimum value for that criterion is 
judged as the (relative) best among that set of mod­
els. What follows is a cataloging of the three most 
common information criteria used in mixture model 

relative fit comparisons. These criteria differ only in 
the computation of the penalty term. 

• Bayesian Information Criterion (BIC; Schwarz, 
1978) 

BIG= -2LL+dlog(n), (15) 

where d is the number of parameters estimated in 
the model; n is the number of subjects or cases, in 

the analysis sample. 
• Consistent Akaike's Information Criterion 

(CAIC; Bozdogan, 1987) 

CAlC= -2LL + d(log(n) + 1]. (16) 

• Approximate Weight of Evidence Criterion 
(AWE; Banfield & Raftery, 1993) 

AWE= -2LL + 2d[log(n) + 1.5]. (17) 

Although the information-heuristic descriptive 
comparisons of model are usually ordinal in nature, 
there are a few descriptive quantifications of rela­
tive fit based on information criteria that, although 
still noninferential, do allow you to get a sense of 
"how much" better one model is relative to another 
model or relative to a whole set of models. The 
two quantifications presented here are based on 
rough approximations to comparisons available in a 
Bayesian estimation framework and have been pop­
ularized by Nagin (1999) in the latent class growth 
modeling literature. 

The first, the approximate Bayes Factor (BF), is 
a pairwise comparison of relative fit between two 
models, Model A and Model B. It is calculated as 

BFA,JJ = exp [SICA- SICs], (18) 

where SIC is the Schwarz InfOrmation Criterion 
(Schwarz, 1978), given by 

SIC = -0.5BIC. (19) 

BFA.B represents the ratio of the probability of 
Model A being the correct model to Model B being 
the correct model when Models A and B are con­
sidered the competing models. According to Jeffrey's 
ScaleofEvidence{Wasserman, 1997), 1 < BFA,B < 
3 is weak evidence for Model A, 3 < BFA,B < 10 is 
moderate evidence for Model A, and BFA,B > 10 is 
considered strong evidence for Model A. Schwarz 
(1978) and Kass and Wasserman (1995) showed 
that BFA,B as defined in Equation 18 is a reason­
able approximation of BFA,B when equal weight is 
placed on the prior probabilities of Models A and B 
(Nagin, 1999). 

The second, the approximate correct model prob­
ability (cmP), allows relative comparisons of each of 
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j models to an entire set of ]models under consid­
eration. There is a cmP value for each of the models, 
Model A (A= 1, ... , ]) compmed as 

p exp (SICA - S!Cmax) 
em A= J (20) 

L exp (S!Cj- S!Cmax) 
j=l 

where S/Cmax is the maximum SIC score of the} 
models under considerarion. In comparison w the 

BFA,B, which compares only rwo models, the cmP 
is a metric for comparing a set of more rhan rwo 
models. The sum of the cmP values across the set of 
models under consideration is equal m 1.00-that 
is, the true model is assumed to be one of the models 
in the set. Schwarz ( 1978) and Kass and Wasserman 
( 1995) showed thar cmP A as defined in Equation 20 
is a reasonable approximarion of the actual proba­
bility of Model A being the correct. model relative 
to rhe other j models under consideration when 
equal weight is placed on the prior probabilities of 

all rhe model (Nagin, 1999). The ratio of cmPA ro 
cmPB when the set of models under consideration is 
limited to only Models A and B reduces to BFA,B· 

Classification Diagnostics. Evaluating the preci­
sion of the latent class assignment for individuals 
by a candidate model is another way of assessing 
the degree of class separation and is most useful 
in direct applications wherein one of the primary 
objectives is to extract from the full sample empir­
ically well-separated, highly-differentiated groups 
whose members have a high degree of homogene­
ity in their responses on the class indicators. Indeed, 
if there is a plan ro conduct latent class assigtunem 
for use in a subsequem analysis-that is, in a mul­
tistage classify-analyze approach, the within-class 
homogeneity and across-class separation and dif­
ferentiation is of primary importance for assessing 
the quality of the model (Collins & Lanza, 2010). 
Quality of classification could, however, be com­
pletely irrelevant for indirect applications. Further, 
it is important to keep in mind that it is possible for a 
mixture model to have a good fir to the data bur still 
have poor latent class assignment accuracy. In other 
words, model classification diagnosrics can be used 
to evaluate the utility of the latent class analysis as a 
model-based clustering tool for a given set of indi­
cators observed on a particular sample but should 
not be used to evaluate the model-data consistency 
in either absolute or relative terms. 

All of the classification diagnostics presented here 
are based on estimated posterior class probabilities. 
Posterior class probabilities are the model-estimated 
values for each individual's probabilities of being in 

each of the latent classes based on the maximum 
likelihood parameter estimates and the individual's 
observed responses on the indicator variables. The 
posterior class probability for individual i corre­
sponding to latent Class k, 'Pit<• is given by 

-
1
) kl • [>r(uilci = k, H)· Pr(ci = k) 

Pik = r(ci = Uj,H) = • , 
Pr(uj) 

(21) 

where e is the set of parameter estimates for the 
class-specific item response probabilities and rhe 
class proportions. Standard post hoc model-based 
individual classification is done using modal class 
assignment such that each individual in rhe sample 
is assigned to the latent class for which he or she 
has the largest posterior class probability. In more 
formal terms, model-based modally assigned class 
membership for individual i, 1.\nodal.i> is given by 

Cmodal,i = k: max:(Pil, ... ,}ix) ='Pit<· (22) 

Table 25.2 provides examples of four individual 
sets of estimated posterior class probabilities and 
the corresponding modal class assignmenr for the 
hypothetical three-class LCA example. Although 
individuals 1 and 2 are both modally assigned to 
Class 1 , individual 1 has a ve1y high estimated poste­
rior class probability for Class 1, whereas individual 
2 is not well classified. If there were many cases like 
individual2, then the overall classification accuracy 
would be low as the model would do almost no bet­
ter than random guessing at predicting latent class 
membership. If there were many cases like individ­
ual 1 , then the overall classification accuracy would 
be high. The first classification diagnostic, relative 
entropy, offers a systematic summary of the lev­
els of posterior class probabilities across classes and 
individuals in the sample. 

Relative entropy, Ex, is an index that summa­
rizes the overall precision of classification for the 
whole sample across all the latent classes (Ran1asway, 
DeSarbo, Reibsrein, & Robinson, 1993). It is 
computed by 

II X 
L L [-hi< ln(Pik)] 

E 1 i=l k=l 
X = - ----::---:-::----

nlog(K) 
(23) 

Ex measures the posterior classification uncer­
tainty for a K -class model and is bounded 
berween 0 and 1; Ex = 0 when posterior 
classification is no better than random guessing 
and Ex = 1 when there is perfect posterior 
classification for all individuals in the sample-that 



Table 25.2. Hypothetical Example: Estimated 
Posterior Class Probabilities and Modal Class 
Assignment Based on Three-Class 
Unconditional Latent Class Analysis for Four 
Sample Participants 

i Pikl Cmodal(i) 

Pil Pn. Pi3 

0.95 0.05 0.00 1 

2 0.40 0.30 0.30 1 

3 0.20 0.70 0.10 2 

4 0.00 0.00 1.00 3 

is, max<Ji~>Pi2· ... ,}ix) = 1.00, Vi. Because even 
when Ex is close to 1.00 there can beahighdegreeof 
latent class assignment error for particular individu­
als, and because posterior classification uncertainty 
may increase simply by chance for models with more 
latent classes, Ex was never intended for, nor should 
it be used for, model selection during the class enu­
meration process. However, Ex values near 0 may 
indicate that the latent classes are not sufficiently 
well separated for the K classes that have been esti­
mated (Ramaswamy et al., 1993). Thus, EK may be 
used to identity problematic overextraction oflatent 
classes and may also be used to judge the utility of 
the LCA directly applied to a particular set of indica­
tors to produce highly-differentiated groups in the 
sample. 

The next classification diagnostic, the average 
posterior class probability (AvePP), enables evalua­
tion of the specific classification uncertainty for each 
of the latent classes. The AvePP for Class k, AvePPk> 
is given by 

AvePPk = Mean{hk• Vi: Cmod.-tl,i = k}. (24) 

That is, AvePPk is the mean of the Class k pos­
terior class probabilities across all individuals whose 
maximum posterior class probability is for Class k. 
In contrast to EK which provides an overall sum­
mary of latent class assignment error, the set of 
AvePPk quantities provide class-specific measures of 
how well the set of indicators predict class mem­
bership in the sample. Similarly to EK, AvePPk is 
bounded between 0 and 1; AvePPk = 1 when the 
Class k posteriori probability for every individual 
in the sample modally assigned to Class k is equal 
to 1. Nagin (2005) suggests a rule-of-thumb that 

all AvePP values be above 0.70 (i.e., AvePPk > 
.70, Vk) to consider the classes well separated and 
the latent class assignment accuracy adequate. 

The odds of correct classification ratio (OCC; 
Nagin, 2005) is based on the AvePPk and provides a 
similar class-specific summary of classification accu­
racy. The odds of correction classification ratio for 
Class k, OCCk, is given by 

OCCk = AveP~k/(1 - AvePPk) 

1Ckf(l- irk) 
(25) 

where irk is the model-estimated proportion for 
Class k. The denominator is the odds of correct 
classification based on random assignment using 
the model-estimated marginal class proportions, irk. 
The numerator is the odds of correct classification 
based on the maximum posterior class probabil­
ity assignment rule (i.e., modal class assignment). 
When the modal class assignment for Class k is no 
better than chance, then OCCk = 1.00. AsAvePPk 
gets close to the ideal value of 1.00, occk gets 
larger. Thus, large values of OCCk (i.e., values 5.00 
or larger; Nagin, 2005) for all K classes indicate a 
latent class model with good latent class separation 
and high assignment accuracy. 

The final classification diagnostic presented here 
is the modal class assignment proportion (mcaP). 
This diagnostic is also a class-specific index of clas­
sification certainly. The modal class assignment 
proportion for Class k, mcaPk, is given by 

11 

L I{cmodal.i = k} 
i=l mcaPk = ,..,., ,-'------,. (26) 

n 

Pur simply, mcaPk is the proportion of individ­
uals in the sample modally assigned to Class k. If 
individuals were assigned to Class k with perfect 
certainty, then mcaPk = irk. Larger discrepan­
cies between mcaPk and irk are indicative of larger 
latent class assignment errors. To gage the discrep­
ancy, each mcaPk can be compared to the to 95% 
confidence interval for the corresponding irk. 

Class Enumeration. Now that you have a full set 
of tools for evaluating models in terms of absolute 
fit; relative fir, and classification accuracy, I can dis­
cuss how to apply them to the first critical step 
in the latent class modeling process: deciding on 
the number of latent classes. This process usually 
begins by specifYing a one-class LCA model and 
then fitting additional models, incrementing the 
number of classes by one, unril the models are no 
longer well identified (as defined in the subsection 
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"Model Estimation"). The fit of each of the mod­
els is evaluated in the absolute and relative terms. 
The parsimony principle is also applied such that 
the model with the fewest number of classes that is 
statistically and substantively adequate and useful is 
favored. 

In terms of the relative fit comparisons, the 
standard likelihood ratio chi-square difference test 
presented earlier cannot be used in this setting, 
because the necessary regularity conditions of the 
test arc violated when comparing a K -class model to 

a (K- g)-class model (McLachlan & Peel, 2000); 
in other words, although XJiff can be calculated, 

it does not have a chi-square sampling distribution 
under the null hypothesis. However, two alterna­
tives, currently implemented in mainstream mixture 
modeling software, are available: (1) the adjusted 
Lo-Mendell-Rubin likelihood ratio test (adjusted 
LMR-LRT; Lo, Mendell, & Rubin, 2001), which 
analytically approximates the x;iff sampling distri­

bution when comparing a K -class to a (K-g)-class 
finite mixture model for which the classes differ 
only in the mean structure; and (2) the parametric 
bootstrapped likelihood ratio test (BLRT), recom­
mended by McLachlan and Peel (2000), which 
uses bootstrap samples (generated using parameter 
estimates from a [K -g)-class model) to empiri­
cally derive the ::.<1mpling distribution of Xlffunder 

the null model. Both of these tests and their per­
formance across a range of finite mixture models 
has been explored in detail in the simulation study 
by Nylund, Asparouhov, and Murhen (2007). As 
executed in Mplus V6.1 (Muthen & Muthen, 1 998-
2011), these tests compare a (K - I)-class model 
(the null model) with a K-class model (the alter­
native, less restrictive model), and a statistically 
significant p-value suggests the K -class model fits 
the data significantly better than a model with one 
less class. 

As mentioned before, there is no single method 
for comparing models with differing numbers of 
latent classes that is widely accepted as best (Muthen 
& Asparouhov, 2006; Nylund et al., 2007). How­
ever, by careful and systematic consideration of a set 
of plausible models, and utilizing a combination of 
statistical and substantive model checking (Muthen, 
2003), researchers can improve their confidence in 
the tenability of their decision regarding the number 
of latent classes. I recommend the follow sequence 
for class enumeration, which is illustrated in detail 
with the empirical example that follows after the 
next subsection. 

1. Fit a one-class model, recording the log 
likelihood value (LL); number of parameters 
estimated (npar); the likelihood ratio chi-square 
goodness-of-fit statistic (XfR with df and 
correspondingp-value); and the model BIC, 
CAlC, and AWE values. 

2. Fit a two-class model, recording the same 
quantities as listed in Step 1, along witl1: the 
adjusted LMR-LRT p-value, testing the two-class 
model against the null one-class model; the BLRT 
p-value, testing the two-class model against the 
null one-class model; and the approximate Bayes 
factor (BFI,z), estimating the ratio of the 
probability of the one-class model being the correct 
model to the probability of the two-class being the 
correct model. 

3. Repeat the following for K 2: 3, increasing K 
by 1 at each repetition until the K -class model is 
not well identified: 

Fit a K -class model, recording the same 
quantities as listed in Step 1, along with the 
adjusted LMR-LRT p-value, testing the K -class 
model against the null (K- 1)-class model; the 
BLRT p-value, resting the K-class model against 
the null (K - 1 )-class model; and the approximate 
Bayes factor (BFK -J.K), estimating the ratio of the 
probability of the (K- 1)-class model being the 
correct model to the probability of the K -class 
being the correct model. 

4. Let Kmax be the largest number of classes that 
could be extracted in a single model from Step 3. 
Compute the approximate correct model 
probability (cmP) across the one-class through 
Kmax-class models fit in Steps 1-3. 

5. From the Kmax models fit in Steps 1 through 
3, select a smaller subset of two to three candidate 
models based on the absolute and relative fit 
indices using the guidelines (a)-( e) that follow. I 
assume here, since it is almost always the case in 
practice, that there will be more than one "best" 
model identified across the different indices. 
Typically, the candidate models are adjacent to 

each other with respect to the number of classes 
(e.g., three-class and four-class candidate 
models). 

a. For absolute fit, the "best" model should be 
the model with the fewest number of classes that 
has an adequate overall goodness of fit-that is, the 
most parsimonious model that is not rejected by 
the exact fit test. 

MASYN 571 



b. For the BIC, CAlC, and AWE, the "best" 
model is the model with rhe smallest value. 
However, because none of the information criteria 
are guaranteed to arrive at a single lowest value 
corresponding to a K -class model with K < Kmax, 
these indices may have their smallest value at rhe 
Kmax-class model. In such cases, you can explore 
the diminishing gains in model fit according to 
rhese indices with rhe use of "elbow" plots, similar 
to the use of scree plots ofEigen values used in 
exploratory factor analysis (EFA). For example, if 
you graph the BIC values versus rhe number of 
classes, then the addition of the second and third 
class may add much more information, but as the 
number of classes increases, the marginal gain may 
drop, resulting in a (hopefully) pronounced angle 
in the plot. The number of classes at this point 
meets the "elbow criterion" for that index. 

c. For the adjusted LMR-LRT and BLRT, the 
"best" model is the model wirh rhe smallest 
number of classes that is not significantly improved 
by the addition of another class-that is, the most 
parsimonious K -class model that is not rejected in 
fuvor of a (K +I)-class model. Note that the 
adjusted LMR-LRT and BLRT may never yield a 
non-significant p-value, favoring a K -class model 
over a (K +I)-class model, before the number of 
classes reaches Kmax. In rhese cases, you can 
examine a plot of the log likelihood values for an 
"elbow" as explained in Substep b. 

d. For the approximate BF, the "best" model is 
the model with rhe smallest number of classes for 
which rhere is moderate to strong evidence 
compared to the next largest model-that is, the 
most parsimonious K -class model with a BF > 3 
when compared to a (K + 1 )-class model. 

e. For the approximate correct model 
probabilities, rhe "best" model is the model with 
the highest probability of being correct. Any model 
with cmPK > .I 0 could be considered a candidate 
model. 

6. Examine the standardized residuals and the 
classification diagnostics (if germane for your 
application of mixture modeling) for the subset of 
candidate models selected in Step 5. Render an 
interpretation of each latent class in each of the 
candidate models and consider the collective 
substantive meaning of rhe resultant classes for 
each of the models. Ask yourself whether the 
resultant latent classes of one model help you to 

understand rhe phenomenon of interest 
(Magnusson, I998) better than those of anorher. 
Weigh the simplicity and clarity of each of the 
candidate modeJ.s,(Bergman & Trost, 2006) and 
evaluate rhe utility of the additional classes for the 
less parsimonious of the candidate models. 
Compare the modal class assignments of 
individuals across rhe candidate models. Don't 
forget about label switching when you are making 
your model comparisons. And, beyond label 
switching, remember that if you estimate a K -class 
model and then a (K +I)-class model, then there 
is no guarantee that any of the K classes from the 
K -class model match up in substance or in label to 
any of the classes in the (K + I)-class model. 

7. On rhe basis of all the comparisons made in 
Steps 5 and 6, select the final model in the class 
enumeration process. 

If you have the good fortune of a very large 
sample, then the class enumeration process can 
be expanded and strengthened using a split-sample 
cross-validation procedure. In evaluating the "large­
ness" of your sample, keep in mind that sample size 
plays a critical role in rhe detection of what may be 
less prevalent classes in the population and in the 
selection between competing models with differing 
class structures (Lubke, 201 0) and you don't want to 
split your sample for cross-validation if such a split 
compromises the quality and validity of the analyses 
within each of rhe subsamples because they are not 
of adequate size. For a split-sample cross-validation 
approach: 

i. Randomly partition the full sample into two 
(approximately) equally sized subsarnples: 
Subsarnple A (the "calibration" data set) and 
Subsample B (the "validation" data 
set). 

ii. Conduct latent class enumeration Steps 1-7 
on Subsample A. 

iii. Retain all the model parameters estimates 
from rhe final K -class model selected in Step 7. 

iv. Fit the K -class model co Subsample B, fixing 
all parameters to the estimated values retained in 
Step iii. 

v. Evaluate the overall fit of the model. If the 
parameter estimates obtained from the K -class 
model fit to Subsarnple A, then provide an 
acceptable fit when used as fixed parameter values 
for a K -class model applied to Subsarnple B, then 
the model validates well and the selection of the 
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K-class model is supported (Collins, Graham, 

Long, & Hansen, 1994). 
vi. Next fir a K -class model to Subsample B, 

allowing all parameters to be freely estimated. 
vii. Using a nested-model likelihood ratio test, 

compare the fit of the K -class model applied to 
Subsample B using fixed parameter values based on 
the estimates from rhe Subsample A K-class model 
estimation to the fit of the K -class model applied 

to Subsample B with fi:ecly estimated parameters. 
If there is not a significant decremenr in fit for the 
Subsample B K -class model when fixing parameter 
values to the Subsample A K-class model 
parameters estimates, then the model validates 
well, the nature and distribution of the K latem 
classes can be considered stable across the two 
subsarnples, atld the selection of the K-class model 
is supported. 

There are variations on this cross-validation pro­
cess that can be made. One variation is to carry out 
Steps iii through vii for all of the candidate models 
selected in Step 5 rather than just the final model 
selected in Step 7 and then integrate in Step 6 the 
additional information regarding which of the can­
didate models validated in Subsample B according 
to rhe results from bothStepsvand vii. Another vari­
ation is to do a double {or twofold) cross-validation 
(Collins et al., 1994; Cudek & Browne, 1983) 
whereby Steps ii through vii are applied using Sub­
sample A as the calibration data set and Subsample B 
as the validation data set and then are repeated using 
Subsample Bas the calibrat:ion data set and Subsam­
ple A as the validation data set. Ideally, the same 
"best" model will emerge in both cross-validation 
iterations, although it is not guar·~meed (Collins & 
Lar1za, 20 I O). I illustrate the double cross-validation 
procedure in the empirical example that follows after 
rhe next subsection. 

Missing Data 
Because most mixrure modeling software already 

utilizes a maximum likelihood estimation algorithm 
designed for ignorable missing data (primarily the 
EM algorithm), it is possible ro accommodate miss­
ingness on the mar1ifest indicators as well, as long as 
the missing data ar·e either missing completery at ran­
dom (MCAR) or missing at random (MAR). Assum­
ing the data on the indicator variables are missing at 
random means the probability of a missing response 
for an individual on a given indicator is unrelated 
to the response that would have been observed, 

conditional on the individual's acrual observed data 
for the other response variables. Estimation with the 
EM algorithm is a full information maximum like­
lihood (FIML) method in which individuals with 
complete data and partially complete data all con­
tribute to the observed data likelihood function. The 
details of missing data analysis, including the mul­
tiple imputation alternative to FIML, is beyond the 
scope of rhis chapter. Interested readers are referred 
to Little and Rubin (2002), Schaefer (1997), and 
Enders (20I 0} for more information. 

Of all the evaluations of model fit presented prior, 
the only one that is different in rhe presence of 
missing data is the likelihood ratio goodness-of­
fit test. With parrially complete data, the num­
ber of observed response patterns is increased to 

include observed response patterns with missing­
ness. Returning to the five binary indicator hypo­
thetical example, you might have some of the 
following incomplete response patterns: 

Ut lt2 U3 U4 us fr 

I 1 1 fi 
I 0 fi 

I • /3 

1 0 0 0 0 /R•-2 

0 0 0 0 0 /J1•-1 

e 0 0 0 0 fi1• 

where "•" indicates a missing response and R*is 
the number of observed response patterns, includ­
ing partially complete response patterns. The LR 
chi-square goodness-of-fit test statistic is now calcu­
lated as 

where J,.•is the observed frequency count for the 

response pattern r* and j;.. is the model-estimated 
frequency count for the response pattern r*. The 
degrees of freedom for the test is given by 

df=R*-d-1. (28) 

This test statistic, because it includes contribu­
tions from both complete and partially complete 
response patterns using model-estimated frequen­
cies from a model estimated under the MAR 
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assumption, is actually a test of both the exact 
fit and the degree to which the data depart from 
MCAR against the MAR alternative (Collins & 
Lanza, 2010; Little & Rubin, 2002). Thus, the 
X'fR with missing data is inflated version of a sim­
ple test of only model goodness-of-fit. However, the 
XfR is easily adjusted by subtracting the contribu­
tion to the chi-square from the MCAR component, 
and this adjusted X'fR can then be compared to the 
reference chi-square distribution (Collins & Lanza, 
2010; Shafer, 1997). Note that the standardized 
residuals for partially complete response patterns 
are similarly inflated, and this should be considered 
when examining residuals for specific complete and 
partially complete response patterns. 

The next subsection should be the most illu­
minating of all the subsections under Latent Class 
Analysis, as it is here that I fully illustrate the uncon­
ditional LCA modeling process with a real data 
exan1ple, show the use of all the fit indices, clas­
sification diagnostics, the double cross-validation 
procedures, and demonstrate the graphical presen­
tation and substamive imerpretation of a selected 
model. 

Longitudinal Study of American Youth 
Example for Latent Class Analysis 

The data used for the LCA example come from 
Cohort 2 of the Longitudinal Study of Ameri­
can Youth (LSAY), a national longitudinal study, 
funded by the National Science Foundation (NSF) 
{Miller, Kimmel, Hoffer, & Nelson, 2000). The 
LSAY was designed to investigate the development 
of student learning and achievement-particularly 
related to mathematics, science, and technology­
and to examine the relationship of those student 
ourcomes across middle and high school to post­
secondary educational and early career choices. The 
students of Cohort 2 were first measured in the fall of 
1988 when they were in eighth grade. Study partici­
pants were recruited through their schools, which 
were selected from a probability sample of U.S. 
public school districts {Kimmel & Miller, 2008). 
.For simplicity's sake, I do not incorporate informa­
tion related to the complex sampling design or the 
clustering of schools within districts and students 
within school for the modeling illustrations in this 
chapter; however, the analytic framework presented 
does extend ro accommodate sampling weights and 
multilevel data. There were a total of n = 3116 stu­
dents in the original LSAY Cohort 2 (48o/o female; 
52% male). 

For this example, nine items were selected from 
the eighth grade {Fall, 1998) student survey related 
to math attitudes for use as observed response indi­
cators for an unconditional latent class variable that 
was intended to represent profiles of latent math 
dispositions. The nine self-report items were mea­
sured on a five-point, Likert-type scale (1 =strongly 
agree; 2 = agree; 3 = not sure; 4 = disagree; 5 = 
strongly disagree). For the analysis, I dichotomized 
the items to a 0/1 scale after reverse coding certain 
items so that all item endorsements (indicated by a 
value of 1) represented pro-mathematics responses. 
Table 25.3 presents the original language of the sur­
vey prompt for the set of math attitude items along 
with the full text of the each item statement and the 
response categories from the original scale that were 
recoded as a pro-math item endorsements. In exam­
ining the items, I determined that the items could 
be tentatively grouped into three separate aspects of 
math disposition: items 1-3 are indicators of posi­
tive math affect and efficacy; items 4-5 are indicators 
of math anxiety; and items 6-9 are indicators of 
the student assessment of the utility of mathematics 
knowledge. I anticipated that this conceptual three­
part formation of the items might assist in the inter­
pretation of the resultant latent classes from the LCA 
modeling. 

Table 25.3 also displays the frequencies and rela­
tive frequencies of pro-math item endorsements for 
the full analysis sample of n = 2, 675 (excluding 
441 of the total participant sample who had missing 
responses on all nine of selected items). Note that 
all nine items have a reasonable degree of variabil­
ity in responses and therefore contain information 
about individual differences in math dispositions. If 
there were items with relative frequencies very near 
0 or 1, there would be very little information about 
individual differences to inform the formation of the 
latent classes. 

With nine binary response items, there are 29 = 
512 possible response pattern, but only 362 of 
those were observed in the sample data. Of the 
total sample, 2,464 participants (92%) have com­
plete data on all the items. There are 166 observed 
response patterns in the data with at least one 
missing response. Of the total sample, 211 par­
ticipants (8%) have missing data on one of more 
of the items, with 135 (64%) of those partic­
ipants missing on only one item. Upon closer 
inspection, there is not any single item that stands 
out with a high frequency of missingness that 
might indicate a systematic skip pattern of respond­
ing that would make one reconsider that item's 
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Table 25.3. lSAY Example: Pro-math Item Endorsement Frequencies (f) and Rdative Frequencies (rf) for the Total Sample and 
the Two Random Cross-Validation Subsamples, A and B 

Survey prompt: 
"Now we would like you to 
tell us how you feel about 
math and science. Please 
indicate for you feel about Pro-math Total sample (nT= 2675) SubsampleA (nA = 1338) Subsample B (ns = 1337) 

each of the following response 
statements." categories* f rf f rf f 1f 

1) I enjoy math. sa/a 1784 0.67 894 0.67 890 0.67 

2) I am good at math. sa/a 1850 0.69 912 0.68 938 0.70 

3) I usually understand sa/a 2020 0.76 1011 0.76 1009 0.76 
what weare 
doing in math. 

4) Doing math often m;J<es dlsd 1546 0.59 765 0.59 781 0.59 
me nervous or upset. 

5) I often get scared when I d/sd 1821 0.69 917 0.69 904 0.68 
open my math book see a 
page of problems. 

6) Math is useful in sa/a 1835 0.70 908 0.69 927 0.70 
everyday problems. 

7) Math helps a person sa/a 1686 0.64 854 0.65 832 0.63 
think logically. 

8) It is important to know sa/a 1947 0.74 975 0.74 972 0.74 
math to get a good job. 

9) I will use math in many sa/a 1858 0.70 932 0.70 926 0.70 
ways as an adult. 

*Original raring scale: 1 =strongly agree (sa); 2 =agree (a); 3 = nor sure (ns); 4 =disagree (d); 5 = strongly disagree (sd). 
Recoded ro 0/1 with 1 indicating a pro-math response. 



inclusion in the analysis. The three most frequent 
complete data response patterns with observed fre­
quency counts are: {1, 1, 1, 1, 1, 1, 1, 1, 1), f = 
502; (1,1,1,0,0,1,1,1,1), f = 111; and 
(1, 1, 1, 0, 1, 1, 1, 1, 1), f = 94. More than 70% 
(258 of 362) of the complete data response pat­
terns have f < 5. The three most frequent 
incomplete data response patterns with observed fre­
quency counts are: (1, 1, 1, ?, 1, 1, 1, 1, 1),/ = 9; 
(1, 1, 1, 1, 1, 1, 1, ?, 1), f = 7; and {1, 1, 1, 1, 1, 1, 
?, 1, 1), f = 6 (where "?" indicates a missing 
value). 

Because this is a large sample, it is possible 
to utilize a double cross-validation procedure for 
establishing the unconditional latent class model 
for math dispositions. Beginning with Step i, the 
sample is randomly split into halves, Subsample 
A and Subsample B. Table 25.3 provides the item 
response frequencies and relative frequencies for 
both subsamples. 

The class enumeration process begins by fitting 
10 unconditional latent class models with K = 1 
to K = 10 classes. After K = 8, the models ceased 
to be well identified {e.g., there was a high level of 
nonconvergence across the random sets of srarting 
values; a low level of maximum log likelihood solu­
tion replication; a small condition number; and/or 
the smallest class proportion corresponded to less 
than 20 individuals). For K = 1 to K = 8, 
the models appeared well identified. For example, 
Figure 25.5 illustrates a high degree of replication of 
the "best" maximum likelihood value, -6250.94, 
for the five-class model, depicting the relative fre­
quencies of the final stage log likelihood values at the 
local maxima across 1 000 random sets of start values. 

O.'l 

0.8 
-6250.94 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
-·6288.11 

0 -6288.00 -6259.21 -6251.04 

-6290.00 -6280.00 -6270.00 -6260.00 -6250.00 

Final stage log likelihood value at local maximum 

Figure25.5 LSAY example: Relative frequency plot of final stage 
log likelihood values at local maxima across 1000 random sets of 
srart values for the five-class unconditional LCA-

Table 25.4 summarizes the results from class enu­
meration Steps 1 through 5 for SubsampleA. Bolded 
values indicate the value corresponding to the "best" 
model according to each fir index and the boxes 
indicate the candidate models based on each index 
{which include the "best" and the "second best" 
models). For the adjusted LR chi-square rest of exact 
fit, the four-class model is marginally adequate and 
the five-class model has a high level of model-data 
consistency. Although the six-, seven-, and eight­
class models also have a good fit to the data, the 
five-class model is the most parsimonious. The BIC 
has the smallest value for the five-class model bur the 
six-class BIC value is very close. The same is true for 
the CAlC. The AWE has the smallest value for the 
four-class model, with the five-class value a close 
second. The four-class model is rejected in favor of 
the five-class model by the adjusted LMR-LRT, but 
the five-class model is not rejected in favor of the 
six-class model. All K -class model were rejected in 
favor of a (K + 1 )-class model by the BLRT for all 
values of K considered so there was no "best" or even 
candidate models to be selected based on the BLRT, 
and those results are not presented in the summary 
table. According to the approximate BF, there was 
strong evidence for the five-class model over the 
four-class model, and there was strong evidence for 
the five-class model over the six-class model. Finally, 
based on the approximate correct model probabili­
ties, of the eight models, the five-class model has the 
highest probability of being correct followed by the 
six-class model. Based on all these indices, I select the 
four-, five-, and six-class models for attempted cross­
validation in Subsample B, noting that the five-class 
model is the one of the three candidate models most 
favored across all of the indices. 

The first three rows ofTable 25.5 summarize the 
cross-validation results for the Subsample A candi­
date models. For the first row, I took the four-class 
parameters estimates obtained by fitting a four-class 
model to Subsample A, used those estimates as fixed 
parameter values in Subsample B, and evaluated the 
overall fit of the model, following cross-validation 
Steps iv through v. The overall fit of the model, 
as determined by the LR chi-square goodness-of-fit 
test, was nor adequate, and by this criterion, the esti­
mated four-class model from Subsample A did not 
replicate in Subsample B. I next estimated a four­
class model in Subsample B, allowing all parameters 
to be freely estimated, and compared the fit to the 
model with all the parameters fixed to the estimated 
values from Subsample A, following cross-validation 
Steps vi through vii. The likelihood ratio test of 
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               Table 25.4.  LSAY Example: Model Fit Indices for Exploratory Latent Class Analysis Using Calibration Subsample A (nA=1338)  

Model LL npar* 

2
LRXAdj.  

(df), p-value BIC CAIC AWE 

Adj. LMR-
LRT p-value 

(H0:K classes; 
H1:K+1 
classes) 1+,

ˆ
K KBF  ˆ

KcmP  

one-class -7328.10 9 1289.21 
(368), <.01 14721.00 14730.00 14812.79 <0.01 <0.10 <0.01 

two-class -6612.88 19 909.29 
(358), <.01 13362.55 13381.55 13556.33 <0.01 <0.10 <0.01 

three-class -6432.53 29 551.76 
(348), <.01 13073.83 13102.83 13369.60 <0.01 <0.10 <0.01 

four-class -6331.81 39 347.24 
(338), .35 12944.38 12983.38 13342.13 <0.01 <0.10 <0.01 

five-class -6250.94 49 199.81 
(328), >.99 12854.63 12903.63 13354.37 0.15 6.26 0.87 

six-class -6216.81 59 157.25 
(318), >.99 12858.35 12917.35 13460.09 0.13 >10 0.13 

seven-class -6192.32 69 105.70 
(308), >.99 12881.37 12950.37 13585.09 0.23 >10 <0.01 

eight-class -6171.11 79 69.55 
(298), >.99 12910.93 12989.93 13716.64 - - <0.01 

nine-class Not well identified 

ten-class Not well identified 

                        *number of parameters estimate 



Table 25.5. LSAY Example: Double Cross-Validation Summary of Model Fit Using the Two 
Random Subsamples, A and B (nA = 1338; n5 = 1337) 

Model Calibration Validation Adj.XfR df p-value LRTS** df*** p-value 

four-class SubsampleA Subsample B 501.975 363 <0.001 38.50 39 0.49 

five-class 1353.036 363 0.64 59.71 49 0.14 

six-class 365.876 363 0.45 136.66 59 <0.001 

four-class Subsample B SubsampleA 425.04 377 0.04 43.67 39 0.28 

five-class 1282.63 377 1.00 64.21 49 0.07 

six-class 260.37 377 1.00 101.85 59 <0.001 

• Goodness-of-fit of the model to validatiou subsample with all par.uneter values fixed at the estimates obmined from the 
calibration subsample. 
•• LRTS = -2(ll.o- LL1) where Llo is the maximized log likelihood value, -6250.94, fur the K-dass model fit to the 
validation subsample wid1 all parameter values fixed at the estimates obtained from the calibration snbsample and l£1 is the 
maximized log likelihood value for the K -class model lit to the validation subsample with aU parameters freely estimated. 
••• df =number of parameters in the K-class model 

these nested models was not significant, indicating 
that the parameter estimates for the four-class model 
using Subsample B data were not significantly differ­
ent from the parameter estimates from Subsample 
A. Thus, by this criterion, the estimated four-class 
model from Subsample A did replicate in Subsample 
B {indicated by bolded text in the table). The five­
class model from Subsample A was the only one of 
the three candidate models that validated by both 
criteria (indicated by the boxed text). 

For a double cross-validation, the full process 
above is repeated for Subsample B. I estimated 
K = 1 to K = 1 0 class models; selected a sub­
set of candidate models, which were the same four-, 
five-, and six-class models as I selected for Subsample 
A; favoring the five-class model; and then cross­
validated using Subb':Ullple A As shown in Table 
25.5, the five-class model from Subsample B was 
the only one of the three candidate models that 
cross-validated by both criteria in Subsample A. 

Before the five-class model is anointed as the 
"final" unconditional model, there are a few more 
evaluations necessary. Although the five-class model 
is not rejected in the LR chi-square exact fit test, it is 
still advisable to examine the standardized residuals. 
Only six of the response patterns with model­
estimated frequencies above 1.0 have standardized 
residuals greater than 3.0, only slightly more than 
the 1% one would expect by chance, and only one 
of those standardized residuals is greater than 5.0. 
Thus, closer examination of the model residuals 
does not raise concern about the fit of the five-class 

model to the data. Table 25.6 provides a summary 
of the observed and model-estimated frequencies 
for all observed response patterns with frequencies 
greater than 10 along with the standardized residual 
values. 

Because I have approached this analysis as a 
direct application of mixture modeling, in that I 
am assuming a priori that the population is het­
erogeneous with regards to math dispositions and 
that the items selected for the analysis are indica­
tors of membership in one of an unknown number 
of subgroups with characteristically different math 
disposition profiles, it is also necessary to examine 
the classification diagnostics for the five-class model 
as well as evaluate the substantive meaning and util­
ity of the resultant classes. Table 25.7 summarizes 
the classification diagnostic measures for the five­
class model with relative entropy of E5 = .77. The 
modal class assignment proportions {mcaP) are all 
very near the estimated class proportions and well 
within the corresponding 95% (bias-corrected boot­
strap) confidence intervals for irk, the AvePP are 
all greater than 0.70, and the odds of correct clas­
sification ratios are all well above 5.0, collectively 
indicating that the five classes are well separated 
and there is high accuracy in the latent class assign­
ment. This result further endorses the choice of the 
five-class model. 

The interpretation of the resultant five classes 
is based primarily on the model-estimated, class­
specific item response probabilities provided in Table 
25.8 and depicted graphically in the profile plot 
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Table 25.6. LSAY Example: Observed Response Patterns (f > 10), Observed and Estimated Frequencies, and Standardized Residuals for 
Subsample A with Estimated Posterior Class Probabilities and Modal Class Assignments Based on the Five-Class Unconditional LCA 

Item+ response patterns (r*) P;k 

r* (1) (2) (3) (4) (5) (6) (7) (8) (9) fr• i, .. stdres,.• Pil P., 
l- Pi3 P;4 Pis c modal (i) 

254.00 234.24 1.44 0.99 0.01 0.01 0.00 0.00 1 

2 0 0 53.00 47.91 0.75 0.00 0.99 0.00 0.01 0.00 2 

3 0 46.00 44.80 0.18 0.86 0.12 0.01 0.01 0.00 

4 0 0 0 0 0 0 0 0 0 36.00 23.90 2.50 0.00 0.00 0.00 0.00 1.00 5 

5 0 31.00 39.62 -1.39 0.93 0.01 0.06 0.00 0.00 

6 0 26.00 29.00 -0.56 0.95 0.00 0.02 0.03 0.00 

7 0 22.00 22.24 -0.05 0.85 0.02 0.13 0.00 0.00 

8 0 19.00 16.91 0.51 0.00 0.97 0.02 0.01 0.00 2 

9 0 0 0 0 18.00 10.54 2.31 0.00 0.00 0.99 0.00 O.Ql 3 

10 0 17.00 18.12 -0.27 0.84 O.Ql 0.15 0.00 0.00 

11 0 0 0 0 0 17.00 9.51 2.44 0.00 0.00 0.00 1.00 0.00 4 

12 1 1 1 1 1 0 0 1 1 15.00 8.07 2.45 0.37 0.01 0.61 0.00 0.00 3 
............................................................................................................................................................................................................................................................................................... --.... ---.................. "''I 

! 13 0 0 0 1 1 0 0 0 0 15.00 4.75 4.72 0.00 0.00 0.02 0.01 0.98 5 ! . . 
............................................................................................................................................................................................................................................................................................................ .I 

14 0 14.00 19.63 -1.28 0.93 0.01 0.01 0.05 0.00 .......................................................................................................................................................................................................................................................................................................................... 
! 15 0 0 1 1 1 1 1 1 1 14.00 5.87 3.36 0.37 0.00 0.02 0.61 0.00 4 ! . . 
................................................................................................................................................................................................................................................................................................................................................... J 

16 0 13.00 14.87 -0.49 0.88 0.02 0.11 0.00 0.00 

17 0 0 11.00 6.74 1.65 0.19 0.01 0.81 0.00 0.00 3 

+(1) I enjoy math; (2) I am good at math; (3) I usually wtderstand what we are doing in math; (4) Doing marh often makes me nervous or upset; (5) I often get scared when I open my 
math book see a page of problems; (6) Math is useful in everyday problems: (7) Math helps a person think logkallr; (8) It is imporrant to know math to get a good job; (9) I will use 
math in many ways as an adult. (-Reverse coded.) 



Table 25.7. ISAY Example: Model Classification Diagnostics for the 
Five-Class Unconditional Latent Class Analysis (E 5 = .77) for Subsample 
A{nA = 1338) 

Classk ii:k 95% C.I.* mcaPk AvePPk occk 

Class 1 0.392 (0.326, 0.470) OAOO 0.905 14.78 

Class 2 0.130 (0.082, 0.194) 0.125 0.874 46.42 

Class 3 0.182 (0.098, 0.255) 0.176 0.791 17.01 

Class 4 0.190 {0.139, 0.248) 0.189 0.833 21.26 

Class 5 0.105 {0.080, 0.136) 0.109 0.874 59.13 

•Bias-corrected bootstrdp 95% confidence intervals 

Table 25.8. lSAY Example: Model-Estimated, Class-Specific Item Response Probabilities Based on the Five-Class 
Unconditional Latent Class Analysis Using Subsample A ( nA = 1338) 

00mlk 

Item aspects Item statements Class 1 (39%) Class 2 (13%) Class 3 (18%) Class 4 (19%) Class 5 (10%) 

Math affect I enjoy math. 0.89 0.99 0.72 0.21 0.18 
and math 
efficacy I am good at 0.93 0.91 0.84 0.17 0.14 

mach. 

I usually 0.96 0.89 0.91 0.43 0.23 
understand what 
we are doing in 
mach. 

Math anxiery ~Doing mach 0.86 0.26 0.71 0.32 0.25 
often makes me 
nervous or upset. 

~I often get 1.00 0.10 0.82 0.52 0.37 
scared when I 
open my math 
book see a page 
of problems. 

Math uriliry Math is useful in 0.92 0.85 0.33 0.77 0.09 
everyday 
problems. 

Mach helps a 0.86 0.83 0.37 0.67 0.06 
person think 
logically. 

It is important to 0.95 0.89 0.47 0.83 0.11 
lmow math to 
get a good job. 

I will use math 0.94 0.89 0.35 0.79 0.05 
in many ways as 
an adult. 

~ Revetse coded. 
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Figure 25.6 LSAY example: Model-estimated, class-specific item probability profile plor for rhc five-class unconditional LCA. 

in Figure 25.6. Item response probabilities with a 
high degree of class homogeneity (i.e., estimated val­
ues greater than 0.7 or less than 0.3) are bolded in 
1able 25.8. All the items have high class homogene­
ity for at least three of the five classes, indicating 
that all nine items are useful for cl1aracterizing rhe 
latent classes. In Figure 25.6, rhe horizontal lines 
at the 0.7 and 0.3 endorsement probability levels 
help provide a visual guide for high levels of class 
homogeneity. These lines also help with the visual 
inspection of class separation with respect to each 
item-for example, two classes with item response 
probabilities above the 0.7 line for a given item are 
likely not well separated with respect to that item. 
Table 25.9 provides all the model-estimated item 
response odds ratios for each pairwise latent class 
comparison. Bolded values indicate rhe two classes 
being compared are well separated with respect to 

that set of items. The numbers in Table 25.9 corre­
spond to visual impressions based on Figure 25.6; 
for example, Class 1 and Class 5 both have high 
homogeneity with respect to items 1 through 3 and 
appear to be well separated as confirmed wirh very 
large item response odds ratios (all in great excess of 
5.0). 

Tables 25.8 and 25.9 along with Figure 25.6 also 
distinguish the observed items by their affiliation 
with one of three substantive aspects of math dispo­
sition previously discussed. As can be seen in both 

the tables and figure, the class-specific item probabil­
ities are similar in level of class homogeneity within 
each of these three aspects as are the pattern of class 
separation-that is, most pairs of classes are eirher 
well separated with respect to all or none of the items 
within an aspect group. Thus, as anticipated earlier, 
these three aspects can be used to refine rhe sub­
stantive interpretation of the five classes rather than 
characterizing the classes item by item. In attach­
ing substantive meaning to the classes, I take into 
account both class homogeneity and class separation 
wirh respect to all the items. It is also useful to return 
to rhe actual observed response patterns in the dara 
to identifY prototypical response patterns for each 
the classes. Prototypical patterns should have rea­
sonably sized observed frequencies, non-significant 
standardized residuals, and an estimated posterior 
probability near 1.0 for the class to which an indi­
vidual with rhat response pattern would be modally 
assigned. I identifY prototypical patterns for each of 
the five classes using the information provided in 
Table 25.6; some prototypical responses are boxed 
by solid lines in rhe table. 

Class 1, wirh an estimated proportion of 39o/o, 
is characterized by an overall positive marh dispo­
sition, with high probabilities of endorsing positive 
math affect and efficacy items, positive math anxiety 
items (indicating a low propensity for math anxiety), 
and positive math utility items. Class 1 has a high 
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Table 25.9. !.SAY Example: Modd-Estimated Item Response Odds Ratios for All Pairwise Latent Class Comparisons Based on the 
Five-Class Unconditional Latent Class Analysis Using Subsample A (nA = 1338) 

ORmjjk 

Class Class Class Class Class Class Class Class Class Class 
Item aspects Item statements 1 vs. 2 1 vs. 3 1 vs. 4 I vs. 5 2vs.3 2vs.4 2vs. 5 3vs.4 3vs. 5 4vs. 5 

Math affect and I enjoy math. 0.11 3.28 30.91 37.83 30.72 >100 >100 9.42 11.53 1.22 
math efficacy 

I am good at math. 1.31 2.34 59.92 78.96 1.78 45.60 60.10 25.61 33.75 1.32 

I usually 2.70 2.15 28.99 71.52 0.80 10.75 26.52 13.49 33.28 2.47 
understand what 
we are doing in 
math. 

Math anxiety -Doing math 17.32 2.39 13.03 18.47 0.14 0.75 1.07 5.45 7.72 1.42 
often makes me 
nervous or upset. 

-I often get scared >100 >100 >100 >100 0.03 0.10 0.19 4.03 7.36 1.82 
when I open my 
math book see a 
page of problems. 

Math utility Math is useful in 2.16 24.48 3.67 >100 11.36 1.70 60.04 0.15 5.29 35.30 
everyday problems. 
Math helps a 1.32 10.85 3.05 >100 8.19 2.30 71.66 0.28 8.75 31.16 
person think 
logically. 

It is important to 2.13 19.83 3.74 >100 9.29 1.75 68.99 0.19 7.43 39.33 
know math ro get a 
good job. 

I will use math in 1.81 28.79 4.17 >100 15.91 2.30 >100 0.14 9.99 69.06 
many ways as an 
adult. 

-Reverse coded. 



level of homogeneity with respect to all the items. 
This class might be labeled the "Pro-math without 
anxiety" class, where "pro-math" implies both liking 
and valuing the utility of mathematics. Response 
pattern 1 in Table 25.6 is a prototypical response 
pattern for Class l, with individuals endorsing all 
nine items. 

Class 5, with an estimated proportion of 10%, 
is characterized by an overall negative math dispo­
sition, with low probabilities of endorsing positive 
math affect and efficacy items, positive math anxiety 
items (indicating a high propensity for math anxi­
ety), and positive math utility items. Class 5 has 
a high level of homogeneity with respect to all the 
items and is extremely well separated from Class 1 
with respect to all the items. This class might be 
labeled the "Anti-math with anxiety" class, where 
"anti-math" implies both disliking and undervalu­
ing the utility of mathematics. Response panern 4 
in Table 25.6 is a prototypical response pattern for 
Class 5, with individuals endorsing none of the nine 
items. 

Because Classes I and 5 represent clear profiles 
of positive and negative math dispositions across the 
entire set of items with high levels of class homo­
geneity across all the items (with the exception of 
item 5 in Class 5) and are well separated from each 
other with respect to all items (with item response 
odds ratios all well in excess of5.0), the class separa­
tion of the remaining three classes will be evaluated 
primarily with respect to Classes 1 and 5. 

Class 2, with an estimated proporrion of 13%, 
is characterized by an overall positive math disposi­
tion like Class 1, with the exception that this class 
has very low probabilities of endorsing positive math 
anxiety items (indicating a high propensity for math 
anxiety). Class 2 has a high level of homogene­
ity with respect to all the items, is well separated 
from Class 1 with respect to the math anxiety items 
but not the math affect and efficacy or the math 
utility items {with the exception of item 1), and 
is well separated from Class 5 with respect to the 
math affect and efficacy and the math utility items. 
This class might be labeled the "Pro-math with anx­
iety" class. Response pattern 2 in Table 25.6 is 
a prototypical response pattern for Class 2, with 
individuals endorsing all but the two math anxiety 
items. 

Class 3, with an estimated proportion of 18%, 
is characterized by high probabilities of endorsing 
positive math affect and efficacy items and positive 
math anxiety items (indicating a low propensity for 
math anxiety). Class 3 does not have a high level 

of homogeneity with respect to the math utility 
items which means that d1is class is not character­
ized by either high or low response propensities. 
However, Class 3 is well separated from Class 1 
and Class 5 with respect to those items. Generally 
speaking, Class 3 is not well separated from Class 
1 with respect to the math affect and efficacy and 
the mad1 anxiety items but is well separated from 
Class 5 with respect to those same items. This class 
might be labeled the "Math lover" class, where "love" 
implies bod1 a positive math affect and a low propen­
sity for math anxiety. Response pattern 9 in Table 
25.6 is a prototypical response pattern for Class 3, 
with individuals endorsing all but the math utility 
items. 

Class 4, with an estimated proportion of 19%, is 
mostly characterized by low probabilities of endors­
ing positive math affect and efficacy items and 
high probabilities of endorsing positive math util­
ity items. Class 4 does not have a high level of 
homogeneity with respect to the math anxiety items, 
which means that this class is not characterized by 
either high or low response probabilities. It is well 
separated from Class 1 with respect ro the math 
anxiety items as well as the math affect and effi­
cacy item but nor well separated from Class 5 for 
those same items. Class 4 is well separated from 
Class 5 with respect to the math utility item but 
nor well separated from Class 1. This class might 
be labeled the "I don't like math bur I know it's 
good for me" class. Response pattern 11 in Table 
25.6 is a prototypical response pattern for Class 
4, with individuals endorsing only the math utility 
items. 

None of the five resultant classes have an esti­
mated class proportion corresponding to a majority 
share of the overall population nor are any of the 
classes distinguished from the rest by a relatively 
small proportion. Thus, although it is quire interest­
ing that the "Pro-math without anxiety" class is the 
largest at 40%, and the "Ami-math with anxiety" 
class is the smallest at 10%, the estimated class pro­
portions themselves, in this case, did not contribute 
directly to the interpretation of the classes. 

As a final piece of the interpretation process, I 
also examine response patterns that are not well fit 
and/ or not well classified by the selected model. 
These patterns could suggest additional population 
heterogeneity that does not have a strong "signal" in 
the present data and is not captured by the resultant 
latent classes. Noticing patterns that are not well fir 
or well classified by the model can deepen under­
standing of the latent classes that do emerge and 



may also suggest directions for future research, par­
ticularly regarding enhancing the item set. Enclosed 
by a dashed box in Table 25.6, response pattern 
13 has a large standardized residual and is not well 
fit by the model. Although individuals with this 
response pattern have a high posterior probability 
for Class 5, their pattern of response, only endors­
ing the math anxiety items, is not prototypical of 
any of the classes. These cases are individuals who 
have a low propensity toward math anxiety but 
are inclined to dislike and undervalue mathemat­
ics. They don't like math but are "fearless." These 
individuals could represent just a few random out­
liers or they could be indicative of a smaller class 
that is not detected in this model but is one that 
might emerge in a future study with a larger sam­
ple and with an expanded item set. Individuals with 
response pattern 15 in Table 25.6 are also not well 
classified. Although individuals with this response 
pattern would be modally assigned to Class 4, the 
estimated posterior probability for Class 4 is only 
0.61 while the estimated posterior probability for 
Class 1 is 0.37. These individuals, endorsing all bur 
the first two math affect and efficacy items, although 
more consistent with the Class 4 profile, are very 
similar to individuals with response patterns such as 
pattern 14 in Table 25.6, that endorse all but one of 
the math affect and efficacy items and have a high 
estimated posterior probability for Class 1. Not sur­
prisingly, it is harder to classify response patterns to 
classes without a high degree ofhomogeneity on the 
full set of items, such as Classes 3 and 4, as is evi­
dent from the relative lower AvePPs found in Table 
25.7 for Classes 3 and 4 compared to Classes 1, 2, 
and5. 

Concluding now the full empirical illustration 
of latent class analysis, I switch gears to intro­
duce traditional finite mixture modeling, also 
known as LPA (the moniker used herein) and 
LCCA. 

Latent Profile Analysis 
Essentially, a latent profile model is simply a 

latent class model with continuous-rather than 
categorical-indicators of the latent class vari­
able. Almost everything learned in the previous 
section on LCA can be applied to LPA, bm 
there are a few differences-conceptual, analytic, 
and practical-that must be remarked on before 
proceeding to the real data example of LPA. 
This section follows the same order of topics as 
the section on LCA, beginning with LPA model 
formulation. 

Model Formulation 
I begin the formal LPA model specification with 

an unconditional model in which the only observed 
variables are the continuous manifest variables of the 
latent class variable. This model is the unconditional 
measurement model for the latent class variable. 

Suppose there are M continuous (interval scale) 
latent class indicators, Yl•Y2• ... ,yM, observed on 
n study participants, where Ymi is the observed 
response to item m for participant i. It is assumed for 
rhe unconditional LPA that there is an underlying 
unordered categorical latent class variable, denoted 
by c, with K classes, where c; = k if individual 
i belongs to Class k. As before, the proportion 
of individuals in Class k, Pr(c = k), is denoted 
by rr k· The K classes are exhaustive and mutually 
exclusive such that each individual in the popula­
tion has membership in exactly one of the K latent 
classes and :Errk = 1. The relationship between the 
observed responses on the M items and the latent 
class variable, c, is expressed as 

K 

f(y;) = L [rrk ·fi(y;)], (29) 
k=l 

where y; = (yli•Yli• ... ,yM;), j(y;) is the multi­
variate probability density function for the overall 
population, andfi(y;) = j(y;jc; = k) is the class­
specific density function for Class k. Thus, the LPA 
measurement model specifies that the overall joint 
distribution of the M continuous indicators is the 
result of a mixing of K component distributions 
of the M indicators, with fi(y;) representing the 
component-specific joint distribution for y;. 

As with the LCAmodel, the structural parameters 
are those related to the distribution of the latem class 
variable, which for the unconditional LPA model are 
simply the class proportions, 1!k· The measurement 
parameters are all those related to the class-specific 
probability distributions. Usually, as was done in 
the very first finite mixture model applications, the 
within-class distribution of the continuous indicator 
variables is assumed to be multivariate normal. That 
is, 

[y;lc; = k] "'MVN(ak, :Ek), (30) 

where <Xk is the vector of the Class k means for the ys 
(i.e., E(Yilk) = <Xk) and :Ek is the Class k varianct:­
covariance matrix for the ys (i.e., Var(Yilk) = :Ek). 
Alternatively, the expression in Equation 30 can be 
written as 

(31) 
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Figure 25.7 Generic path diagram for an unconditional latent 
profile model. 

The measurement parameters are then the class­
specific means, variances, and covarianccs of the 
indicator variables. Notice that although one nec­
essarily assumes a particular parametric distribution 
within each class that is appropriate for the mea­
suremenr scales of the variables, there are not any 
assumptions made about the joint distribution of 
the indicators in the overall popularion. 

The model expressed in Equations 29 and 30 can 
be represented by a path diagram as shown in Figure 
25.7. If you compare Figure 25.7 ro Figure 25.2, 
along with replacing the tt withy to represent con­
tinuous rather than categorical manifest variables, 
"residuals" terms have been added, represented by 
the£ indexed by k, ro indicate rhar there is within­
class variability on rhe continuous indicators that 
may differ across the classes in addition to the mean 
structure of the y that may vary across the classes 
as indicated by the arrows from c directly to tl1e y. 
Unlike with categorical indicators, the class-specific 
estimated means and variances/covariances (assum­
ing normality within class) and can be uniquely 
identified for each class. 

Traditionally, the means of rhe y are automati­
cally allowed to vary across the classes as part of the 
measurement model-that is, rhe mean structure is 
always class-varying. The within-class variances may 
be class-varying or constrained to be class-invariant 
(i.e., within-class variances held equal across the 
classes). And, as implied by Figure 25.7, the condi­
tional independence assumption is not necessary for 
the within-class covariance structure. Unlike LCA, 
latent profile models do not require partial condi­
tional independence for model identificarion-all 
indicators can covary with all other indicators within 
class. Hence, the latent class variable does not have to 

be specified to explain all of the covariarion between 
the indicators in the overall population. 

With increased flexibility in the within-class 
model specification comes additional complexity 
in the model-building process. Bur before getting 
into the derails of model building for latent pro­
files models, let me formally summarize the main 
within-class variance-covariance structures that may 
be specified for :Ek (presuming here tl1at a.k will 
be left unconstrained within and across rhe classes 
in all cases). Starting from the least restrictive of 
variance-covariance structures, there is class-vmyirtg, 
unrestricted :Ek of the form 

[ 

~~~: e22k 
:Ek = . 

eMtk eM2k J 
(32) 

(jMMk ' 

where Hmmk is the variance of item min Class k and 
H111jk is d1e covariance between items m and j in Class 
k.ln this structure for :Ek, all the indicator variables 
are allowed ro covary within class, and the variances 
and covariances are allowed to be different across the 
latent classes. The class-invariant; unrestricted :Ek 

has the form 

E, ~ E = [ 

8u 

l 82! e22 

HMI HM2 fiMM 

VkE(l, ... ,K), (33) 

such that all the indicator variable arc allowed ro 
covary within class, and the variances and covari­
ances are constrained ro be equal across the latent 
classes (class-invariant). The class-varying, diagonal 
:Ek has the form 

(34) 

0 

such that conditional independence is imposed and 
the covariances between the indicators are fixed at 
zero within class while the variances are freely esti­
mated and allowed to be different across the latent 
classes. The most constrained within-class variance­
covariance structure is the class-invariant, diagonal 



:Ek with the form 

~-=~~ [ 
en 

l 0 e22 

0 0 eMM 
Vk E (1, ... ,K), (35) 

such that conditional independence is imposed and 
the covariances between the indicators are fixed at 
zero within class while the variances are constrained 
to be equal across the latent classes. 

The determination of the number oflatent classes 
as well as the estimates of the structural parameters 
(class proportions) and the measurement parameters 
(class-specific means, variances, and covariances) 
and interpretation of the resultant classes will very 
much depend on the specification of the within-class 
joint distribution of the latent class indicators. This 
dependence is analogous to the dependence of clus­
tering on the selection of the attribute space and the 
resemblance coefficient in a cluster analysis. As it 
happens, specifying a class-invariant, diagonal :Ekin 
a K-class LPA model will yield a solution that is 
the model-based equivalent to applying a K-means 
clustering algorithm to the latent profile indicators 
(Vermunt & Magidson, 2002). 

(b) 

(a) 

.:.· 

(c) 

To better understand how the number and nature 
of the latent classes can be influenced by the spec­
ification of :Ek, let's consider a hypothetical data 
sample drawn from an unknown but distincdy 
non-normal bivariate population distribution. The 
scatter plot for the sample observations is displayed 
in Figure 25.8.a. Figure 25.8.b shows a path dia­
gram for a three-class latent profile model with a 
class-invariant, diagonal :Ek along with the empir­
ical results of applying the three-class LPA model 
to the sample data depicted as a scatter plot with: 
individual observations marked with symbols corre­
sponding to modal assignment into one of the three 
latent classes (circles, x, and triangles); diamonds 
representing the class centroids, (arlk• ar2k)-that is, 
the model-estimated, class-specific means for Yl and 
J2; trend lines representing the class-specific linear 
associations for Y2 versus yr; and ellipses to provide 
a visual impression of the model-estimated, class­
specific variances for Yl and ]2• where the width of 
each ellipse is equal to three model-estimated, class­
specific standard deviations for JI and the height is 
equal to three model-estimated, class-specific stan­
dard deviations for Y2· The model in Figure 25.8.b 
imposes the conditional independence assumption, 
and thus, JI and ]2 are uncorrelated within class, 
shown by the flat trend lines for each of the three 
classes. The model also constrains the within-class 

.. .. . . 
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Figure 25.8 {a) Bivariate scatterplot based on a hypothetical sample from an overall bivariate non-normal population distribution; (b) 
Path diagram for a three-class model with class-invariant, diagonal 'Ek and the scatter plot of sample values marked by modal latent 
class assignment based on the three-class model; and (c) Path diagram for a two-class model with class-varying, unrestricted 'Ek and the 
scatter plot of sample values marked by modal latent class assignment based on the two-class model. In (b) and (c), dian1onds represent 
the model-estimated class-specific bivariate mean values, trend lines depict the model-estimated within-class bivariate associations, and 
the ellipse heights and widths correspond to 3.0 model-estimated within-class standard deviations on Y2 and YI, respectively. 
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variance-covariance structure to be the same across 
the class, shown by the same size ellipses for each of 
the three classes. 

Figure 25.8.c displays a path diagram for a 
two-class latent profile model with a class-varying, 
unconstrained l:k along with the empirical results 
of applying the two-class LPA model to the sam­
ple data depicted as a scatter plot using the same 
conventions as Figure 25.8.b. The results of these 
two models, shown in Figures 25.8.b and 25.8.c, 
applied to the same sample data shown in Figure 
25.8.a are different both in the number and nature 
of the latenr classes. They provide alternative rep­
resentations of the population heterogeneity with 
respect to the latent class continuous indicators, 
Yl and Y2· And they would lead to quite different 
substantive interpretations. You could make com­
parisons of fir between the two models to determine 
whether one is more consistent with the observed 
data, but if they both provide adequate fit and/or 
are comparable in fir to each other, then you must 
rely on theoretic~ and practical considerations to 
choose one representation over the other. Because 
you don't ever know the "true" within-class variance­
covariance structure just as you don't ever know the 
"correct" number oflatent classes when you embark 
on a latent profile analysis, and now understanding 
how profoundly the specification of l:k could influ­
ence the formation of the latent classes, the LPA 
model-building process must compare models, sta:­
tistically and substantively, across a full range of l:k 

specifications. 

Model Interpretation 
If you were engaged in an indirect application of 

finite mixture modeling to obtain a semi-parametric 
approximation for an overall non-normal homoge­
neous population, then you would focus on the 
"remixed" results for the overall population and 
would not be concerned with the distinctiveness or 
separation of the latent classes and would not inter­
pret the separate mixture components. However, if 
you are using a latent profile analysis in a direct appli­
cation, assuming a priori that the population is made 
up of two or more normal homogeneous subpopu­
lations, then you would place high value on results 
that yield classes that are disparate enough from each 
other that it is reasonable to interpret each class as 
representative of a distinct subpopulation. 

In some sense, the direct application of finite 
mixture modeling is a kind of stochastic model­
based clustering method in which one endeavors 
to arrive at a latent class solution with the number 

and nature of latent classes (clusters) such thar the 
individual variability with respect ro the indicator 
variables within the classes is minimized and/or the 
between-class variability is maximized. (For more on 
mixture modeling as a clustering method and com­
parison to other clustering techniques, see Vermum 
& Magidson, 2002, and the chapter on clustering 
within this handbook.) These clustering objectives 
can be restated in the terms used when presenting 
the interpretation of latent class models: For dis­
tinct and optimally interpretable latent classes, it is 
desirable to have a latent profile model with a high 
degree of class homogeneity (low within-class vari­
ability) along with a high degree of class separation 
(high between-class variability). 

Just as was done with LCA, the concepts oflatent 
class homogeneity and latent class separation and 
how they both relate to the parameters of the uncon­
di tiona! measurement model will be discussed as well 
as how they inform the interpretation of the latent 
classes resulting from a LPA. To assist this discussion, 
consider a hypothetical example with two contin­
uous indicators (M = 2) measuring a two-class 
categorical latent variable (K = 2). And suppose 
that you decide to use a class-varying, unrestricted 
l:k specification for the LPA. The unconditional 
model is given by 

2 

f(yti>Y2i) = L [xk ·fi(yt;,y2i)], (36) 
k=l 

where 

(yti·Y2ilci = k] '""MVN 

( CY.k = [ CY.tk CY.zk ], l:k = [ ~211k D· 
(37) 

Class Homogeneity. The first and primary way that 
you can evaluate the degree of class homogeneity 
is by examining the model-estimated within-class 

variances, Bmmk> for each indicator m across the K 

classes and comparing them to the total overall sam­

ple variance, Bm111 , for the continuous indicator. It 
is expected that all of the within-class variances will 
be notably smaller than the overall variance. Classes 
with smaller values of Bmmk are more homogeneous 
with respect to item m than classes with larger values 

ofBmmk· You can equivalently compare within-class 

standard deviations, ~' for each item m across 
the K classes, that approximate for each class the 
average distance of class members' individual values 
on item m to the corresponding model-estimated 



class mean, &mk· You want classes fur which class 
members are dose, on average, to the class-specific 
mean because you want to be able to use the class 
mean values in your interpretation of the latent 
classes as values that "typifY" the observed responses 
on the indicator variables for members of that 
class. 

You cannot, of course, directly compare values 

of Bmmk across items because different items may 
have very different scales and the magnitude of the 
variance (and, hence, the standard deviation) is 
scale-dependent. Even for items with the same mea­
surement scales, you cannot compare within-class 
variances across items unless the overall variances of 
those items are comparable. However, it is possible 
to summarize class homogeneiry across items and 
classes by calculating the percent of the overall total 
variance in the indicator set explained by the latent 
class variable, similarly to the calculations done in a 
principal component analysis (Thorndike, 1953). 

The phrase "class homogeneiry" refers here to an 
expectation that the individuals belonging to the 
same class will be more similar to each other with 
respect ro their values on the indicator variables than 
they are to individuals in other classes. However, you 
should still keep in mind that a LPA assumes a priori 
that the classes are homogeneous in the sense that 
all members of a given class are assumed to draw 
from a single, usually multivariate normal, popu­
lation distribution. And, as such, any within-class 
correlation between continuous indicators, if esti­
mated, is assumed to be an association between those 
variables that holds for all members of that class. 
Evaluating the statistical and practical significance 
of an estimated within-class indicator correlation, 
if not fixed at zero in the model specification, can 
assist in judging whether that correlation could be 
used in the characterization of the subpopularion 
represented by that particular latent class. Signifi­
cant within-class correlations, when present, may 
be as much a part of what distinguishes the classes 
as the class-specific means and variances. 

Class Separation. The first and primary way 
you can evaluate the degree of class separation is 
by assessing the actual distance between the class­
specific means. It is not enough to simply calculate 
the raw differences in estimated means (i.e., &111j -

&111k) because what is most relevant is the degree of 
overlap between the class-specific distributions. And 
the degree of overlap between two normal distribu­
tions depends not only on the distance between the 
means but the variances of the distributions as well. 
Consider, for example, the two scenarios shown in 

(a) ~············· ••. 
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Figure 25.9 Hypothetical finite mixture distributions for a single 
continuous indicator variable with K = 2 underlyinglatentdasses 
with dass-specific means of 0 and 3, respectively, and wich-dass 
srandard deviations of {a) 3, and {b) 1. 

Figure 25.9. Figure 25.9.a depicts two hypothetical 
class-specific indicator distributions with means 3.0 
units apart and class-specific standard deviations of 
3, and Figure 25.9.b depicts two hypothetical class­
specific indicator distributions with the same mean 
separation as in Figure 25.9.a with class-specific 
standard deviations of 1. There is considerable over­
lap of the distributions in Figure 25.9.a and very 
little overlap in Figure 25.9.b. The two classes in 
Figure 25.9.b are far better separated than the two 
classes in Figure 25.9.a with respect to the indica­
tor, although the difference in means is the same. To 
quantifY class separation between Class j and Class 
k with respect m a particular item m, compute a 
standardized mean difference, adapting the formula 
for Cohen's d (Cohen, 1988), as given below, 

A &mj -&mk 
ri,yk = A ) 

. O'mjk 
(38) 

where 8-mjk is a pooled standard deviation given by 

(ii) (emud) + (nk) (ellrmk) 
(ij + ik) ~ 

(39) 

A large ld11yk I > 2.0 corresponds to less than 

20% overlap in the distributions, meaning that less 
than 20% of individuals belonging to either Class 
j or Class k have values on item m that fall in 
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the range of Ym corresponding to the area of over­
lap between the two class-specific distributions of 

Ym· A large jJ,,!ikl indicates a high degree of sep­

aration between the Classes j and k with respect 

to item m. A small jJ,njkl < 0.85 corresponds to 

more rhan 50% overlap and a low degree of sepa­
ration between the Classes j and k with respect to 

item m. 
If you are using a latent profile model specifica­

tion that allows a class-varying variance-covariance 
structure for the classes, then you can also evalu­
ate whether the classes are distinct from each other 
with respect to d1e item variances or covariances. 
To make a descriptive assessment of the separa­
tion of the classes in this regard, you can examine 
whether there is any overlap in the 95% confidence 
intervals for the esrimates of the class-specific vari­
ances and covariances with non-overlap indicating 
good separation. An equivalent assessment can be 
made using the model-estimated class-specific item 
standard deviations and correlations. 

Class Proportions. The guidelines and cautions 
provided in the section on LCA for the use of the 
estimated class proporrions in the interpretation of 
the latent classes are all applicable for LPA as well. 

Hypothetical Example. Continuing with the 
hypothetical example of a two-class LPA with 

two continuous indicators initially presented ·in 
Figure 25.8.c, Table 25.10 provides the overall 
sample means and standard deviations along with 
the model-estimated class-specific means, standard 
deviations, and correlations (with the standard devi­
ations and correlation estimates calculated using 
the measurement parameter estimates for the class­
specific item variances and covariances). The class­
specific standard deviations for the items ]1 and 
]2 are all noticeably smaller than the correspond­
ing overall sample standard deviations, but Class 1 
is more homogenous than Class 2 with respect to 
both indicators--particularly JI· There is a small, 
non-significant correlarion between JI and ]2 in 
Class 1 but a large and significant positive corre­
lation between JI and ]2 in Class 2 that should 
therefore be considered in the interpretation of 
Class 2. 

Applying Equations 38 and 39 to the class­
specific mean and standard deviation estimates given 
in Table 25.10, the standardized differences in indi­
cator means between Class 1 and Class 2 was calcu­
latedasdl = -2.67, indicatingahighdegreeofsep­

aration with respect to YI, and d2 = 1. 70, indicating 
a moderate degree of separation with respect to yz. In 
terms of the class-specific variance-covariance struc­
tures, evaluate the separation between the classes 

Thble 25.10. Hypothetical Example: Overall Sample Means and Standard Deviations (SD); 
Model-Estimated, Class-Specific Means, Standard Deviations, and Correlations With Corresponding 
Bias-Corrected Bootstrap 95% Confidence Intervals Based on a Two-Class Latent Profile Analysis 
with Class-Varying, Unrestricted I:,v 

Correlations 

Variable Mean SD (1) (2) 

Overall sample YI 0.06 2.71 1.00 

Y2 1.47 1.70 -.21 1.00 

Class Variable Mean (amk) SD <J{j1mnk) Correlations 
(I) (2) 

Class 1 (33%) Yl -2.93 1.00 1.00 
(-3.19, -2.58) (0.80, 1.26) 

Y2 2.97 1.12 0.04 1.00 
(2.65, 3.35) (0.95, 1.38) (-0.25, 0.26) 

Class 2 (77%) YI 1.55 1.93 1.00 
(1.18, 1.93) (1.77, 2.11) 

Y2 0.73 1.41 0.68 1.00 
(0.45, 0.99)) (1.26, 1.59) (0.54, 0.76) 



with respect to the within-class item standard devia­
tions and correlations by examining the differences 
in the point estimates and also observing the pres­
ence of overlap in the 95% confidence intervals for 
the point estimates. Note that the 95o/o confidence 
intervals provided in Table 25.10 are estimated 
using a bias-corrected bootstrap technique because 
the sampling distributions for standard deviations 
are not symmetric and estimated correlations are 
nonlinear functions of three different maximum 
likelihood parameter estimates. The variability in 
Class 2 for Yl is notably larger than Class 1, whereas 
the classes are not well separated with respect to the 
standard deviations for Y2· The correlation between 
Yl and yz is very different for Classes 1 and 2 where 
there is virtually no correlation at all in Class 1 but 
there is a large and significant correlation within 
Class 2. Thus, there is a high degree of separa­
tion between Classes 1 and 2 with respect to the 
relationship between Yl and Y2. 

The class homogeneity and separation informa­
tion contained in Table 25.10 is nor always, but 
can be, depicted graphically in a series of bivariate 
scatter plots, particularly when the total number of 
latent class indicator variables is small. In this exam­
ple, with only two items, a single bivariate plot is all 
that is needed. The estimated class-specific means 
are plotted and specially identified with data point 
markers different from the observed data points. All 
the observed data points are included in the plot and 
are marked according to their modal class assign­
ment. A trend line is drawn through each class 
centroid derived from the model-estimated class­
specific correlations between the two items. Ellipses 
are drawn, one centered around each class centroid, 
with the axis lengths of the ellipse corresponding 
to three standard deviations on the corresponding 
indicator variable. All of these plot features are dis­
played in Figure 25.8.c and help to provide a visual 
impression of all the aspects of the class-specific dis­
tributions that distinguish the classes (along with 
those aspects that don't) and the overall degree of 
class separation. 

You can see visually in Figure 25.8.c what I have 
already remarked on using the information in Table 
25.10: Class 1 (individual cases in the sample with 
modal class assignment to Class 1 have data points 
marked by circles) is more homogenous with respect 
to both Yl and y2-particularly y1-than Class 2 
(individual cases with modal class assignment to 
Class 2 have data points marked by x); there is a high 
degree of separation between Classes 1 and 2 with 
respect to values on YI and only moderate separation 

with respect to values on n; there is a strong pos­
itive association between Yl and yz in Class 2 that 
is not present in Class 1. You could interpret Class 
1 as a homogenous group of individuals with a low 
average level ony1 (&u = -2.93), relative to the 
overall sample mean, and a high average level of y2 
(&21 = 2.97). You could characterize Class 2 as a 
less homogeneous (relative to Class 1) group ofindi­
vidualswithahighaveragelevelonyr (&12 = 1.55), 
low average level of yz (&22 = 0.73), and a strong 
positive association between individual levels on y1 

andyz (rz = .68). 
Based on the estimated class proportions, assum­

ing a random and representative sample from the 
overall population, you might also apply a modifier 
label of "normal" or "typical" to Class 2 because 
irs members make up an estimated 67% of the 
population. 

Model Estimation 
As with LCA, rhe most common approach for 

latent profile model estimation is FIML estimation 
using the EM algorithm under the MAR assump­
tion. And, as with latent• class models, the log 
likelihood surfaces for finite mixture models can 
be challenging for rhe estimation algorithms to 

navigate. Additionally, although the log likelihood 
function of a identified latent profile model with 
class-invariant I:k usually has a global maximum in 
the interior of the parameter space, the log likelihood 
functions for LPA models with class-varying I:kare 
unbounded (like Fig. 25.4.e), which means that the 
maximum likelihood estimate (MLE) as a global 
maximizer does not exist. But you may still pro­
ceed as the MLE may still exist as a local maximizer 
possessing the necessary properties of consistency, 
efficiency, and ru.ymptoric normality (McLachlan & 
Peel, 2000). When estimating latent profile models, 
I recommend following the same strategy of using 
multiple random sets of starring values and keeping 
track of all the convergence, maximum likelihood 
replication, condition number, and class size infor­
mation as with LCA model estimation, to single out 
models that are not well identified. 

Model Building 
Principled model building for LPA proceeds in 

the same manner described in the section on LCA, 
beginning with the establishment of the (uncon­
ditional) measurement model for the latent class 
variable, with the chief focus during that stage of 
model building on latent class enumeration. The 
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following subsections highlight any differences in 
the evaluations of absolute fir, relative fit, classifica­
tion accuracy; and the class enumeration process for 
LPA compared ro what has already been advanced 
in this chapter for LCA. 

Absolute Fit. Ar presenr, there arc nor widely 
accepted or implememcd measures of absolute fit for 
latent profile models. Although it would be theoreti­
cally possible to modifY exact tests of fir or closeness­
of-fit indices available for factor analysis, most of 
these indices are limited to assessing the model­
data consistency with respect to only the mean and 
variance-covariance structure, which would not be 
appropriate for evaluation of overall fir for finite mix­
rurc models. With finite mixture modeling, you are 
using an approach that requires individual level data 
because the formation of the 1atcnr class variable 
depends on all the high-order moments in rhe data 
(e.g., the skewness and kurtosis)-not just the first­
and second-order moments. You would choose finite 
mixture modeling over a robust method for estimat­
ing just the mean and variance-covariance structure 
(robust to non-normality in the overall population), 
even for indirect applications, if you believed that 
those higher order moments in the observed data 
provide subsrantively important information about 
the overall population heterogeneity wid1 respect 
to the item set. Because the separate individual 
observations are necessary for the model estimation, 
any overall goodness-of-fir index for LPA models 
would need to compare each observed and model­
estimated individual value across all the indicaror 
variables, similarly to techniques used in linear 
regression diagnostics. 

Although you are without measures of absolute 
model fir, you are nor without some absolute fit 
diagnostic tools. It is possible to compute the over­
all model-estimated means, variances, covariances, 
univariate skewness, and univariate kurtosis of the 
latent class indicaror variables and compare them to 
the sample values, providing residuals for the first­
and second-order multivariate moments and the 
univariate third- and fourth-order moments for the 
observed items. These limited residuals allow at least 
some determination to be made about how well the 
model is fitting the observed data beyond the first­
and second-order moments and also allow some 
comparisons of relative overall fit across models. 

In addition to d1ese residuals, you can provide 
yourself with an absolute fir bencllmark by estimat­
ing a fully-saturated mean and variance-covariance 
model that is an exact fir to the data with respect 
to the first- and second-order moments but assumes 

all higher-order momcnrs have values of zero. This 
corresponds to fitting a one-class LPA with an 
unrestricted :E specification. In the model-building 
process, you would want to arrive at a measurement 
model that lit the individual data better (as ascer­
tained by various relative fit indices) than a model 
only infiJrmed by the sam pie means and covariances. 

Relative Fit. All of rhc measures of relative fir 
presented and demonstrated for latenr class models 
are calculated and applied in d1e same way for latenr 
profile models. 

Classification Diagnostics. It is possible to obtain 
estimated posterior class probabilities for all individ­
uals in the sample using the maximum likelihood 
parameters estimates from the LPA and the individ­
uals' observed values on d1e continuous indicator 
variables. Thus, all of the classification diagnostics 
previously described and illustrated for latent class 
models are calculable and may be used in the san1e 
manner for evaluating larenr class separation and 
latent class assignment accuracy for latent profile 
models. 

Class Enumeration. The class enumeration pro­
cess for LPA is similar to the one for LCA but 
with the added complication that because the spec­
ification of :Ek can influence the formation of the 
latent classes, you should consider a full range of :Ek 
specifications. I recommend the following approach: 

Stage I: Conduct a separate class enumeration sequence 

following Steps I through 7 as outlined in the LCA 

section of this chapter for each type of Lk 

specification: class-invarianr, diagonal 2. k; 

class-varying, diagonal Lk; class-invariant, 

unrestricted Lk; and class-varying, unrestricted "i:.k· 

Note rhat the one-class models for the class-invariant, 

diagonal "i:.k and class-varying, diagonal Lk 

specifications will be the same, as will the one-class 

models for class-invariant, unrestricted Lk and 

class-varying, unrestricted Lk specifications. The 

"benchmark" model mentioned in rite subsection on 

absolure fit is the initial one-class model for 

class-invarianr, unrestricted "i:.k specification. 

Stage II: Take the four candidate modeh yielded by (I) 

and recalculate the approximate correct model 

probabilities using just those four models as the full 

set under consideration. Repeat Steps 5 rluough 7 

with the four candidate models to arrive at your final 

model selection. 

The only two modifications of class enumeration 
Steps 5 through 7 necessary for applying Stages I and 
II in LPA are in Steps 5a and 6. In regards to Step 5a: 
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Rather than relying on the exact test of fit for abso­
lute fit, the "best" model should be the model with 
the fewest number of classes that has a better rela-­
tive fit (in terms of the log likelihood value) than the 
"benchmark" model. Regarding Step 6: Rather than 
examining the standardized residuals and the classifi­
cation diagnostics, you should examine the residuals 
for the means, variances, covariances, univariate 
skewness, and univariate kurtosis of the indicator 
variables along with the classification diagnostics. 
Cross-validation of the final measurement model 
can be done in the same fashion as described for 
latent class analysis. 

I should note that in Step 7, for both Stages I 
and II, there may be occasions in the LPA setting for 
which the model favored by the parsimony principle 
it not the same the model favored by the interests of 
conceptual simplicity and clarity. Take the hypothet­
ical example in Figure 25.8. Let's suppose that the 
two models depicted in Figures 25.8.b and 25.8.c 
are comparable on all relative fit measures as well as 
residuals and classification diagnostics. One might 
perceive the two-class model as more parsimonious 
than the three-class model (although the two-class 
model has one more freely estimated parameter than 
the three-class model), but to interpret and assign 
substantive labels to the latent classes, you have to 

account for not only the different means (locations) 
of the latent classes but also the differences between 
the classes with respect to the within-class variabil­
ity and the within-class correlation, which could get 
decidedly unsimple and unclear in its presentation. 
However, for the three-class model, you only need 
to consider the different class-specific means (and 
the corresponding class separation) to interpret and 
assign substantive labels to the latent classes because 
the model imposes constraints such that the classes 
are identical with respect to within-class variability, 
and the class indicators are assumed to be unre­
lated within class for all the classes. There is not 
an obvious model choice in this scenario. In such 
a situation, and in cases where the models are ago­
nizingly similar with respect to their fit indices, it is 
essential to apply substantive and theoretical reflec­
tions in the further scrutiny of the model usefulness, 
especially keeping in mind the intended conditional 
models to be specified once the measurement model 
is established. 

In the next subsection, I fully illustrate the 
unconditional LPA modeling process with a real data 
example, with special attention to elements of the 
process that are distinct for LPA in comparison to 
what was previously demonstrated for LCA. 

Diabetes Example for Latent 
Profile Analysis 

The data used for the LPA example come from 
a study of the etiology of diabetes conducted hy 
Reaven and Miller (1979). The data were first 
made publically available by Herzberg and Andrews 
(1985) and have become a "classic" example for illus­
trating multivariate clustering-type techniques (see, 
for example, Fraley & Raftery, 1998, and Vermum 
& Magidson, 2002). The original study of 145 non­
obese subjects measured participants' ages, relative 
weights, and collected experimental data on a set 
of four metabolic variables commonly used for dia­
betes diagnosis: fasting plasma glucose, area under 
the plasma glucose curve for the 3-hour oral glucose 
tolerance test (a measure of glucose intolerance), 
area under the plasma insulin curve for the oral glu­
cose tolerance test (a measure of insulin response 
to oral glucose), and the steady state plasma glucose 
response (a measure ofinsulin resistance) (Reaven & 
Miller, 1979). The correlation between the fasting 
plasma glucose and area under the plasma glucose 
curve was 0.97 and so the original authors excluded 
the fasting plasma glucose measure in their analy­
ses of the data. For this illustration, Table 25.11 
lists the same three remaining metabolic measures 
utilized, by name and label, along with descriptive 
statistics for the study sample. Also included in the 
example data are the conventional clinical classifica­
tions of the subjects into one of the three diagnostic 
groups (non-diabetics, chemical diabetics, and overt 
diabetics) made by Reaven and Miller (1979) apply­
ing standard clinical criteria that each take into 
account only one aspect of a participant's carbohy­
drate metabolism. In their 1979 paper, Reaven and 
Miller were interested using their data to explor­
ing the viability of a multivariate analytic technique 
that could classify subjects on the basis of multi­
ple metabolic characteristics, independent of prior 
clinical assessments, as an alternative to the rigid 
clinical classification with arbitrary cut -off value cri­
teria (e.g., individuals with fating plasma glucose 
levels in excess of 110 mg/mL are classified as overt 
diabetics). In this example, the original research aim 
is furthered by investigating the classification of sub­
jeers using LPA and comparing the results to the 
conventional clinical classifications. 

In conducting the class enumeration process, 
knowledge of the existing clinical classification 
scheme is ignored so that is does not influence deci­
sions with respect to either the number of classes 
or their interpretation. I begin Stage I of the class 
enumeration by fitting six models with K = 1 
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Table 25.11. Diabetes Example: Descriptive Statistics for Indicator Measures (u = 145) 

Correlations 

Measure Variable name Mean SD Skewness Kurtosis [Min, Max] (1) (2) 

(1) Glucose area 6/Jtcosc 
(mg/1 OmL/hr) 

(2) Insulin area !nsttlill 
(JL U/0.1 OmL/hr) 

(3) Steady srarc !:i'SPG 
plasma glucose 
(mgllOmL) 

••p < 0.01 

54.36 31.70 

113.61 12.09 

18.42 10.60 

to K = 6 classes for each of four within-class 
variance-covariance specifications: class-invariant, 
diagonal :Ek; class-varying, diagonal :Ek; class­
invariant, unrestricted :Ek; and class-varying, unre­
stricted :Ek. After K = 5, the models for the 
diagonal unrestricted :Ek specifications ceased to be 
well identified, as was the case after K = 4 for 
the class-invariant, unrestricted :Ek specification and 
after K = 3 for the class-varying, unrestricted :Ek. 

Table 25.12 summarizes the results from rhe set of 
class enumerations for each of the :Ek specifications. 
Only the results from the well-identified models are 
presented. Recall that the one-class models for the 
class-invariant, diagonal :Ek and class-varying, diag­
onal :Ek specifications arc the same, as are theK = 1 
models for the class-invariant, unrestricted :Ek and 
class-varying, unrestricted :Ek specifications. Recall 
also that the one-class model for the unrestricted 
:Ek specification is the minimum-goodness-of-fit 
benchmark model, and results from this model are 
enclosed by a bold dashed box for visual recognition. 
Balded values in Columns 5 through 10 indicate the 
value corresponding ro the "best" model within each 
set of enumerations according to each fit index. As 
was the case for the LCA example, all K -class model 
were rejected in favor of a (K + 1 )-class model by the 
BLRT for all values of K considered so there was no 
"best" or even candidate models to be selected based 
on the BLRT and those results are not presented in 
the summary table. 

Figure 25.10 displays four panels with plots of 
the: (a) LL; (b) BIC; (c) CAlC and (d) AWE 
model values, all plotted on the y-axis versus the 
number of classes. Each panel has four plot lines, 
one for each of the :Ek specifications. The dou­
ble horizontal line corresponds ro the index value 
of the minimum-goodness-of-fit benchmark of the 

1.713 2.16 [26.90, 156.80] 1.00 

1.80 4.45 [1.00, 74.80] -0.34** 1.00 

0.69 -0.23 [2.90, 48.00] 0.77** O.ol 

one-class, unrestricted :Ek specification. These plots 
clearly show that all of the models with K :::: 2 are 
improvements over the benchmark model. These 
plots also illustrate the concept of the "elbow" crite­
ria mentioned in the initial description of the class 
enumeration process in the LCA section. Observe 
rhe BIC plot for the class-varying, diagonal :Ek spec­
ification. Although the smallest BIC value our of the 
K = 1 to K = 5 class models corresponds to the four­
class model, rhe BI C values for the three-, four-, and 
five-class models are nearly the same compared to the 
values for the one- and two-class models. There is 
evidence of an "elbow" in the BIC plot at K = 3. The 
bolded values in Column 2 ofTablc 25.12 indicate 
the pair of candidate models selected within each of 
the class enumeration for further scrutiny (follow­
ing class enumeration Steps 5 and 6 in Stage I) and 
the boxed values indicates the "best" model selected 
within each of the class enumeration sets (Step 7 
of Stage 1). The selection of the four "best" mod­
els concluded Step I of the LPA class enumeration 
process. 

For Stage II, I compared the four candidate mod­
els, one from each of the :Ek specifications. Column 
11 in Table 25.12 displays the results of recalculating 
the correct model probabilities using only those four 
models. This index strongly favors the three-class 
model with class-varying, unrestricted :Ek, enclosed 
by a solid box in Table 25.12. The single horizontal 
line in all the panel plots ofFigurc 25.10 corresponds 
to the best indice values across all the models con­
sidered. It is clear from Figure 25.10 that the models 
with class-varying :Ek specifications (either diagonal 
or unrestricted) offer consistently better fit over the 
models with class-invariant specifications, although 
the five-class models with class-invariant, diagonal 
:Ek approaches the fit of the three- and four-class 
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Table 25.12. Diabetes Example: Model Fit Indices for Exploratory Latent Profile Analysis Using Four Different Within-Class 
Variance-Covariance Structure Specifications (11 = 145) 

2 3 4 5 6 7 8 9 10 11 

Adj.LMR-
LRTp-value 

#of classes (Ho:K classes; 
:Ek (K~ u npar• BIG CAlC AWE H 1 :K.I).1 classes) Bh.K~J cmPx emf>. 

Oass-invariant, 1 -1820.68 6 3671.22 3677.22 3719.08 <0.01 <0.10 <0.01 
diagonal 
:Ek ~ :E 2 -1702.55 10 3454.88 3464.88 3534.64 <0.01 <0.10 <0.01 

3 -1653.24 14 3376.15 3390.15 3487.82 <0.01 <0.10 <0.01 

4 -1606.30 18 3302.18 3320.18 3445.76 0.29 <0.10 <0.01 

I 5 I -1578.21 22 3265.90 3287.90 3441.39 - - >0.99 <0.01 

Oass-varying, 1 -1820.68 6 3671.22 3677.22 3719.08 <0.01 <0.10 <0.01 
diagonal :E k 

2 -1641.95 13 3348.60 3361.60 3452.30 <0.01 <0.10 <0.01 

3 -1562.48 20 3224.49 3244.49 3384.03 <0.01 0.38 0.25 

-1544.10 27 3222.57 3249.57 3437.95 0.15 7.76 0.66 0.08 

5 -1528.73 34 3226.67 3260.67 3497.88 - - 0.09 
r - - I Oass-invarianr, I 1 -1730.40 9 3505.60 3514.60 3577.39 <0.01 <0.10 <0.01 -

unrescriaed I 
~---------------------------------------:Ek ~ :E 

2 -1666.63 13 3397.95 3410.95 3501.65 <0.01 <0.10 <0.01 

3 -1628.86 17 3342.33 3359.33 3477.93 0.19 <0.10 <0.01 

-1591.84 21 3288.19 3309.19 3455.70 - - >0.99 <0.01 

Class-varying, 1 -1730.40 9 3505.60 3514.60 3577.39 <0.01 <0.10 <0.01 
unresrriaed :Ek 

2 -1590.57 19 3275.69 3294.69 3427.25 <0.01 <0.10 <0.01 

-1536.64 29 3217.61 3246.61 3448.93 - - >0.99 0.92 

• number of paramerers esrimared 
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Figure 25.10 Diaberes example: Plots of model (a} LL, (b) BIC, (c) CAlC, and (d) AWE values versus the larenr class enumeration 
(K = 1, 2, 3, 4, 5} across four differenr within-class variance-covariance structure specifications. 

models with class-varying :Ek. The three-class model 
with class-varying, unrestricted :Ek and rhe four­
class model with class-varying, diagonal :Ek were 
the two candidate models selected for further inspec­
tion. Following Srep 6 in Stage II, I closely examined 
the residuals and classification diagnostics of the 
final two candidate models. Table 25.13 displays 
the observed, model-estimated, and residuals for the 
means, variance, covariances, and univariate skew­
ness and kurtosis values of the data for the three-class 
model with class-varying, unrestricted :Ek showing 
a satisfactory fit across all these momenrs. The four­
class model with class-varying, diagonal L:k had 
sarisfacrory fir in this regard as well, although the 
fir to the variance-covariance structure of the data 
was not quire as close. Table 25.14 summarizes the 
classification diagnostic measures for the three-class 
model with class-varying, unrestricted :Ek. All the 
measures indicate that the three classes are very well 
separated and there is high accuracy in the latent 
class assignment. The four-class model with class­
varying, diagonal :Ek had comparably good values 
on the classification diagnostics. Considering all the 
information from Stage II, Steps 5 and 6, the three­
class model with class-varying, unrestricted L:k was 

selected as the "final" unconditional latent profile 
model. I should remark here that this model was 
not in any way conspicuously better fitting than 
the other candidate model and another researcher 
examining the same results could ultimately select 
the other model by giving slightly less weight to 
model parsimony and giving less consideration that 
a match between the final class enumeration and 
the number of diagnostic groups greatly simplifies 
the planned comparison between subjects' latent 
class assignments and their convenrional clinical 
classifications. 

For the interpretation of the resultant three 
classes from the final model, it is necessary to 
examine the model-estimated, class-specific item 
means, standard deviations, and correlations, pro­
vided in Table 25.15 and depicted graphically by 
the three scatter plots in Figure 25.11. Inspecting 
the class-specific standard deviation estimates, Class 
1 has a high level of homogeneity with respect to all 
tluee indicator variables, with notably less variability 
than in the overall sample and less than either of the 
other two classes. Class 3 is the least homogeneous 
with respect to glucose and SSPG, with variability in 
both actually greater than the overall sample. Class 
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Table 25.13. Diabetes Example: Observed, Mixed Model-Estimated, 
and Residual Values for Means, Variances, Covariances and 
Correlations, Univariate Skewness, and Univariate Kurtosis Based on 
the Three-Class Latent Profile Analysis with Class-Varying, 
Unrestricted :Ek (n = 145) 

Variable Observed Model-estimated Residual 

Mean( Glucose) 54.36 54.36 0.00 

Mean(Insulin) 18.61 18.61 0.00 

Mean(SSPG) 18.42 18.42 0.00 

Var(Glucose) 1004.58 997.65 6.93 

Var(Insulin) 146.25 145.24 1.01 

Var(SSPG) 112.42 111.65 0.78 

Cov(Glucose,lnsulin) -129.18 -128.29 -0.89 
(Correlation) (-0.34) (-0.34) (0.00) 

Cov(Glucose,SSPG) 259.09 257.30 1.79 
(Correlation) (0.77) (0.77) (0.00) 

Cov(Insulin,SSPG) 1.02 1.01 0.01 
(Correlation) (0.01) (0.01) (0.00) 

Skewness( Glucose) 1.78 1.75 0.03 

Skewness(lnsulin) 1.80 1.49 0.31 

Skewness(SSPG) 0.69 0.72 -0.03 

Kurtosis( Glucose) 2.16 2.49 -0.32 

Kurtosis(Insulin) 4.45 2.96 1.49 

Kurtosis(SSPG) -0.23 0.19 -0.42 

Table 25.14. Diabetes Example: Model Classification Diagnostics 
for the Three-Class Latent Profile Analysis With Class-Varying, 
Unrestricted :Ek (E3 = .88;, = 145) 

Classk itk 95% C.I.* mcaPk AvePPk OCCk 

Class 1 0.512 {o.400, 0.620) 0.524 0.958 21.74 

Oass2 0.211 (0.119, 0.307) 0.221 0.918 41.86 

Class 3 0.277 (0.191, 0.386) 0.255 0.973 94.06 

*Bias-corrected bootstrap 95% confidence imervals 

2 is the least homogenous with respect to insulin, 
also having greater variability than the overall sam­
ple. The similarities and differences in the level of 
class homogeneity with respect to each of the three 
items can be judged visually in Figure 25.11 by 

length and width of the overlaid ellipses in the three 
plots. 

In judging class separation for the two classes that 
do not have a high degree of homogeneity for at 
least one of the indicator variables, the distances 
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Table 25.15. Diabetes Example: Model-Estimated., Class-Specific Means, Standard Deviations 
(SDs), and Correlations with Corresponding Bias-Corrected Bootstrap 95% Confidence Intervals 
Based on the Three-Class Latent Profile Analysis With Class-Varying, Unrestricted L.k (u = 145) 

Correlations 

Class Variable Mean (u111k) SD </Hmwk) (1) (2) 

Class 1 (I) Glucose 35.69 4.39 1.00 
(52%) (34.09, 37.18) (3.11, 5.50) 

(2) Insulin 16.58 5.17 0.15 1.00 
(15.31, 17.96) (4.24, 6.11) (-0.14, 0.42) 

(3) SSPG 10.50 4.33 0.29 0.36** 
(8.90, 12.43) (3.48, 5.97) (-0.05, 0.57) (0.08, 0. 57) 

Class 2 (1) Glucose 47.66 7.29 1.00 
(22%) (43.93, 52.72) (4.95, 10.73) 

(2) Imulin 34.35 15.12 0.36 1.00 
(27.38, 44.06) (1 1.43, 19.40) (-0.33, 0.77) 

(3)SSPG 24.41 3.71 0.03 -0.10 
(22.52, 25.99) (2.15, 5.49) (-0.40, 0.50) (-0.73, 0.54) 

Class 3 (1) Glucose 93.92 35.76 1.00 
(26%) (78.13, 112.48) (30.30, 41.51) 

(2) Imulin 10.38 6.03 -0.76** 1.00 
(7.97, 13.31) (4.74, 8.34) (-0.87, -0.58) 

(3) SSPG 28.48 10.65 0.73** -0.40** 
(24.42, 33.93) (8.22, 12.80) (0.41, 0.85) (-0.61, -0.08) 

•• p < 0.01 

between the class means for those variables must be 
large for the overlap between the classes to still be 
small. Table 25.16 presents the distance estimates 
(i.e., standardized differences in means) for each 
pairwise class comparison on each of the three indi­
cators variables. Large estimated absolute distance 
values greater than 2.0, corresponding to less than 
20% overlap, are balded for visual clarity. All classes 
are well separated with moderate to large estimated 
distances on at least two of the three items, and 
every item distinguishes between at least two of the 
three classes. The classes are all well separated with 
respect to their means on glucose, with the greatest 
distances between Class 1 and the other rwo classes. 
There is a similar pattern for the separation on SSPG 
with large distances between Class 1 and Classes 2 
and 3. However, in the case of SSPG, there is a very 
small separation between Classes 2 and 3-meaning 
that there is a high degree of overlap in the distribu­
tion of individual values on SSPG across those two 

classes, rendering those two classes difficult to dis­
tinguish with respect ro SSPG. In contrast, Classes 2 
and 3 have a large distance between their means for 
insulin, whereas there is only a modest separation 
between Classes 1 and 3. Figure 25.11 provides a 
visual impression of these varying degrees of sepa­
ration across the classes with respect to each of the 
three measures. 

Because the final model selected had a class­
vaLying, unrestricted :Ek, the distinctness of the 
classes must also be evaluated with regards to the 
class-specific variance-covariance structure before 
a full substantive interpretation of the classes is 
rendered. I have already remarked, when assessing 
class homogeneity, that Class 3 was much more vari­
able than the other two classes with respect to glucose 
and SSPG and that Class 2 was much more variable 
with respect to insulin. In terms of the covari­
ance srructure, presented as correlations in Table 
25.15, Class 3 has a large and significant negative 
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Figure 25.11 Diabetes example: Scatter plots of observed sam­
ple values marked by modal latent class assignment based on the 
unconditional three-class LPA for (a) insulin versus glucose, (b) 
S~PG versus insulin, and (c) SSPG versus glucose. For (a)-(c), 
diamonds represent the model-esrimared class-specific bivariate 
mean values, trend lines depict the model-estimated within-class 
bivariate associations, and the ellipse heights and widths corre­
spond to 3.0 model-estimated within-class standard deviations 
for the indictors on they- and x-axis, respecrively. 

correlation between glucose and insulin, whereas 
that correlation is positive and non-significant for 
both Classes 1 and 2. Class 3 has a large and 
significant positive correlation between glucose and 

Table 25.16. Diabetes Example: Estimated 
Standardized Differences in Class-Specific 
Indicator Means, d~n .. , Based on 
Model-Estimated, Class-Specific Indicator 
Means and Variances from the Three-Class 
Latent Profile Analysis With Class-Varying, 
Unrestricted 'Ek (n = 145) 

Class 1 Class 1 Class 2 
vs. vs. vs. 

Variable Class 2 Class 3 Class 3 

(1) Glucose -2.21 -2.78 -1.73 

(2) Insulin -1.91 1.13 -2.15 

(3) SSPG -3.34 -2.53 -0.49 

SSPG, whereas that correlation, although positive, 
is non-significant for both Classes 1 and 2. Class 
3 has a moderate and significant negative correla­
tion between insulin and SSPG, whereas Class 1 has 
a moderate and significant negative correlation and 
Class 2's correlation is negative and non-significant. 
Because the correlation between insulin and SSPG 
is the only significant correlation for Class 1 and 
none of the correlations were significant for Class 
2, Classes 1 and 2 are not well separated by their 
covariance structure. Class 3 is the class with two 
quite large and all significant correlations, and these 
features are an important part of what distinguishes 
Class 3, and Class 3 is well separated from both Class 
1 and Class 2 with respect to all covariance elements. 
However, because Class 3 only represents 26o/o of the 
population, it is not surprising that the results of the 
three-class model with a class-varying, diagonal :Ek 
were so close to the results of this model, allowing 
the within-class correlations. 

For the substantive class interpretation, I begin 
with the class most distinct in means and variance­
covariance structure from the other classes, Class 
3, with an estimated proportion of 26o/o. Class 3 
consists ofindividuals with high values on glucose, on 
average, compared to the overall sample and Classes 
1 and 2. Within this class, there is a strong negative 
association between glucose and insulin and strong 
positive association between glucose and SSPG such 
that the individuals in Class 3 with higher values 
on glucose have lower values on insulin and higher 
values on SSPG, on average. The high average value 
on glucose and SSPG with the lower average value on 
insulin along with the very strong associations across 
the three indicators, leads this class to be labeled the 
"overt" diabetic class. 
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Class 2, with an estimated proportion of 22%, 
consists of individuals with insulin and SSPG val­
ues, higher, on average, than the overall popularion 
means and notably higher than Class 1. Class 2 is not 
much different than Class 3 with respect to SSPG 
but has a much higher mean on insulin. Individuals 
in Class 2 have higher-than-average values for glu­
cose, and Class 2 is nearly as different from Class 
1 as Class 3 is in terms of average glucose values 
even though the mean in Class 2 is lower than Class 
3. There are no significant associations between the 
three indicators in Class 2. The higher-than-average 
values on glucose, insulin, and SSPG, with a notably 
higher imulin mean but lower glucose mean than 
the "overt" diabetic class, suggests the la!Jel of the 
"cl1emical" diabetic for this class. 

Class 1, with an estimated proportion of 52%, 
consists ofindividuals with glucose and SSPG values 
lower, on average, than the overall population mean 
and notably lower rhan either Class 2 or Class 3. The 
individuals in Class 1 have insulin values, on average, 
near the overall population mean, higher than the 
"chemical" diabetic class and lower than the "overt" 
diabetic class. For the Class 1 subpopulation, there 
is a moderate positive association between glucose 
and SSPG such that individuals with higher values 
on glucose in Class 1 have higher value, on average, 
for SSPG. This association is quite different from the 
moderate negative association in the "overt" diabetic 
group such that among those in Class 3, individu­
als with higher values on glucose have lower values 
on SSPG, on average. The lower glucose and SSPG 
average levels, the average insulin levels, the posi­
tive association between glucose and SSPG, and the 
estimated class proportion greater than 50% sug­
gest the label of the "normal" (non-diabetic) for this 
class. 

With the resulrs from the unconditional LPA in­
hand, I can compare individual model-estimated 
class membership for individuals in the sample ro 
their clinical classifications. As it happens, a three­
class model for the LPA was selected and the latent 
classes were interpreted in a way that matched, at 
the conceptual level, the three clinical classifica­
tion categories. To make the descriptive, post hoc 
comparisons, I use the modal class assignment for 
each participant to compare to the clinical clas­
sification. Because the comparison is descriptive 
(rather than inferential) and there is a very high 
level of classification accuracy for all three classes 
(see Table 25.14), it is reasonable to use the modal 
class assignment ro get a sense of the correspon­
dence between "true" class membership and the 

clinical classifications. Table 25.17 displays a cross­
tabulation comparison between latent class (modal) 
membership and the clinical classifications. Cells 
corresponding to "matches" between the modal class 
assignmenrs and the clinical classifications are boxed 
in bold. In general, there is a strong concordance 
across all three latent classes, with only 22 (15%) of 
the participants having a mismatch between modal 
latent classification and clinical status. The high­
est correspondence is between the "normal" latent 
class and the non-diabetic clinical classification, with 
91% of those modally assigned to the "normal" class 
also having a non-diabetic clinical status. The low­
est correspondence is between the "chemical" latent 
class and the chemical clinical classification but was 
still reasonably high, with 72o/o of those modally 
assigned to the "chemical" diabetes class also hav­
ing a chemical diabetic clinical status. It is also 
informative to examine the nature of the noncorre­
spondence. Of those individuals modally assigned to 

the "normal" class, none had an overt diabetic clin­
ical status. Similarly, of those individuals modally 
assigned to the "overt" class, none had a non-diabetic 
clinical status. In both cases, the mismatch involved 
individuals with a chemical diabetic clinical status. 
Of the individuals modally assigned ro the "chem­
ical" diabetes class that did nor have a chemical 
diabetic clinical status, most had a non-diabetic clin­
ical status, but two did have an overt diabetic clinical 
smrus. 

Because it was originally of interest whether a 
multivariate model-based classification could offer 
improvements over the w1ivariate cut-off criteria 
used in the clinical classifications, I closely exam­
ined the 22 cases for which there is a mismatch. 
Table 25.18 summarizes the average posterior class 
probabilities stratified by both modal class assign­
ments and clinical classifications. What can be seen 
in this table is that the average posterior class proba­
bilities for the modally assigned classes, balded and 
boxed in Table 25 .18, are all reasonably high. In 
other words, even those groups of individuals with a 
mismatcl,I between the modal latent class member­
ship and clinical status are relatively well classified, 
on average, by the model. If one examines the raw 
data for these individuals, it can be seen that these 
individuals were not well classified by the clinical 
criteria. For example, most of the patients with 
a chemical diabetic clinical status and a "normal" 
modal class assignment were all borderline on clin­
ical diagnosis criteria. Some of the patients with a 
non-diabetic clinical status that were hyperinsuline­
mic and insulin-resistant, but managed to maintain 
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Table 25.17. Diabetes Example: Modal Latent Class Assignment vs. Clinical 
Classification Frequencies and Row Percentages 

Clinical classification 

Modal class assignment Non-diabetic Chemical diabetic Overt diabetic Total 

"Normal" 69 7 0 76 
(91%) (9%) (0%) (100%) 

"Chemical" 7 23 2 32 
(22%) (72%) (6%) (100%) 

novert, 0 6 31 37 
(0%) (16%) (84%) (100%) 

Total 76 36 33 145 

Table 25.18. Diabetes Example: Average Posterior Class Probabilities by Modal Latent Class 
Assignment and Clinical Classification 

Modal class assignment Clinical classification f 

"Normal" Non-diabetic 69 
-
Chemical diabetic 7 

-
Overt diabetic 0 

"Chemical" Non-diabetic 7 

Chemical diabetic 23 

Overt diabetic 2 
-

"Overt" Non-diabetic 0 

Chemical diabetic 6 

Overt diabetic 31 

normal glucose tolerance, were modally assigned by 
the model to the "chemical" diabetes class. These 
differences suggest that using a model that takes 
into account multiple metabolic characteristics may 
offer improved and more medically comprehensive 
classification over the rigid and arbitrary univariate 
clinical cur-off criteria. 

Latent Class Regression 
The primary focus, thus far, has been on the 

process for establishing the measurement model 
for latent class variables with either categorical 
indicators (LCA) or continuous indicators (LPA). 
However, that process is usually just the first step in 
a structural equation mixture analysis in which the 
latent class variable (with its measurement model) 
is placed in a larger system of variables that may 
include hypothesized predictors and outcomes of 
latent class membership. To provide readers with 
a sense of how these structural relationships can 

0.97 <0.01 0.02 

0.79 0.05 0.15 

- - -
0.06 0.85 0.09 

0.02 0.93 0.04 

<0.01 >0.99 <0.01 

- - -
0.07 0.08 0.85 

<0.01 <0.01 >0.99 

be specified, I present in this section a latent 
class regression {LCR) model for incorporating 
predictors of latent class membership. This pre­
sentation is applicable for both LCA and LPA 
models. 

Covariates oflatent class membership may serve 
different purposes depending on the particular aims 
of the study analysis. If attention is on develop­
ing and validating the measurement model for a 
given construct using a latenc class variable, covari­
ates can be used to assess criterion-related validity of 
the latent class measurement model. It may be pos­
sible, based on the conceptual framework for the 
latent class variable, to generate hypotheses about 
how the latellt classes should relate to a select set of 
covariates. These hypotheses can then be evaluated 
using a LCR model (Dayton & Macready, 2002); 
support for the hypotheses equates to increased val­
idation of the latent class variable. You may also 
gain a richer characterization and interpretation of 
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the latent classes through their relationships with 
co variates. 

Beyond construct validation, covariates can be 
used ro test hypotheses related to a theoretical vari­
able system in which the latent class variable oper­
ates. In such a variable system, you may have one 
or more theory-driven covariates that arc hypothe­
sized ro explain individual variability in an outcome 
where the individual variability is captured by the 
latent class variable. 

In the remainder of this section I describe the 
formulation of the LCR model and illustrate its use 
in the LSAY example. 

Model Formulation 
For a LCR model, the measuremenr model 

parameterization, describing the relationships 
between the latent class variable and its indicators, 
remains the same as for the unconditional models 
but the structural model changes in that the latent 
class proportions are now conditional on one or 
more covariates. For example, in the LCA speci­
fication, the conditional version of Equation 4 is 
given by 

K 

= L]Pr(ci = klxi) · Pr(uli, Uzi> ... , UMilci = k)]. 
k=l 

(40) 

A multinomial regression is used to parameterize 
the relationship between the probability of latent 
class membership and a single covariate, x, such 
that 

cxp{Yok + Y!kXi) 
Pr(ci = klxi) = K (41) 

L exp(Yoj + YljXi) 
j=l 

where Class Kis the reference class and YOK = 
YIK = 0 and for identification. Yok is the log odds 
of membership in Class k versus rhe reference class, 
Class K, when x = 0 and Yik is the log odds ratio 
for membership in Class k(versus Class K) corre­
sponding to a one unit difference on x. Equations 
40 and 41 are represented in path diagran1 for­
mat as shown in Figure 25.12. Equation 41 can 
easily be expanded to include multiple covariates. 
(For more general information about multinomial 
regression, see, for example, Agresti, 2002.) Ir is 
also possible to examine latent class difference with 
respect to a grouping or concomitant variable using a 
multiple-group approach similar to multiple-group 

Figure 25.12 Generic parh diagram for a larem class rcgrL'SSion 
model. 

factor analysis (Collins & Lanza, 2010; Dayton & 
Macready, 2002), bur such models are beyond the 
scope of this chapter. 

Model Building 
As previously explained in the earlier model­

building subsections, the first step in the model­
building process-even if the ultimate aims of 
the analysis include testing hypotheses regarding 
the relationships between predicting covariares and 
latent cla.~s membership-is to establish the mea­
suremem model for the latem class variable. Based 
on simulation work {Nylund & Masyn, 2008), 
showing misspecification of covariate effects in a 
LCA can lead to bias in the class enumeration, 
it is strongly recommended that the building of 
the measurement model-particularly the class enu­
meration stage-is conducted with unconditional 
models, only adding covariates once the final mea­
suremem model has been selected. The selection and 
order of covariate inclusion should be themy-driven 
and follow the same process as with any regular 
regression model with respect to risk factors or pre­
dictors of interest, conrrol of potential confounders, 
and so forth. 

The specification provided in Equations 40 and 
41 assumes that there is no direct effect of x on the 
latent class indicator variables (which would be rep­
resented in Figure 25.12 by a path from x to one or 
more the us). However~ omission of direct covari­
ate effects (if actually present) can lead to biased 
results (similarly to the omission of direct effects in 
a latent facror model). If direct effects are incorrectly 
omitted, then the measuremenr parameters for the 
latent class variable can be distorted, shifting from 
their unconditional model estimates and potentially 
misrepresenting the nature of rhe latent classes; in 
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addition, the estimated latent class proportions and 
the effects of the covariate on latent class member­
ship can be biased. In fact, if no direct effects are 
included and the latent classes in the LCR model 
change substantively in size or meaning relative to 
the final unconditional latent class model, then this 
can signal a misspecification of the covariate associa­
tions with the latent class indicators, recommending 
a more explicit rest of direct effects. The presence 
of direct effects is analogous to the presence of 
measurement non-invariance in a factor model or 
differential item functioning in an item response 
theory model-a direct effect on an indicator vari­
able means that individuals belonging to rhe same 
latent class bur with different values of x have differ­
ent expected outcomes for that observed indicator. 
Although elaborating on the process of testing for 
direct effects and measurement non-invariance with 
respect to covariates being incorporated into a LCR 
model is beyond the scope of this chapter, I do rec­
ommend that, in the absence of prior knowledge or 
strong theoretical justification, direct effect should 
be tested as part of the conditional model-building 
process and the addition of latent class covariates. 
(For more on covariate direct effects, measurement 
non-invariance, and violations of the conditional 
independence assumption resulting from direct 
covariate effects in LCRs, see, for example, Bandeen­
Roche, Migliorerri, Zeger, Rathouz, & Paul, 1997; 
Hagenaars, 1988; and Reboussin, Ip, & Wolfson, 
2008.) 

I should remark here that a LCR analysis fol­
lowing the building of a latent class measurement 
model using a full latent class enumeration process 
without any a priori restrictions on the number and 
nature of the latent classes is a blend of confirmatory 
(LCR) and exploratory {latent class enumeration) 
elements. Although the establishment of the mea­
surement model proceeds in a more exploratory way, 
the model that you carry forward to inferential struc­
tural models is not constrained in the same way it 
would be when conducting an EFA and then sub­
sequent CFA in the same sample, and thus you 
do not face the same dangers of inflating Type I 
error rates and capitalizing on chance. However, it 
is preferable, if possible, to validate the measure­
ment model with new data so that you can feel 
more confident that the measurement model might 
generalize to other samples and that your latent 
classes are not being driven by sampling variabil­
ity and are not overfit to the particular sample data 
at hand. Otherwise, it is important to acknowledge 
in the interpretation of the results the exploratory 

and confirmatory character of the analysis (Lubke, 
2010). 

Longitudinal Study of American Youth 
Example for Latent Class Regression 

To illustrate LCR, I return to the LSAY exam­
ple used in the Latent Class Analysis section. In 
addition to the nine math disposition items, the 
example dataset also included the variable of student 
sex (coded here as female = 1 for females students 
and female = 0 for male students). Beginning with 
the five-class unconditional model, I fit two mod­
els: Model 0, a five-class model with the latent class 
variable regressed on .fomale but with all multinomial 
regression coefficients for female fixed at zero; Model 
1, a five-class model with the latent class variable 
regressed on .fomale with all multinomial regression 
coefficients for female freely estimated. I conducted 
parallel analyses for both Subsamples A and B and 
found similar results; only the results for Subsample 
A are presented here. 

There is a significant overall association between 
student sex and math disposition class membership 
(Model 0 vs. Model 1: XJiff = 27.76, df = 4, 

p < .001). There was no significant shift in the mea­
surement parameters between Model 0 and Model 
1 that would have suggested the presence of one 
or more direct effects of .fomale on the items them­
selves. This descriptive comparison of parameter 
estimates is not a concrete test of direct effects (that 
should normally be done), but because explicit test­
ing for differential item functioning in latent class 
models is beyond the scope of this chapter, I will 
cautiously treat this model comparison as a satisfac­
tory heuristic evaluation of measurement invariance 
that allows me to proceed with an interpreta­
tion of the LCR results without including direct 
effects. 

Examining the results of the LCR presented in 
Table 25.19, the multinomial regression parame­
ters represent the effects of student sex on class 
membership in each class relative to the reference 
class (selected here as Class 1: "Pro-math with­
out anxiety"). Given membership in either Class 
1 ("Pro-math without anxiety") or Class 2 ("Pro­
math with anxiety"), females are significantly less 
likely to be in Class 2 than Class 1 (OR = 0.52), 
whereas females are significantly more likely ro be 
in Class 4 ("I don't like math bur I know it's good 
for me") than Class 1 (OR= 1.72). There is no sig­
nificant difference in the likelihood of membership 
in Class 5 ('~ti-math with anxiety'') among males 
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Table 25.19. LSAY Example: Five-Class Latent Class Regression Results 
for the Effects of Student Sex (fum ale = 1 for female; fumale = 0 for 
male) on Latent Class Membership for Subsample A (uA = 1338) 

C regressed on 
fomole 

Class 1 (ref) "Pro-math without 
anxiety" 

Class 2 "Pro-math 
with anxieLy'' 

Class 3 "Math lover" 

Class4 "I don't like math 
bur l know it's good 
for me" 

Class 5 "Ami-math 
with anxiety" 

and females in either Class 1 or 5. Rather than mak­
ing all pairwise class comparisons for student sex by 
changing the reference class, a better impression of 
the sex differences in class membership can be given 
through a graphical presentation such as the one 
depicted in Figure 25.13, which shows the model­
estimated class proportions for the total population 
and for the two values of the covariate-that is, for 
males and females. You can see in this figure thar the 
sex differences are primarily in the distribution of 
individuals across Classes 2 {"Pro-Math With Anx­
iety") and 4 ("I Don't Like Math but I Know It's 
Good for Me") with females more likely than males, 
overall, to be in Class 4 and less likely to be in Class 2. 

Post Hoc Class Comparisons 
This section has presenred a LCR model that 

simultaneously estimates the latent class measure­
ment model and the structural relationships between 
the latent class variable and one or more covariates. 
The simultaneous estimation of rhe measurement 
and structural models is recommended whenever 
possible. However, there is a not-so-unusual prac­
tice in the applied literature of doing post hoc class 
comparisons, taking the modal class assignmenrs 
based on the unconditional latent class measurement 
model and treating those values as observed values 
on a manifest multinomial variable in subsequent 
analyses. This is what I did for the diabetes exam­
ple, comparing the modal class assignments to the 
clinical classifications, and such a post hoc compar­
ison can be a very useful descriptive technique for 

"further understanding and validation of the latent 

11Jk s.e. p-value OR 

0.00 1.00 

--0.66 0.21 <0.01 0.52 

0.17 0.21 0.43 1.18 

0.55 0.19 <0.01 1.72 

-0.32 0.22 0.14 0.73 

classes. The problem of this post hoc classification 
approach comes when modal class assignments are 
used in formal hypothesis testing, moving beyond 
d1e descriptive ro inferenrial analyses. 

Such a "classifY-analyze" approach is problem­
atic because it ignores the error rates in assigning 
subjects co classes. Because the error rates can vary 
from class to class, with smaller classes having higher 
prior probabilities of incorrect assignment, even 
with well-separated classes, there can be bias in the 
point estimates as well as the standard errors for 
parameters related ro latent class membership. In 
addition, there is error introduced from the posterior 
class probabilities that are used for the modal class 
assignment because they are computed using param­
eter estimates and contain the uncertainty from 
those estimates. Studies have shown that assignment 
error rates can be considerable (Tueller, Drotar, & 
Lubke, 2011), posing serious threats to d1e validity 
of post hoc testing. 

Advanced Mixture Modeling 
Although a substantial amount of information 

has been covered in this chapter, I have only 
scratched the surface in terms of the many types 
of population heterogeneity that can be modeled 
using finite mixtures. However, what is provided 
here is the foundational understanding that will 
enable you to explore these more advanced models. 
Just as with factor analysis and traditional struc­
tural equation modeling, the basic principles of 
model specification, estimation, evaluation, and 
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Figure 25.13 LSAY example: Model-estimated overall and sex-specific latent class proportions for the five-class LCR. 

interpretation extend quire naturally into more 
complicated modeling scenarios. 

This section provides a very brief overview of 
some of modeling extensions currently possible in 
a mixture modeling framework. The first exten­
sion relates to the latent class indicators and their 
within-class distributions. I presented two models­
LeA and LPA-that had exclusively categorical or 
exclusively continuous indicator variables. However, 
recent advances in maximum likelihood estima­
tion using complex algorithms in a general latent 
variable modeling framework (see, for example, 
Asparouhov & Muthen, 2004, and Skrondal & 
Rabe-Hesketh, 2004) have rendered the necessity 
of uniformity of measurement scales among the 
indicators obsolete, allowing indicators for a single 
latent class variable to be of mixed measuremem 
modalities, while also expanding the permissible 
scales of measures and error distributions for the 
manifest variables. lr is now possible to specify a 
latent class variable with indicators of mixed modal­
ities or measurement scales including interval and 
ratio scales of measures, censored interval scales, 
count scales, ordinal or Likert scales, binary or 
multinomial responses, and so forth. It is also pos­
sible to specify a range of within-class distributions 
for those indicators-for example, Poisson, zero­
inflated Poisson, or negative binomial for count 
scales; normal, censored normal, censored-inflated 
normal for interval scales, and so forth. Addition­
ally, the class-specific distribution functions can 
be from different parametric families across the 
classes. 

Another extension involves the scale of the latent 
class variable. In this presentation, I used the tra­
ditional formulation of the latent class variable as 
a latent multinomial variable. However, there are 
latent class models that bridge the gap between 
the latent multinomial variable models and the 
latent factor models, such as discretized latent trait 
models, located latent class models, and latent 
class scaling models (Croon, 1990, 2002; Dayton, 
1998; Heinen, 1996)-all forms of ordered latent 
class models. In addition, recent advances have 
further blurred the lines of conventional classifica­
tion schemes for latent variable models (Heinen, 
1996) by allowing both latent factors and latent 
class variables to be included in the same ana­
lytic model. These so-called hybrid models, also 
termed foetor mixture models, include both con­
tinuous and categorical latent variables as part of 
the same measurement model (Arminger, Stein, & 
Wittenburg, 1999; Dolan & van der Maas, 1998; 
Draney, Wilson, Gluck, & Spiel, 2008; Jedidi, 
Jagpal, & DeSarbo, 1997; Masyn, Henderson, & 
Greenbaum, 2010; Muthen, 2008; Vermunr & 
Magidson, 2002; von Davier & Yamamoto, 2006; 
Yung, 1997). These models combine features from 
both conventional factor analysis and LCA. Spe­
cial cases of these hybrid models include mixture 
item response theory models and growth mixture 
models. 

Extensions in mixture model specification and 
estimation include the accommodation of com­
plex sampling weights (Patterson, Dayton, & 
Graubard, 2002); the use of Bayesian estimation 
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(e) (f) 

Figure 25.14 Generic path diagrams fur a (a) latent class mediation model, (b) regression mixrure model, (c) larenr rransicion model, 
(d) mulcilevellarenr class model, (e) discrete-rime survival fucror mixture model, and (f) growth mixture model. 

techniques (Asparouhov & Muthen, 201 0; Garrett 
& Zeger, 2000; Gelfand & Smith, 1990; Lanza, 
Collins, Schafer, & Flaherty, 2005) in place of full­
information maximum likelihood; the adaptation 
of fuzzy clustering algorithms and allowing graded 
latent class membership (Asparouhov & Murhen, 
2008; Yang & Yu, 2005); and the use of multiple 

imputation for missing data combined with MLE 
(Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 
2008). 

The six panels of Figure 25.14 display path dia­
gram representations of some of the many advanced 
mixture models available to researchers. Figure 
25.14.a depicts is a latent class mediation model 
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(Petras, Masyn, & Ialongo, 2011}, extending the 
LCR model to include an outcome of latent class 
membership that may also be influenced by the 
covariate. Figure 25.14.b depicts a regression mix­
ture model (RMM; Desarbo,Jedidi, &Sinha, 2001; 
Van Horn, Jaki, Masyn, Ramey, Antaramian, & 
Lamanski, 2009} in which the latent class variable 
is measured by the conditional distribution of an 
outcome variable, y, regressed on x-that is, the 
latent class is specified to characterize differential 
effects of x on y present in the overall population. 
Figure 25.14.c displays the longitudinal extension 
of latent class analysis: latent transition analysis 
(LTA). In LTA {Collins & Lanza, 2010; Nylund, 
2007), a special case of a broader class of mixture 
models called Markov chain models (Langeheine & 
van de Pol, 2002}, there is a latent class variable 
at each time-point or wave, and the relationship 
between the classes across time describe individ­
ual transirions in class membership through time. 
Figure 25.14.d displays the multilevel extension of 
LCA. In MLCA (Asparouhov & Murhen, 2008; 
Henry & Muthen, 2010; Nylund-Gibson, Graham, 
&Juvonen, 2010), theclassproportionswithinclus­
ter (represented by shaded circles on the boundary 
of the within-cluster latent class variable, cw) vary 
across clusters. And the variability in class propor­
tions across clusters is captured by a between-duster 
latent class variable, cb. The classes of cb repre­
sent different groups of clusters characterized by 
their distributions of individuals across classes of 
cw. Figures 46.14.e and 46.14.f depict two spe­
cial types of factor mixture models. The diagram 
in Figure 25.14.e represents a discrete-time survival 
factor mixture model (Masyn, 2009) in which there 
is an underlying factor that captures individual-level 
frailty in the discrete-time survival process measured 
by the event history indicator, em, and the latent class 
variable characterizes variability in the individual 
frailties. The diagram in Figure 25.14.f represents 
a growth mixture model (Feldman, Masyn, & 
Conger, 2009; Muthen &Asparouhov, 2009; Petras 
& Masyn, 2010) in which there are latent growth 
factors that capture the intra-individual growth pro­
cess, defining individual growth trajectories, and a 
latent class variable that characterizes (part of) the 
inrerindividual variability in the growth trajectories. 
Examples of other advanced mixture models not 
depicted in Figure 25.14 include pattern-mixture 
and selection models for non-ignorable missing 
data (Muthen, Asparouhov, Hunter, & Leuchter, 
2011) and complier average causal effect mod­
els Qo, 2002). What I have provided here is by 

no means a fully comprehensive or exhaustive list 
of advanced mixture models but is intended to 
give the reader a flavor of what extensions are 
possible. 

Conclusion 
This chapter represents what I believe to be the 

current, prevailing "best practices" for basic mixture 
modeling, specifically LCA and LPA, in terms of 
model specification, estimation, evaluation, selec­
tion, and interpretation. I have also provided a very 
limited introduction to structural equation mixture 
modeling in the form of LCR. In addition, in the 
previous section, you have been given a partial sur­
vey of the many more advanced mixture models 
currently in use. It should be evident that mixture 
models offer a flexible and powerful way of modeling 
population heterogeneity. However, mixture mod­
eling, like all statistical models, has limitations and 
is perhaps even more susceptible to misapplication 
that other more established techniques. Thus, I take 
the opportunity in closing to remind readers about 
some of the necessary (and untestable) assumptions 
of mixture modeling and caution against the most 
common misuses. 

Most of this chapter has focused on direct appli­
cations of mixture modeling, for which one assumes 
a priori that the overall population consists of two 
or more homogeneous subpopulations. The direct 
application is far more common in social science 
applications than the indirect application. One 
assumes that there are, in truth, distinct types of 
groups of individuals that are in the population to 
be revealed. "This assumption is critical, because it 
is always possible to organize any set of data into 
classes, which then can be said to indicate types, 
but there is no real finding if an analysis merely 
indicates classifications in a particular sample. To 
be of scientific value, the classifications must rep­
resent lawful phenomena, must be replicable, and 
must be related to other variables within a network 
that defines construct validity." (Horn, 2000, p. 
927) Because this assumption is an a priori assump­
tion of a mixture model, utilizing a direct mixture 
modeling approach does not test a hypothesis about 
the existence of discrete groups or subtypes. (There 
are analytic approaches that are designed to explore 
the underlying latent structure of a given construct, 
e.g., whether the underlying construct is continu­
ous or categorical in nature, and interested readers 
are referred to the chapter in this handbook on tax­
ometric methods and also Masyn, Henderson, and 
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Greenbaum, 201 0.) Nor does the fact that a K­
class model is estimable with the sample data prove 
there are K classes in the population from which the 
sample was drawn. 

Furthermore, the (subjective) selection of a final 
K -class model does not prove rhe existence of exactly 
K subgroups. Recall how the specification ofEk in a 
latent profile analysis can influence which class enu­
meration is "best." The number oflatenr classes that 
you settle on at tl1e conclusion of the class enumer­
ation process could very well nor reflect the actual 
number of distinct groups in the population. Atten­
tion must also be paid, during the interpretation 
process, to the fact that the latent classes extracted 
from the clara are inextricably linked to the items 
used to identify those clru.'Ses because the p~ycho­
metric properties of tl1e items can influence the 
formation of the classes. You assume that you have 
at your disposal the necessary indicators to identifY 
all the distinct subgroups in the population and can 
only increase confidence in this assumption through 
validation of the latent class structure. 

I did not provide concrete guidelines about sam­
ple size requirements for mixture modeling because 
they depend very much on the model complex­
ity; the number, narure, and separation of the 
"true" classes in the population; and the proper­
ties of the latenr class indicators themselves (Lubke, 
20 10). "Analyses tor a very simple latent class mod­
els may be carried out probably wirh as few as 30 
subjects, whereas other analyses require thousands 
of subjects." (Lubke, 201 0, p. 215) Thus, what 
is critical to be mindful of in your interpretation 
of findings from a mixrure model is that mixture 
models can be sensitive to sampling fluctuation that 
may limit the generalizabiliry of the class structure 
found in a given sample and that smaller samples 
may be underpowered m detect smaller and/or not 
well-separated classes (Lubke, 201 0). 

None of these limitations detracts fi:om the use­
fulness of mixture modeling or me scientific value of 
the emergent latent class structure for characterizing 
the population heterogeneity of interest. However, 
any interpretation must be made wirh these limita­
tions in mind and care must be taken not to reif}t 
the resultant latent classes or ro mal{e claims about 
proof of their existence. 

Future Directions 
In the historical overview of mixture modeling 

at the beginning of this chapter, I remarked on 
the rapid expansion in the statistical theory (model 

specification and estimation), software implemen­
tation, and applications of mixture modeling in the 
last 30 years. And the evolution of mixture model­
ing shows no signs of slowing. There are numerous 
areas of development in mixture modeling, and 
many investigations are currently underway. Among 
those areas of development are: measures of over­
all goodness-of-fir, individual fir indices, graphical 
residual diagnosdcs, and assumption-checking post 
hoc analyses-particularly for mixture models with 
continuous indicators and factor mixture models; 
Bayesian estimation and mixture model selection; 
class enumeration processes for multilevel mixture 
models with latent class variable on two or more 
levels; missing data analysis-particularly maxi­
mum likelihood approaches and multiple impu­
tation approaches for non-ignorable missingness 
related to latenr class membership; detection pro­
cedures for differential item functioning in latent 
class measurement models; multistage and simulta­
neous approaches for analyzing predictors and distal 
outcomes oflatent class membership including mul­
tiple imputation oflatent class membership by way 
of plausible values from Bayesian estimation tech­
niques; integration of causal inference techniques 
such as propensity scores and principal stratification 
with mixture models; and informed study design, 
including sample size determination, power calcu­
lations, and item selection. In addition to these 
more specific areas of methods developmenr, the 
striking trend of extending other statistical mod­
els by integrating or overlaying finite mixtures will 
surely continue and more hybrid models are likely 
to emerge. Furthermore, mere will be advancing 
substantive areas, yielding new kinds of data, for 
which mixture modeling may prove invaluable­
for example, genotypic profile analysis of single 
nucleotide polymorphisms. And although it is dif­
ficult to predict which area of development will 
prove most fruitful in the coming decades, it is 
certain that mixture modeling will continue to 
play an increasingly prominent role in ongoing 
empirical quests to describe and explain general 
patterns and individual variability in social science 
phenomena. 

List of Abbreviations 
AN OVA Analysis of variance 

(ANCOVA-Analysis of 
covariance) 

AvePP Average posterior class 
probability 
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AWE Approximate weight of evidence 
criterion 

BP Bayes factor 
BIC Bayesian information criterion 
CACE Complier average causal effect 
CAlC Consistent Akaike information 

criterion 
CPA Confirmatory factor analysis 

(EPA-Exploratory factor 
analysis) 

cmP Correct model probability 
df Degree(s) of freedom 
DIP Differential item functioning 
EK Entropy 
EM Expectation-maximization 

algorithm 
GMM Growth mixture model 
IRT Item response theory 
LCA Latent class analysis 
LCCA Latent class cluster analysis 
LCR Latent class regression 
LL Log likelihood 
LPA Latent profile analysis 
LR Likelihood ratio (LRT -Likelihood 

ratio test; LRTS-LRT statistic; 
LMR-LRT-Lo, Mendell, & Rubin 
LRT; BLRT-bootstrapped 
LRT) 

LSAY Longitudinal Study of American 
Youth 

LTA Latent transition analysis 
MAR Missing at random 

(MCAR-missing completely at 
random) 

mcaP Modal class assignment proportion 
ML Maximum likelihood 

(MLE-Maximum likelihood 
estimate; PIML-Pull information 
maximum likelihood) 

MVN Multivariate normal distribution 
npar Number of free parameters 
occ Odds of correct classification ratio 
OR Odds ratio 
RMM Regression mixture model 
SIC Schwarz information criterion 
SSPG Steady stare plasma glucose 

Appendix 
A technical appendix with Mplus syntax and 

supplementary Excel files for tabulating and con­
structing graphical summaries of modeling results is 
available by request from the chapter author. 
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