“ OXFORD LIBRARY OF PSYCHOLOGY

Editor-in-Chief PETER E. NATHAN

The Oxford Handbook

of Quantitative
Methods
Edited by

Todd D. Little

VOLUME 2: STATISTICAL ANALYSIS

OXTORD

UNIVERSITY PRESS



OXTFORD

UNIVERSITY PRESS

Oxford Universicy Press is a department of the University of Oxford.
It furchers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide.

Oxford  New York

Aucklind CapeTown DaresSalaam HongKong Karachi
KualaLumpur Madrid Melbourne Mexico City  Nairobi
MNewDelhi Shanghai  Taipei Toronto

With offices in

Argentina Austria  Brazil Chile CzechRepublic France Greece
CGuaternala Hungary lraly Japan Poland Portugal Singapore
South Koren  Switzerland  Thailand Turkey Ukraine Vietnam

Oxford is a registered trademark of Oxford University Press in the UK and certain other
vountries,

Published in the United States of America by
Oxfiwrd University Press
198 Mudison Avenue, New York, NY 10016

© Oxford University Press 2013

Al rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, without the prior
permission in writing of Oxford University Press, or as expressly permitted by law,

by license, or under terms agreed with the appropriate reproduction rights organization.
Inquiries concerning reproduction outside the scope of the above should be sent to the
Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

Library of Congress Cataloging-in-Publication Dara
The Oxford handbook of quantitative methods / edited by Todd D. Licde.
v. cm. — {Oxford library of psychology)
ISBN 978-0--19-993487-4
ISBN 978-0-19-993489-8
1. Psychology-Statistical methods. 2. Psychology—Mathemarical models. 1. Litde, Todd D.
BF39.0927 2012
150.72"1-dc23
2012015005

98765432

Printed in the Unired States of America
on acid-free paper



CHAPTER

Katherine E. Masyn

Latent Class Analysis and Finite
Mixture Modeling

Abstract

Finite mixture models, which are a type of latent variable model, express the overall distribution of
one or more variables as a mixture of a finite number of component distributions. In direct
applications, one assumes that the overall population heterogeneity with respect to a set of manifest
variables results from the existence of two or more distinct homogeneous subgroups, or latent
classes, of individuals. This chapter presents the prevailing “best practices” for direct applications of
basic finite mixture modeling, specifically latent class analysis (LCA) and latent profile analysis (LPA), in
terms of model assumptions, specification, estimation, evaluation, selection, and interpretation. In
addition, a brief introduction to structural equation mixture modeling in the form of latent class
regression is provided as well as a partial overview of the many more advanced mixture models
currently in use. The chapter closes with a cautionary note about the limitations and common misuses
of latent class models and a look toward promising future developments in mixture modeling.

Key Words: Finite mixture, latent class, latent profile, latent variable

Introduction

Like many modern statistical techniques, mix-
ture modeling has a rich and varied history—ic
is known by different names in different fields; it
has been implemented using different parameteriza-
tions and estimarion algorithms in different software
packages; and it has been applied and extended
in various ways according to the substantive inter-
ests and empirical demands of different disciplines
as well as the varying curiosities of quantitative
methodologists, statisticians, bigstatisﬁcians, psy-
chometricians, and econometricians. As such, the
label mixture model is quite equivocal, subsuming a
range of specific models, including, but not limited
to: larent class analysis (LCA), latent profile analy-
sis (LPA), latent class cluster analysis, discrete latent
traitanalysis, factor mixture models, growth mixrure

models, semi-parametric group-based models, semi-
nonparameuic group-mixed models, regression
mixture models, latent stare models, latent structure
analysis, and hidden Markov models.

Despite the equivocal label, all of the differ-
ent mixture models listed above have two com-
mon features. First, they are all finite mixture
models in that they express the overall diseribu-
tion of one or more variables as a mixture of or
composite of a finite number of component dis-
tributions, usually simpler and more tractable in
form than the overall distribution. As an example,
consider the distribution of adult heights in the
general population. Knowing that males are taller,
on average, than females, one could choose to
express the distribution of heights as a mixture
of two component distributions for males and
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females, respectively. If f (beight) is the probability
density function of the distribution of heights
in the overall population, it could be expressed
as:

f (/Jeigbt) = Pmale 'ﬁrxak(bfngt)
+ Pfemale * Jemate(height), (1)

where prgje and ppmgte are the proportions of males
and females in the overall population, respectively,
and fou (height) and fry (beight) are the dis-
tributions of heights within the male and female
subpopulations, respectively. i and pgmgle are
referred to as the mixing proportions and f,,p, (height)
and fea (beight) are the component distribution
density funcrions.

The second common feature for all the differ-
ent kinds of mixture models previously listed is
that the components themselves are not directly
observed—that is, mixture component membership
is unobserved or [zzent for some or all individ-
uals in the overall population. So, rather than
expressing the overall population distribution as a
mixture of nown groups, as with the height exam-
ple, mixture models express the overall population
distribution as a finite mixture of some number, X,
of unknown groups or components. For the dis-
tribution of height, this finite mixture would be
expressed as:

[ (height) = py - fi(beight) + pa - f(beight)

+ -+ pic - fic (beight), 2
where the number of components, X, the mix-
ing proportions, p1,...,px, and the component-
specific height distributions, fj (beight), ..., fk
(height), are all unknown but can be estimated,
under certain identifying assumptions, using height
data measured on a representative sample from the
total population.

Finite Mixture Models As Latent
Variable Models

It is the unknown nature of the mixing
components—in number, proportion, and form—
that situates finite mixture models in the broader
categoty of latent variable models. The finite mix-
ture distribution given in Equation 2 can be re-
expressed in terms of a latent unordered categorical
variable, usually referred to as a latent class variable
and denoted by ¢, as follows:

f(height) = Pr(c = 1) - f(height|c = 1)

+ oo+ Pr(c = K) - f (beight|c = K),
®)

where the number of mixing components, X, is
the number of categories or classes of ¢ (¢ =
1,..., K); the mixing proportions are the class pro-
portions, Pr(c = 1),...,Pr(¢c = K); and the
component distribution density functions are the
distribution functions of the response variable, con-
ditional on latent class membership, f(beight|c =
1),...,[f (beight|c = K).

Recognizing mixture models as latent varjable
models allows use of the discourse language of the
latent variable modeling world, There are two pri-
mary types of variables: (1) lazent variables (e.g., the
latent class variable, c) that are not directly observed
or measured, and (2) manifest variables (e.g., the
response variables) that are observable and are pre-
sumed to be influenced by or caused by the latent
variable. The manifest variables are also referred to
as indicator variables, as their observed values for a
given individual are imagined to be imperfect indi-
cations of the individual’s “true” underlying latent
class membership. Framed as a latent variable model,
there are two parts to any mixture model: (1) the
measurement model, and (2) the structural model, The
statistical measurement model specifies the relation-
ship between the underlying latent variable and the
corresponding manifest variables. In the case of mix-
ture models, the measurement model encompasses
the number of latent classesand the class-specific dis-
tributions of the indicator variables. The structural
model specifies the distribution of the latent vari-
able in the population and the relationships between
latent variables and between latent variables and cor-
responding observed predictors and outcomes (i.e.,
latent variable antecedentand consequentvariables).
In the case of unconditional mixture models, the
structural model encompasses just the latent class
proportions.

Finite Mixture Modeling As a
Person-Centered Approach

Mixture models are obviously distinct from the
more familiar latent variable factor models in which
the underlying latent structure is made up of one
or more continuous latent variables. The designa-
tion for mixture modeling often used in applied
literature to highlight this distinction frem factor
analytic models does not involve the overt cate-
gorical versus continsous latent variable scale com-
parison but instead references mixture modeling as
a person-centered or person-oriented approach (in
contrast to wariable-centered or variable-oriented).
Person-centered approaches describe similarities and
differences among individuals with respect 1o how

552 LATENT CLASS ANALYSIS AND FINITE MIXTURE MODELING



variables relate to each other and are predicated
on the assumption that the population is hetero-
geneous with respect to the relationships berween
variables (Laursen & Hoff, 2006, p. 379). Statistical
techniques oriented toward categorizing individ-
uals by patterns of associations among variables,
such as LCA and cluster analysis, are person-
centered. Variable-centered approaches describe
associations among variables and are predicated on
the assumption that the population is homogeneous
with respect to the relationships between variables
(Laursen & Hoff, 2006, p. 379). In other words,
each association between one variable and another
in a variable-centered approach is assumed to hold
for all individuals within the population. Statistical
techniques oriented toward evaluating the relacive
importance of predictor variables, such as multivari-
ate regression and structural equation modeling, are
variable-centered.

Although “person-centered analysis” has become
a popular and compelling catchphrase and methods-
jingle for researchers to recite when providing the
rationale for selecting a mixture modeling approach
for their dara analysis over a more traditional
variable-centered approach, the elaborated justifica-
tion, beyond the use of the catchphrase, is often
flawed by placing person-centered and variable-
centered approaches in juxtaposition as rival or
oppositional approaches when, in fact, they are
complementary. To understand this false dichotomy
at the conceptual level, imagine that the data
matrix, with rows of individuals and columns of
variables, is a demarcated geographic region. You
could explore this region from the ground (person-
centered), allowing you to focus on unique, salient,
or idiosyncratic features across the region, or you
could explore this region from the air (variable-
centered), allowing you to survey general and dom-
inant features of the full expanse (e.g., the mean
and covariance structure). Perhaps you might even
elecr to view the region both ways, recognizing
that each provides a different perspective on the
same region and that both advance your understand-
ing of the region. That is, the region itself doesn’
change but the information that can be gleaned
about the region does change according to the type
of search, and determining which search is more
useful depends entirely on the objectives of the
exploration.

The false dichotomy can also be explained in ana-
lytic terms, as Horn (2000) does so effectively in
describing the linear decomposition of a 7 person x
m variable data array:

“In person-centered compared with variable-centered
analyses, the theorem of Eckart and Young [(1936)]
indicates thar the linear relationships among variables
have a counterpart in relationships among people.
Or, to put the matter the other way around, the
relationships among people that indicate types have a
counterpart in relationships among variables that
indicate factors . . . Quite simply, there is no variance
in person-centered types that cannot be accounted
for in terms of variable-centered factors, and
vice-versa” (Horn, 2000, p. 925).

Beyond the conceprual and analytic consider-
ations, there is also a pracrical rejection of the
dichotomy between person- and variable-centered
approaches. Although a majority of applications of
mixture models claim and motivate an exclusive
person-centered approach, most utilize strategies
that combine person-centered and variable-centered
elements., For example, it is not uncommon for a
study to use a person-centered analysis to identify
latent classes or groups of individuals characterized
by different response patterns on a subset of vari-
ables and then use a variable-centered analysis to
examine predictors and outcomes (antecedent and
consequent correlates) of class membership. There
are also many examples of “hybrid” models, such
as growth mixrure models, that use both latent
factors (variable-centered) and latent classes (person-
centered) to describe interindividual differences in
intra-individual change.

With the dichotomy between person-centered
and variable-centered approaches dispelled, you may
beleft wondering how to determine which approach
to take or whether, indeed, your choice matters at
all. The fact that it is possible to represent person-
centered findings in variable-centered terms does not
obfuscate the choice of approach but does make the
explicit consideration of the fundamental assump-
tions of each approach in the context of the actual
research question and available data all che more
important. Further, explicit consideration must also
be given to the consequences of choosing to repre-
sent a construct as one or more latent factors versus
latent classes for the subsequent specification and
testing of relationships between the construct and its
hypothesized correlates. If your planned study aims
at a person-centered level, and you can reasonably
assume that your target population is heterogeneous
in that there are actual types or classes to be revealed
by an empirical study, then you have sufficient ratio-
nale for utilizing a person-centered or combined
person-/variable-centered approach, and the choice
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is clear. However, these rationales are not neces-
sary for the purposed application of mixture models
and I will touch on this topic again throughout the
chapter, to recapitulate what constitutes principled
use of mixcure models.

Chapter Scope

This chapter is intended to provide the reader
with a general overview of mixture modeling, I
aim to summarize the current “best practices” for
model specification, estimation, selection, evalua-
tion, comparison, interpretation, and presentation
for the two primary types of cross-sectional mixture
analyses: latent class analysis (LCA), in which there
are observed categorical indicators for a single latent
class variable, and latent profile analysis (LPA), also
known as latent class cluster analysis (LCCA), in
which there are observed continuous indicators for
asingle latent class variable. Aswith other latentvari-
able techniques, the procedures for model building
and testing in these settings readily extend to more
complex data settings——for example, longitudinal
and multilevel variable systems. I begin by providing
a brief historic overview of the two primary roots of
modern-day mixture modeling in the social sciences
and the foci of this chapter—finite mixture modeling
and LCA-—along with a summary of the purposed
applications of the models. For each broad type of
model, the general model formulation is presented,
in both equations and pach diagrams, followed by an
in-depth discussion of model interpretation. Then
a description of the model estimation including a
presentation of current tools available for model
evaluation and testing is provided, leading to a
detailed illustration of a principled model building
process with a full presentation and interpretation
of results. Next, an extension of the unconditional
mixture models already presented in the chapter
is made to accommodate covariates using a latent
class regression (LCR) formulation. I conclude the
chapter with a brief cataloging of (some of ) the many
extensions of finite mixture modeling beyond the
scope of this chapter, some cautionary notes about
the misconceptions and misuses of mixture model-
ing, and a synopsis of prospective developments in
the mixture modeling realm.

A Brief and Selective History of
Mixture Modeling
Finite Mixture Modeling
Finite mixture modeling, in its most classic form,
is a cross-sectional latent variable model in which

the latent variable is nominal and the correspond-
ing manifest variables are continuous. This form
of finite mixture modeling is also known as LPA
or LCCA. One of the first demonstrations of finite
mixture modeling was done by a father of modern-
day statistics, Karl Pearson, in 1894 when he fit a
two-component (i.e., two-class) univariate normal
mixture model to crab measurement data belonging
to his colleague, Walter Weldon (1893), who had
suspected that the skewness in the sample distribu-
tion of the crab measurements (the rario of forehead
to body length) might be an indication that this crab
species from the Bay of Naples was evolving to two
subspecies (McLachlan & Peel, 2000). Pearson used
the method-of-moments to estimate his model and
found evidence of the presence of two normally dis-
tributed mixing components that were subsequently
identified as crab subspecies. There weren’t many
other mixture model applications that immediately
followed suit because the daunting moments-based
firting was far too computationally intensive for mix-
tures, And it would take statisticians nearly 80 years
o find more viable, as well as superior, alterna-
tive estimation procedures. Tan and Chang (1972)
were among the researchers of their time that proved
the maximum likelihood solution to be better for
mixture models than the method-of-moments. Fol-
lowing on the heels of this insight was the release of
the landmark article by Dempster, Laird, and Rubin
(1977) that explicated, in general terms, an iterative
estimation scheme-—the expectation-maximization
(EM) algorithm—for maximum-likelihood estima-
tion from incomplete data. The recognition that
finite mixture models could be easily reconceived as
missing data problems (because latent class mem-
bership is missing for all individuals)—and thus
estimated via the EM algorithm——represented a
true turning point in the development of mixture
modeling. Since that time, there has been rapid
advancement in a variety of applications and exten-
sions of mixture modeling, which are covered briefly
in the section on “The More Recent Past” following
the separate historical accounting of LCA.

Before moving on, there is another feature of
the finite mixture history that is worth remarking
on, as it relates to the earlier discussion of person-
centered versus variable-centered approaches, Over
the course of the twenteth century, there was a
bifurcation in the development and application of
finite mixture models in the statistical community
following that early mixture modeling by Pearson,
both before and after the advancement of the esti-
mation algorithms. There was a distinction that
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Figure 25.1 Hypothetical overall univariate non-normal pop-
ulation distribution (solid line) resulting from a mixing of two
normally distributed subpopulations (dashed lines).

began to be made between direct and indirect appli-
cations (Titterington, Smith, 8 Makov, 1985) of
finite mixture modeling. In direct applications, as
in person-centered approaches, mixture models are
used with the a priori assumption that the overall
population is heterogeneous, and made up of a finite
number of (latent and substantively meaningful)
homogeneous groups or subpopulations, usually
specified to have tractable distributions of indica-
tors within groups, such as a multivariate normal
distribution. In indirect applications, as in variable-
centered approaches, it is assumed that the overall
population is homogeneous and finite mixtures are
simply used as more tractable, semi-parametric tech-
nique for modeling a population distribution of
ourcomes for which it may not be possible (practi-
cally or analytically speaking) to specify a parametric
model. Mathematical work was done to prove that
virtually any contdnuous distibution (even highly
skewed, highly kurtotic, multimodal, or in other
ways non-normal) could be approximated by the
mixing of X normal distributions if K was permit-
ted to be indiscriminately large and that a reasonably
good approximation of most distributions could be
obtained by the mixing of a relatively small num-
ber of normal distributions (Titteringron, Smith,
& Makov, 1985). Figure 25.1 provides an illustra-
tion of a univariate non-normal distribution that is
the result of the mixing of two normally distributed
components. The focus for indirect applications
is then not on the resultant mixture components
nor their interpretation bur, rather, on the over-
all population distribution approximated by the
mixing,

I find the indirect versus direct application dis-
tinction for mixture modeling less ambiguous than
the person-centered versus variable-centered labels
and, thus, will favor thar language throughout the

remainder of this chapter. Furthermore, the focus
in this chapter is almost exclusively on direct appli-
cations of mixcure models as [ devote considerable
time to the processes of class enumeration and inter-
pretation and give weight to matters of classification
quality, all of which are of little consequence for
indirect applications.

Latent Class Analysis

Latent class models can be considered a spe-
cial subset of finite mixture models formulated as
a mixture of generalized linear models; that is, finite
mixtures with discrete response variables with class-
specific multinomial distributions. However, LCA
hasa rich history within the psychometric tradicion,
somewhat independent of the development of finite
mixture models, that is worthy of remark, notunlike
the way in which analysis of variance (ANOVA) and
analysis of covariance (ANCOVA) models, although
easily characrerized as a special subser of multiple
linear regression models, have their own historical
timeline,

It didn't take long after Spearman’s seminal work
on factor analysis in 1904 for suggestions regarding
categorical latent variables to appear in the litera-
wre. However, it wasn't until Lazarsfeld and Henry
summarized their two decades of work on larent
structure analysis (which included LCA as a subdo-
main of models) in 1968 char social scientists were
presented with a comprehensive treatment of the
theoretical and analytic features of LCA that had
been in serious development since the 1950s.

Despite the expansive presentation and motiva-
tion for LCA provided by Lazarsfeld and Henry
(1968), there were still two primary barriers to larger
scale adoption of latent class models by applied
researchers: (1) che categorical indicators could only
be binary, and (2) there was no general, reli-
able, or widely implemented estimation method for
obraining parameter estimates (Goodman, 2002).
Goodman (1974) resolved the first and parc of
the second problem with the development of a
method for obtaining maximum likelihood esti-
mates of latent class parameters for dichotomous and
polytomous indicarors. Once Goodmans estima-
tion algorithm was implemented in readily available
statistical software, frst by Clogg in 1977, and
Goodman’s approach was shown to be closely related
to the EM algorithm of Dempster, Laird, and Rubin
(1977), carrently the most widely utilized estima-
tion algorithm for LCA software (Collins & Lanza,
2010), che remaining portion of the second bar-
rier to the application of LCA was annulled. I will
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return to matters related to maximum likelihood
estimation for LCA parameters later in this chaprer.

As with the history of finite mixture modeling,
there is some comment necessary on the features
of LCA history related to person-centered versus
variable-centered approaches. Latent class models,
with categorical indicators of a categorical latent
variable, have, at different times, been described in
both person-centered and variable-centered terms.
For example, one of the fundamental assumptions
in classical LCA is that the relationship among the
observed categorical variables is “explained” by an
underlying categorical latent variable (latent class
variable)—that is, the observed variables are con-
ditionally (locally) independent given latent class
membership. In this way, LCA was framed as the
pure categorical variable-centered analog to contin-
uous variable-centered factor analysis (in which the
covariances among the observed continuous vari-
ables is explained by one or more underlying contin-
uous factors). Alternatively, LCA can be framed asa
multivariate data reduction technique for categorical
response variables, similarly to how factor analysis
may be framed as a dimension-reduction technique
that enables asystem of m variables to be reduced toa
more parsimonious system of ¢ factors with g < m.
Considera set of 10 binary indicator variables. There
are 2!0 = 1024 possible observed response pat-
terns, and one could exactly represent the » x 10
observed data matrix as a frequency table with 1024
(or fewer) rows corresponding to the actual observed
response patterns. Essentially, in the observed data
there are a maximum of 1024 groupings of indi-
viduals based on their observed responses. Latent
class analysis then enables the researcher to group
or cluster these responses patrerns (and, thus, the
individuals with those response patterns) into a
smaller number of X latent classes (X < 1024)
such that the response patterns for individuals
within each class are more similar than response
patterns across classes. For example, response pat-

tens (1 1 1 1 1 1 1 1 1 1)and
(01 1111 1 1 1 1) mightbe
grouped in the same latent class, different

from(0 0 0 0 0 0 0 0 O 0)and
(0 0 0 0 0 0 0 0 1 0).Theclasses
are then characterized not by exact response pat-
terns but by response profiles or typologies described
by the relative frequencies of item endorsements.
Because grouping the observed response patterns is
tantamount to grouping individuals, this framing
of LCA is more petson-oriented. Thus, in both the
psychometric tradition in which LCA was developed
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and in the classical mathematical statistics tradition
in which finite mixture modeling was developed,
mixture models have been used as both a person-
centered and variable-centered approach, leading to
some of the confusion surrounding the misleading
association of mixture models as implicitly person-
centered models and the false dichotomy between
person-centered and variable-centered approaches,

The More Recent Past

In both finite mixrure modeling and LCA, the
utilizarion of the EM algorithm for maximum like-
lihood estimation of the models, coupled with rapid
and widespread advancements in staistical comput-
ing, resulted in a remarkable acceleration in the
development, extension, application, and under-
standing of mixture modeling over the last three
decades, as well as a general blurring of the line that
delineated latent class models from more general
finite mixture models. A few of the many notable
developments include the placement of latent class
models within the framework of log linear models
(Formann, 1982, 1992; Vermunt, 1999); LCR and
conditional finite mixture models, incorporating
predictors of class membership (Bandeen-Roche,
Migliorerti, Zeger, 8 Rathouz, 1997; Dayton &
Macready, 1988); and the placement of finite mix-
ture modeling within a general latent structure
framework, enabling multiple and mixed mea-
surement modalities (discrete and continuous) for
both manifest and latent variables (Hancock &
Samuelson, 2008; Muthén & Shedden, 1999; Skro-
ndal & Rabe-Hesketh, 2004). Foran overview of the
most recent developments in finite mixture model-
ing, see McLachlan and Peel (2000) and Vermunt
and McCutcheon (2012). For more recent develop-
ments specifically related to LCA, see Hagenaarsand
McCutcheon (2002) and Collins and Lanza (2010).

There has also been conspicuous growth in the
number of statistical software packages that enable
the application of a variety of mixture models in
real data settings. The two most prominent self-
contained modeling software packages are Mplus
V6.11 (Muthén & Muthén, 1998-2011), which
is the software used for all the empirical examples
in this chapter, and Latent GOLD V4.5 (Statisti-
cal Innovations, Inc., 2005-2011), both capable of
generaland comprehensive latent variable modeling,
including, but not limited to, finite mixture model-
ing. The two most popular modular packages that
operate within existing software are PROCL.CA and
PROC LTA for SAS (Lanza, Dziak, Huang, Xu, &
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Collins, 2011), which are limited to craditional cat-
egorical indicator latent class and latent cransition
analysis models, and GLLAMM for Stara (Rabe-
Hesketh, Skrondal & Pickles, 2004), which is a
comprehensive generalized linear latent and mixed
model framework urlizing adaptive quadrature for
maximum likelihood estimation.

Access to software and the advancements in high-
speed computing have also led o a remarkable
expansion in the number of disciplines that have
made use of mixture models as an analytic tool.
There has been partcularly notable growth in the
direct application of mixwre models within the
behavioral and educarional sciences over the last
decade. Mixture models have been used in the
empirical investigations of such varied topics as
typologies of adolescent smoking within and across
schools (Henry & Muthén, 2010); marijuana use
and actitudes among high school seniors (Chung,
Flaherty, & Schafer, 2006); profiles of gambling
and substance use (Bray, 2007); risk profiles for
overweight in adolescent populations (BeLue, Fran-
cis, Rollins, & Colaco, 2009); patterns of peer
victimization in middle school (Nylund-Gibson,
Graham, & Juvonen, 2010); liability to externaliz-
ing disorders (Markon & Krueger, 2005); profiles of
academic self-concept (Marsh, Liidtke, Trautwein,
& Morin, 2009); profiles of program evaluarors’
self-reported practices (Christie 8 Masyn, 2010);
rater behavior in essay prading (DeCarlo, 2005);
mathematical ability for special education students
(Yang, Shaftel, Glasnapp, & Poggio, 2005); pat-
terns of public assistance receipt among female
high school dropouts (Hamil-Luker, 2005); marial
expectarions of adolescents (Crissey, 2005); and psy-
chosocial needs of cancer patients (Soothill, Francis,
Awwad, Morris, Thomas, & Mclllmurray, 2004).

Latent Class Analysis

Although latent class models—mixture models
with exclusively categorical indicator variables for
the latent class variable—emerged more than a half-
century after the inception of finite mixture models,
I choose to use LCA for this initial foray into the
details of mixrure modeling because I believe it is the
most accessible point of entry for applied readers.

Model Formulation

As with any latent variable model, there are two
parts to a latent class model: (1) the measurement
model, which relates the observed response variables
(also called indicator or manifest variables) to the

underlying latent variable(s); and (2) the structural
model, which characterizes the distribudion of the
latent variable(s) and the relationships among latent
variables and between latent variables and observed
antecedent and consequent variables. In arraditional
latentvariable model-building process, the uncondi-
tional measurement model for each latent variable of
interest is established prior to any structural model-
based hypothesis testing. It is the results of the final
measurement model that researchers use to assign
meaning to the latent classes chat are then used
in the substantive interpretations of any structural
relationships that emerge. Thus, the formal LCA
model specification begins here with an uncondi-
tional model in which the only observed variables
are the categorical manifest variables of the latent
class variable.

Suppose there are M categorical (binary, ordi-
nal, and/or multinomial) latenc class indicarors,
wy, %2, ..., up observed on s study participants
where u,,; is the observed response to item m for
participant £ It is assumed for the unconditional
LCA that there is an underlying unordered categos-
ical latent class variable, denoted by ¢, with K classes
where ¢; = k if individual / belongs to Class £. The
proportion of individuals in Class £, Pr(c = £), is
denoted by 7 4. The K classes are exhaustive and
mutually exclusive such that each individual in the
population has membeeship in exactdy one of the
K latent classes and Ty = 1. The relationship
berween the observed responses on the M items and
the latent class variable, ¢, is expressed as

Prluyj, 135, ooy wpgi)

K
= [7‘[4, < Pr(uyiy 12y - . .

fezz

Lupgilei = B)]. (4)

The above expression is the latent class mea-
surement model. The measurement parameters are
all those related to the class-specific response pat-
tern probabilities, Pr(uwi, s, ... umMile; = k),
and the structural paramerers are those related to
the distribution of the latent class variable, which
for the unconditional model are simply the class
proportions, 7.

The model expressed in Equation 4 can be rep-
resented by a path diagram as shown in Figure
25.2. All the path diagrams in this chapter follow
the diagramming conventions used in the Mplus
V6.11 software manual (Muthén & Muthén, 1998—
2011): boxes to enclose observed variables; circles to
enclose latent variables; single-headed arrow paths

MASYN l 557



Figure 25.2 Generic path diagram for an unconditional latent
class model.

to represent direct (causal) relationships; double-
headed arrow paths to represent nondirection (cor-
relational) relationships; “#” to denote observed
categorical variables; “y” to denote observed con-
tinuous variables; “c” to denote latent categorical
variables (finite mixtures or latent class variables);
and “n” to denote latent continuous variables
(factors).

Similarly to the typical default model specifica-
tion in traditional factor analysis, conditional or
local independence is assumed for the M items
conditional on class membership. This assumption
implies that latent class membership explains a// of
the associations among the observed items. Thus,
the formation of the latent classes (in number and
nature) based on sample data will be driven by the
set of associations among the observed items in the
overall sample. If all the items were independent
from each other in the sample—that is, if all the
items were uncorrelated in the overall sample—then
it would not be possible to estimate a latent class
model with more than X = 1 classes because there
would be no observed associations to be explained
by class membership. Under the local independence
assumption, Equation 4 simplifies to

Pr(ais i+ » #M5)
X M

=Y " |me- [ [] Pelemila =01} |.
b=1 m=1

This assumption is represented in Figure 25.2 by
the absence of any nondirectional (double-headed
arrow) paths between the #s that would represent
item correlations within or conditional on latent class
membership. The tenability of the local indepen-
dence assumption can be evaluated and may also
be partially relaxed (see, e.g., Huang & Bandeen-
Roche, 2004). However, some degree of local
independence is necessary for latent class model
identification. It is not possible to fully relax this
assumption for models with X' > 1 classes—that
is, an unconditional latent class model with all

the items allowed to co-vary with all other items
within class is not identified for X > 1 classes
unless other parameter restrictions are imposed.
I will revisit this assumption in the context of
finite mixture modeling with continuous indica-
tors. In that setting, models with X > 1 classes
are identified even with all items co-varying within
latent classes under certain other assumptions—
for example, the distributional assumption of
multivariate normality of the indicators within
class.

Model Interpretation

As I mentioned earlier, it is the results of
the final unconditional LCA, the measurement
model, that are used to assign meaning to the
latent classes, which augments the substantive
interpretations of any structural relationships that
emerge. Unless you are using mixture models in an
indirect application as a semi-parametric approx-
imation for an overall homogeneous population
such thar your attention will only be on parame-
ter estimates for the overall (re)mixed population,
you will focus your interpretation on the sepa-
rate mixing components, interpreting each latent
class based on the relationships between the classes
and their indicators just as you use factor load-
ings and item communalities to interpret factors
in a factor analysis. And just as with factor analy-
sis, to reasonably interpret the latent class variable,
you must have “good” measures of each of the
classes.

A good item is one that measures the latenc class
variable well (Le., reliably). A good latent class indi-
cator s one for which there is a strong relationship
between the item and the latent class variable. Strong
item~class relationships must have both of the fol-
lowing features: (1) a particular item response—for
example, irem endorsement in the case of binary
items, epitomizes members in at least one of the X
latent classes in the model; and (2) the item can
be used to distinguish between members across at
least one pair of classes among the K larent classes
in the model, The first quality is referred to as
latent class homageneity and the second quality is
referred to as lacent class separation (Collins & Lanza,
2010).

To better understand the concepts of latent class
homogeneity and latent class separation, and how
these concepts both relate to the parameters of the
unconditional measurement model and ultimately
qualify the interpretation of the resulrant latent
classes, consider a hypothetical example with five
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binary response variables (# = 5) measuring a
three-class categorical latent variable (K = 3). The

unconditional model is given by

3

5

Pr(eis i u4f,u4;,usi)==z e | [T @me) |
fezz1 m==1

(6)

where w4 is the probability thar an individual
belonging to Class £ would endorse item m—rthat
is, Pr(uy; = 1e; = k) = Wilk-

Class Homogeneity. To interpret each of the K
classes, you first need to identify items thar epit-
omize each class. If a class has a high degree of
homogeneity with respect to a particular item then
there is a particular response category on that item
that can be considered a response thar typifies that
class. In the case of binary items, strong associations
with a particular class or high class homogeneity is
indicared by high or low model-estimated probabil-
ities of endorsement—that is, @4 or 1 —@,,,close
1, with “close” defined by @pk > .7 or Dy < .3.
For example, consider a class with an estimated class-
specific item probability of 0.90. This means that
in thar class, an estimared 90% of individuals will
endorse that particular item whereas only 10% will
not. You could then consider this item endorsement
as “typical” or “characteristic of” that class and could
say that class has high homogeneity with respect to
that item. Now consider a class with an estimated
class-specific item probability of 0.55. This means
that in that class, only an estimated 55% of indi-
viduals will endorse that particular item whereas
45% will not. Irem endorsement is neither typical
nor characreristic of that class, nor is lack of item
endorsement, for that matter, and you could say that
class has low homogencity with respect to that item
and would not consider thar item a good indicator
of membership for that particular class.

Class Separation. To interpret each of the K
classes, you must not only have class homogeneity
with respect to the items such that the classes are each
well characterized by the item set, you also need to
be able to distinguish between the classes—this qual-
ity is referred to as the degree of class separation. It
is possible to have high class homogeneity and still
have low class separation. For example, consider two
classes, one of which has an estimared class-specific
item probability of 0.90 and another class with an
estimated class-specific item probability of 0.95. In
this case, since item endorsement is “typical” for
both of these classes and the two classes can be char-
acterized by a high rate of endorsement for that irem,
they are not distinct from each other with respect to

that item. Now consider two classes, one of which
has an estimared class-specific item probability of
0.90 and another with an estimated class-specific
item probability of 0.05. In this case, each class has
good homogeneity with respect to the item and they
also have a high degree of separation because the first
class may be characterized by a high rate of item
endorsement whereas the other class may be charac-
terized by a high rate of item non-endorsement. To
quantify class separation between Class j and Class
& with respect to a particular item, #, compute the
estimated item endorsement odds ratio as given by:

(wmlj/ 1— C?)m[j)
((Z)mlk/l . @mlk)

Thus, Oiem]jle is the ratio of the odds of endorse-
ment ofitem 7 in Classj to the odds of endorsement
of item m in Class 4. A large Oi?,,,vk > 5 (corre-
sponding to approximately @yj; > .7 and @py <

ORpji = )

.3) or small OIA?,,,W < .2 (corresponding to approx-
imately @pj; < .3 and @yye > .7) indicates a high
degree of separation between Classes 7 and £ with
respect to item 7. Thus, high class homogeneity
with respect to an item is a necessary but not suffi-
cient condition for a high degree of class separation
with respect to an item.

I should note here that although simply rtak-
ing the ratio of the class-specific item response
probabilities may seem more intuitive, the use of
the odds ratio of item response rather than the
response probability ratio is preferred because the
odds ratio doesn't depend on whether you empha-
size item endorsement or item non-endorsement
separation or whether you are assessing the item-
endorsement separation for classes with relatively
high endorsement rates overall or low endorse-
ment rates overall for the item in question. For
example, an Oj?mljk of 0.44 corresponding to

@y = .80 versus @y, = .90 is the same as
the ORyyj corresponding to L?),,,li = .10 versus
Omie = .20, whereas class-specific item probabil-

ity ratios would be .80/.90 = 0.87 and .10/.20
= 0.50.

Class Proportions. Itis possible, to a certain extent,
to use the class proportion values themselves to
assign meaning to the classes. Consider the case
in which you have a population-based sample and
one of the resulrant classes has an estimated class
proportion of greater than 0.50—that is, the class
represents more than 50% of the overall popula-
tion. Then part of your interpretation of this class
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may include an atribution of “normal,” “regular,”
or “typical” in that the class represents the statisti-
cal majority of the overall population. Similarly, if
you had a resultant class with a small estimated class
proportion (e.g., 0.10) part of your interpretation
of that class might include an attribution of “rare,”
“anusual,” or “atypical,” ever mindful that such
atrribution labels, depending on the context, could
carry an unintended negarive connotation, implying
the presence of deviance or pathology in the sub-
population represent by that class. Also remember
that the estimated class proportion reflects che dis-
tribution of the latent classes in the sample. Thus, if
you have a nonrandom or nonrepresentarive sample,
exercise caution when using the estimated class pro-
portions in the class interpretations. For example,
a “normal” class in a clinical sample may still be
present in a nonclinical sample but may have a
much smaller “atypical” representation in the overall
population.

Hypothetical Example. Continuing with the
hypothetical example of a three-class LCA with five
binary indicators, Table 25.1 provides hypotheti-
cal model-estimared item response probabilities for
each class along with the item response odds ratios
calculared following Equation 7. Classes 1, 2, and 3
all have high homogeneity with respect to items #y,
%3, and ug4 because all class-specific item response
probabilities are greater than 0.70 or less than 0.30.
Class 1 also has high homogeneity with respect to
item w3, whereas Classes 2 and 3 do not. Thus,
Classes 2 and 3 are not well characterized by item
#3—thar is, there is not a response to item #3 that
typifies either Class 2 or 3. None of the classes are
well characterized by item ws, and this might be an

item that is considered for revision or elimination in
future studies,

Class 1 is well separated from Class 2 by all the
items except the last, with ORpp12 > 5. Class 1 is
not well distinguished from Class 3 by items #; and
#y but is well separated from Class 3 by items 3 and
u4. Classes 2 and 3 are well separated by items »; and
y but not by items w3 and wg4. Thus, as a result of
Classes 2 and 3 not being well characterized by item
#3, they are consequently not distinguishable from
each other with respect to item 3. Because none
of the classes have a high degree of homogeneity
with respect to item us, none of the classes are well
separated from each other by that item.

The class homogeneity and separation informa-
tion contained in Table 25.1 is usually depicted
graphically in what is often referred to as a “profile
plot” in which the class-specific item probabilides
(y-values) are plotted in a line graph for each of
the items (x-values). Figure 25.3 depicts a profile
plot using the hypothetical model results presented
in Table 25.1. I have added horizontal lines to the
profile plot at 0.70 and 0.30 to assist in the visual
inspection with respect to both class homogeneity
and class separation. Class 1 can be interpreted as
a group of individuals with a high propensity for
endorsing items #; — ug; Class 2, a group of indi-
viduals with a low propensity for endorsing items #;,
#y, and #g; and Class 3, a group of individuals with
a high propensity for endorsing item #; and #; with
alow propensity for endorsing item »4. Notice that 1
do not use items with low class homogeneity for the
interpretation of that class nor do I use language in
the class interpretation that would imply a class sep-
aration with respect to an item that isn’t meaningful.

Table 25.1. Hypothetical Example: Model-Estimated, Class-Specific Item Response
Probabilities and Odds Ratios Based on a Three-Class Unconditional Latent Class Analysis

émlla

Oizm lik

Item Class 1(70%) Class2 (20%) Class3(10%) Class1vs.2 Class1vs.3 Class2 vs. 3

uj 0.90* 0.10 0.90 81.00%* 1.00 0.01
uy 0.80 0.20 0.90 16.00 0.44 0.03
u3 0.90 0.40 0.50 13.50 2.00 0.67
ug 0.80 0.10 0.20 36.00 16.00 0.44
us 0.60 0.50 0.40 1.50 2.25 1.50

*Item probabilities >0.7 or <0.3 are bolded to indicate s high degree of class homogeneity.

**Qdds ratios >3 or <0.2 are bolded to indicate a high degree of class separation.
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Figure 25.3 Hypothetical example: Class-specific item probability profile plos for a chree-class unconditional LCA.

For example, both Classes 2 and 3 are interpreted
as groups of individuals with low propensity for
endorsing item u4, but I do not, in the interpre-
tation of Classes 2 and 3, imply that the two classes
are somehow distinct with respect to #g—only that
they are both distinct form Class 1 with respect to
#4. I am also careful in my interpretation of the
classes with categorical indicators to use explicic lan-
guage regarding the probability or propensity of item
endorsement rather than language that might incor-
rectly imply continuous indicators. For example, in
this setting it would be incorrect to interpret Class 1
as a group of individuals with high levels of #; and
uy with low levels of #4, on average.

Based on the estimated class proportions, assum-
ing a random and representative sample from the
overall population, one might also apply a modifier
label of “normal” or “typical” to Class 1 because
its members make up an estimated 70% of the
population.

The next three subsections present some of the
technical details of LCA related to model estimarion,
model selection, and missing dara. For the novice
mixwure modelers, I suggest that you may want to
skip these subsections on your first reading of this
chapter and go directly to the real dara example that
follows.

Model Estimation

As discussed in the mixture modeling historical
overview, the most significant turning point for mix-
ture modeling estimarion was the development of

the EM algorithm by Dempster, Laird, and Rubin
(1977) for maximum likelihood (ML) estimation
from incomplete data and the realization that if
one reconceives of latent class membership as miss-
ing class membership, then the EM algorichm can
be used to obtain maximum likelihood estimates
{MLEs) of LCA parameters.

"The first step in any ML estimation is specifying
the likelihood function. The complete darta likeli-
hood function, put simply, is the probability density
of all the dara (the array of all values on all variables,
latent and observed, in the model for all individuals
in the sample) given a set of parameters values. Max-
imizing the likelihood function with respect to those
parameters yields the maximum likelihood estimares
(MLESs) of those parameters—that is, the MLEs are
the values of the parameters that maximize the like-
lihood of the dara. For a traditional LCA model, the
complete data likelihood for a single individual 7,
with the missing latent class variable, ¢;, is given by

[i(®) = Pr(u;, ¢;|@) = Pr(ujlc;, ®) - Pr(c;|®),

(8)
where © is a vector of all the model parameters
o be estimated. Typically, it is assumed that all
cases are identically distributed such that the indi-
vidual likelthood function, as expressed in Equation
8, is applicable for all cases. In the hypotheti-
cal LCA example with five binary indicators and
three classes, ® would include 18 separate param-
eters: all the class-specific item response proba-
bilities along with the class proportions—that is,
e = (w.”,w.lz,w.ﬁ,m,ni,71'3), with W =
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(@114 W2ks W3)ks W4)k> 51). The likelihood func-
tion, L, for the whole sample is just the prod-
uct of the individual likelihoods when assuming
that all individuals in the sample are independent
observations—that is, L(®) = []/(®). Usually,
it is easier mathematically to maximize the nacural
log of the likelihood function, In (L(®)) = LL(®).
Because the natural log is a2 monotonically increas-
ing function, the values for ® that maximize the
log likelihood function are the maximum likelihood
estimates, @ML.

For most mixture models, with all individuals
missing values for ¢, it is not possible obtain the
MLEs by just applying the rules of calculus and solv-
ing a system of equations based on partial derivatives
of the log likelihood function with respect to each
parameter—that is, there is not a closed-form solu-
tion. Rather, an iterative approach must be taken
in which successive sets of parameters estimates are
tried using a principled search algorithm with a pair
of stopping rules: (1) a maximum number of itera-
tions and (2) a convergence criterion. To understand
the concept behind iterative maximum likelihood
estimation, consider the following analogy: imagine
that the log likelihood function is a mountain range
and the estimation algorithm is a fearless mountain
climber. The goal of the climber is to reach the high-
est peak (global maximum) in the range, but the
climber can't see where the highest peak is from the
base of the mountain range. So the climber chooses
an informed starting point (the initial staring val-
ues for the parameter estimates), using whart he can
see (the observed darta), and begins to climb. Each
foothold is a new set of parameter estimates. After
each step the climber stops and assesses which of the
footholds within reach (nearby parameter estimates
values) will give him the greatest gain in height in
a single step and he then leaves his current posi-
tion to move to this higher point. He repeats this
stepping process until he reaches a peak such chata
step in any direction either takes him lower or not
noticeably higher. The climber then knows he is at
the peak (the convergence criterion is met), and it
is here that he plants his flag, at the maximum log
likelihood function value. But the climber, even as
skilled as he is, cannot climb forever. He has limited
food and water and so even if he has not reached the
peak, there is a point at which he must stop climb-
ing (the maximum number of iteracions). If he runs
out of supplies before he reaches a peak (exceeds the
maximum number of iterations before meeting the
convergence criterion), then he does not plant his
flag (fails to converge).

As previously noted, the most common estima-
tion algorithm in use for mixcure models is the
EM algorithm (Dempster, Laird, & Rubin, 1977;
Muthén & Shedden, 1999). Each iteration of the
EM algorithm involves an expectation step (E-step)
in which the estimated expected value for each miss-
ing data value is computed based on the current
parameters estimates and observed data for the indi-
vidual. In the case of LCA, the E-step estimates
expected class membership for each individual. The
E-step is followed by a maximization step (M-step)
in which new parameter estimates, ©, are obtained
that maximize the log likelihood function using the
complete data from the E-step. Those parameter
estimates are then used in the E-step of the next
iteration, and the algorithm iterates until one of the
stopping rules applies.

Although it would seem to go without saying,
for the EM algorithm “mountain climber” to have
even the slightest possibility of success in reaching
the global peak of the log likelihood function, such
a peak must exist. In other words, the model for
which the parameters are being estimated must be
identified—that is, there must be a unique solution
for the model’s parameters. However, this neces-
sary fact may not be as trivial to establish as it
would initially appear. When there is not a closed-
form solution for the MLEs available, you cannot
prove, mathematically speaking, that there isa global
maximum. In this case, you are also unable to
determine, theoretically, whether the solution you
obtain from the estimation procedure is a global or
local maximum nor can you tell, when faced with
multiple local maxima (a mountainous range with
many peaks of varying heighis), whether the high-
est local maxima is actually the global maximum
(highest peak). If the estimation algorithm fails to
converge, then it could be an indication that the
model is not theoretically identified, buc it is not
solid proof. There is also a gray area of empirical
underidentification and weak identification in the
span between identified models and unidentified
models (i.e., models with no proper solution for all
the model’s parameters—failure of even one param-
eter to be identified causes the model to be under- or
unidentified). This predicament is made more trou-
blesome by the reality that thelog likelihood surfaces
for most mixture models are notoriously difficult for
estimation algorithms to navigate, tending to have
multiple local maxima, saddle points, and regions
thatare virtuatly flat, confusing even the most expert
“climbers.” To better understand some of the chal-
lenging log likelihood functions that may present
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themselves, I discuss some exemplar log likelihood
function plots for a unidimensional parameter space
while providing some practical strategies to apply
during the mixcure model estimartion process to help
ensure the model you specify is well identified and
the MLEs you obtain are stable and trustworthy
solutions corresponding to a global maximum.
Figure 25.4 has six panels that represent a range
of hypothetical log likelihood functions for a single
parameter, 6. The unimodal log likelihood func-
tion in Figure 25.4.a has only one local maximum
that is the global maximum. §(gyis the MLE for 8
because the LL(6(g)) is the maximum value achieved
by LL(8) across all values of 8. It is clear that no
matter what starting position on the x-axis (start-
ing value, é(:)’ for the estimate of the parameter,
0) is selected, the mountain climber would easily
find that global peak. This LL function reflects a
well-identified model. There is one unique global
maximum (MLE) chat would be readily reached
from any starting point. Now examine the multi-
modal likelihood function in Figure 25.4.b. There
is still a single global maximum, gy, bu there are
three other local maxima, 6(1),6(2), and f3). You can
imagine that if you started your algorithm moun-
tain climber at a point f) < G(z), then he might
conclude his climb, reaching the convergence cri-
terion and planting his flag, on the peak of the
log likelihood above é(z), never realizing chere were
higher peaks down range. Similarly, if you started
your climber at a point f) > é(;y), then he might

conclude his climb on the peak of the log likelihood
above fy1), never reaching the global peak above (3(0 )

With a log likelihood function like the one
depicted in Figure 25.4.b, one could expect the esti-
marion algorithm to converge on a local rather than
global maximum. If you obtained only one solu-
rion, 6, using one starting value, (), then you
have no way of knowing whether 6 corresponds
to the highest peak in the range or just a peak of
the log likelihood in the range of . Because it
isnt possible to resolve this ambiguicy machemat-
ically, it must be resolved empirically. In keeping
with the analogy, if you want to find the highest
peakin the range, then rather than reraining a single
expert mountain climber, you could retain the ser-
vices of a whole army of expert mountain climbers.
You start each climber at a different point in the
range. A few will “converge” to the lower local peaks,
but most should reach the global peak. The more
climbers from different starting points (random sets
of starting values) that converge to the same peak
{solution replication), the more confident you are
in that particular peak being the global maximum.
This strategy corresponds to using multiple sets of
random starting values for the EM algorithm, iter-
ating each set of starting values to convergence, and
demanding a high frequency (in absolute and rela-
tive termms) of replication of the best log likelihood
value.

I should note here thar although replication of
the maximum likelihood solution from different
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Figure 25.4 Hypothetical log likelihood (LL) functions for a single parameter, 8: (a) unimodal LL; (b) mulimodal LL; (c) bimodal
LL with proximate local maxima; (d) bimodal LL with distant local maxima; (e} unbounded LL; and (£) LL wich Har region.
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sets of starting values increases confidence in that
solution as the global optimum, replication of the
likelihood value is neither a necessary nor a suffi-
cient requirement to ensure that a global (rather
than a local) maximum has been reached (Lubke,
2010). Thus, failure to replicate the best log like-
lihood value does not mean that you must discard
the model. However, further exploration should be
done to inform your final model selection. Consider
the cases depicted in Figures 25.4.c and 25.4.d for
which there is a global maximum at é(o) and a local
maximum of neatly the same log likelihood value
at é(l). In cases such as these, the relative frequency
of replication for each of the two solutions across a
random set of start values may also be comparable.
In Figure 25.4.c, not only are the two solution very
close in terms of the log likelihood values, they are
also close to each other in the range of 8 such that
by = 6(1y. In this case you can feel comforted by
the fact that even if you had inadvertently missed
the global maximum at é(o) and incorrectly taken
é(]) as your MLE, your inferences and interpreta-
tions would be close to the mark. However, in the
case depicted in Figure 25.4.d, 81y is quite distant
on the scale of 8 from f(g) and you would not want
to base conclusions on the 8 estimate. To get a
sense of whether the highest local peaks in your log
likelihood function are proximal or distal solutions
in the parameter space, obtain the actual parame-
ter estimates for the best log likelihood value across
all the sets of random starting values and make a
descriptive comparison to the parameter estimates
corresponding to the “second-best” log likelihood
value, (For more about comparing local maximum
log likelihood solutions to determine model srability,
see, for example, Hipp & Bauer, 2006.)

I pause here to make the reader aware of a nag-
ging clerical issue that must be rended to whenever
different maximum likelihood solutions for mixture
models are being compared, whether for models
with the same or differing numbers of classes: label
switching (Chung, Loken, 8 Schafer, 2004). The
ordering of the latent classes as they are outputted by
an estimation algorithm are completely arbitrary—
for example, “Class 1” for starting values Set 1 may
correspond to “Class 3” for starting values Set 2.
Even solurions identical in maximum likelihood val-
ues can have class labels switched. This phenomenon
is not a problem statistically speaking—it merely
poses a bookkeeping challenge. So be cognizant of
label switching whenever you are comparing mixture
model solutions. :

Figures 46.4.e and 46.4.f depict log likelihood
functions that would be likely to resule in either
some or all of the random sers of starting values fail-
ing to converge—that is, the estimation algorithm
stops because the maximum number of iterations
is exceeded before a peak is reached. In Figure
25.4.e, the log likelihood funciion is unbounded
at the boundary of the range of  (which is not an
uncommon feature for the LL function of mixture
models with more complex within-class variance—
covariance structures) but also hasa maximum in the
interior of the range of - 6(q) represents the proper
maximum likelihood solution, and that solution
should replicate for the majority of random sets of
stating values; however, some in the army of expert
mountain climbers are likely to find themselves
climbing the endless peak, running out of supplies
and stopping before convergence is achieved. The
log likelihood function in Figure 25.4.f corresponds
to an unidentified model. The highest portion of
the log likelihood function is flac and there are
not singular peaks or unique solutions. No matter
where the estimation algorithm starts, it is unlikely
to converge. If it does converge, then that solu-
tion is unlikely to replicate because it will be a false
optimum,

A model that is weakly identified or empirically
underidentified is a model that, although theoreti-
cally identified, has a shape with particular sample
dara that is nearly flat and/or has many, many local
maxima of approximately the same height (think:
egg-crate) such that the estimation algorithm fails to
converge for all or a considerable number of random
sets of starting values. For a model to be identified,
there must be enough “known” or observed informa-
tion in the dara to estimate the parameters that are
not known. Ensuring positive degrees of freedom for
the model is a necessary but not sufficient criterion
for model identification. As the ratio of “known”
to “unknown” decreases, the model can become
weakly identified. One quantification of this ratio
of information for MLE is known as the condition
number. It is computed as the ratio of the smallest
to largest eigenvalue of the information matrix esti-
mate based on the maximum likelihood solution. A
low condition number, less than 1076, may indicate
singularity {or near singularity) of the information
matrix and, hence, model non-identification (or
empirical underidentification) (Muthén & Muthén,
1998-2011). A final indication that you may be
“spreading” your data “too thin” is class collapsing,
which can occur when you are attempting to extract
more latent classes than your data will support. This
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collapsing usually presents as one or more estimated
class proportions nearing zero but can also emerge
as a nearly complete lack of separation between two
or more of the latent classes.

Strategies to achieve identification all involve
reducing the complexity of the model to increase the
ratio of “known” to “unknown” information. The
number of latent classes could be reduced. Alter-
narively, the response categories for one or more of
the indicator variables in the measurement model
could be collapsed. For response categories with low
frequencies, this category aggregation will remove
very little information about population heterogene-
ity while reducing the number of class-specific item
parameters that must be estimated. Additionally,
one or more items might be combined or elimi-
nated from the model. This item-dropping must be
done with extreme care, making sure that removal
or aggregation does not negatively impact the model
estimation (Collins 8 Lanza, 2010). Conventional
univariate, bivariate, and multivariate data screening
procedures should result in careful data recoding and
reconfiguration that will protect against the most
obvious threats to empirical identification.

In summary, MLE for mixture models can
present statistical and numeric challenges thar must
be addressed during the application of mixture
modeling. Without a closed-form solution for the
maximization of the log likelihood function, an
iterative estimation algorithm—typically the EM
algorithm—is used. Itis usually not possible to prove
that the model specified is theoretically identified,
and, even if it was, there could still be issues related to
weak identification or empirical underidentificarion
that causes problems with convergence in estima-
tion. Furthermore, since the log likelihood surface
for mixtures is often multimodal, if the estimation
algorithm does converge on a solution, there is no
way to know for sure that the point of convergence
isat a global rather than local maximum. To address
these challenges, it is recommended the following
strategy be utilized during mixture model estima-
tion. First and foremost, use multiple random sets
of starting values with the estimation algorithm (it
is recommended that a minimum of 50-100 sets of
extensively, randomly varied starting values be used
(Hipp & Bauer, 2006), but more may be necessary
to observe satisfactory replication of the best max-
imum log likelihood value) and keep track of the
information below:

1. the number and proportion of sets of random
starting values that converge o proper solution (as

failure to consistently converge can indicate weak
identification);

2. the number and proportion of replicated
maximum likelihood values for each local and the
apparent global solurion (as a high frequency of
replication of the apparent global solution across
the sets of random starting values increases
confidence that the “best” solution found is the
true maximum likelihood solution);

3. the condition number for the best model (asa
small condition number can indicate weak or
nonidentificarion); and

4. the smallest estimated class proportion and
estimated class size among all the latent classes
estimated in the model (as a class proportion near
zero can be a sign of class collapsing and class
overextraction).

This information, when examined collectively,
will assist in tagging models that are nonidentified
or not well identified and whose maximum likeli-
hoods solutions, if obtained, are not likely to be
stable or trustworthy. Any not well-identified model
should be discarded from further consideration or
mindfully modified in such a way that the empirical
issues surrounding the estimation for that particular
model are resolved without compromising the the-
oretical integrity and substantive foundations of the
analytic model.

Model Building

Placing LCA in a broader latent variable model-
ing framework conveniently provides a ready-made
general sequence to follow with respect to the model-
building process. The first step is always to establish
the measurement model for each of the latent vari-
ables that appear in the structural equations. For
a traditional LCA, this step corresponds to estab-
lishing the measurement model for the latent class
variable.

Arguably, the most fundamental and critical fea-
ture of the measurement model for a latent class
variable is the number of latent classes. Thus far, in
my discussion of model specification, interpretation,
and estimation, the number of latent classes, X, has
been treated as if it were a known quantity. How-
ever, in most all applications of LCA, the number
of classes is not known. Even in direct applications,
when one assumes # priori that the population is
hererogeneous, you rarely have specific hypotheses
regarding the exact number or nature of the subpop-
ulations. You may have certain hunches about one or
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more subpopulations you expect to find, but rarely
ate these ideas so well formed that they translate
into an exact total number of classes and constraints
on the class-specific parameters that would inform
a measurement model specification similar to the
sort associated with CFA. And in indirect appli-
cations, as you are only interested in making sure
you use enough mixture components {classes) to
adequately describe the overall population distri-
bution of the indicator variables, there is no pre-
formed notion of class number. Thus, in either case
(direct or indirect), you must begin with the model
building with an exploratory class enumeration
step.

Deciding on the number of classes is often the
most arduous phase of the mixture modeling pro-
cess. It islabor intensive because it requires consider-
ation (and, therefore, estimation) of a set of models
with a varying numbers of classes, and it is compli-
cated in that the selection of a “final” model from
the set of models under consideration requires the
examination of a host of fit indices along with sub-
stantive scrutiny and practical reflection, as there is
no single method for comparing models with differ-
ing numbers of latent classes that is widely accepted
as best (Muthén & Asparouhov, 2006 Nylund,
Asparouhov, & Muthén, 2007). This section first
reviews the preferred tools available for the statistical
evaluation of latent class models and then explains
how these tools may be applied in concert with sub-
stantive evaluation and the parsimony principle in
making the class enumeration determination. The
tools are divided into three categories: (1) evalua-
tions of absolute fit; (2) evaluations of relative fit;
and (3) evaluations of classification.

Absolute Fit. In evaluating the absolute fit of
a model, you are comparing the models repre-
sentation of the data to the actual data—that is,
the overall model-data consistency. Recall that in
traditional LCA, the observed data for individual
responses on a set of categorical indicator variables
can be summarized by a frequency table where each
sow represents one of the finite number of pos-
sible response patterns and the frequency column
contains the number of individuals in the sam-
ple manifesting each particular pattern. The entire
n X M data matrix can be identically represented by
R x (M 4 1) frequency table where R is the number
of total observed response patterns. For example,
in the hypothetical LCA example with five binary
indicator variables, there would be 25 = 32 possi-
ble response patterns with R < 32. Assuming for
the moment that R = 32, all the observed dara on

those five binary indicators could be represented in
the following formar:

ug us f,
1 1 1 1 1 f
1 1 1 1 0 f
1 1 1 0 1 f

uy Uy U3

0 0 0 0 0 f

where f; is the number of individuals in the sample
with response pattern r corresponding to specific
responses to the us displayed in row r of the table
and Y f; = n. Thus, when evaluating absolute fit
for a latent class measurement model, comparing
the model representation of the data to the actual
data will mean comparing the model-estimated fre-
quencies to the observed frequencies across all the
response patterns.

The most common test of absolute fit for
observed categorical data and the one preferred in
the LCA setting is the likelihood ratio (LR) chi-
square goodness-of-fit test (Agresti, 2002; Collins &
Lanza, 2010; McCutcheon, 1987). The test statistic,
X7y (sometime denoted by G2 or L?), is calculated
as follows:

s £
Xip = Zz [ﬁ log (}r-)], )]
r=1 r

where R is the total number of observed data res-
ponse patterns; f; is the observed frequency count for
the response pattern 73 and f} is the model-estimated
frequency count for the response pattern ». Under
the null hypothesis that the data are governed by the
assumed distribution of the specified model, the test
statistic given in Equation 9 is distributed chi-square
with degrees of freedom given by

dfa =R—d—1, (10)

where 4 is the number of parameters estimated in
the model. When the model fits the sample data
perfectly (ie., f; = jl‘;', V7), the test statistic, XLZR, is
equal to zero and the p-value is equal to 1. Failure to
reject the null hypothesis implies adequate model-
dara consistency; rejection of the null implies the
model does not adequately fit the data—the larger
the test statistic, the larger the discrepancy and the
poorer the fit between the model representation and
the actual observed dara.
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Although it is very useful to have a way to statis-
tical evaluate overall goodness-of-fit of a model to
the data, the X7, test statistic relies on large sam-
ple theory and may not work as intended (i.e., X7,
may not be well approximared by a chi-square dis-
tribution under the null hypothesis, marking the
p-values based on that disuribution of question-
able validity) when the data set is small or the
dara are sparse, meaning there is a non-negligible
number of response patterns with small frequencies
(Agresti, 2002). There are some solutions, including
parametric bootstrapping and posterior predicrive
checking, that are available to address this short-
coming (Collins & Lanza, 2010) bur they are not
widely implemented for this particular goodness-of-
fic test in most mixcure modeling software and are
beyond the scope of this chapter.

Chi-square goodness-of-fic tests, in general, are
also known to be sensitive to what would be consid-
ered negligible or inconsequential misfic in very large
samples. In these cases, the null hypothesis may be
rejected and the model determined to be statistically
inadequate bur, upon closer practical inspection,
may be ruled to have a “close enough” fir. In factor
analysis models, there is a wide array of closeness-
of-At indices for one to reference in addition to
the exact-fit chi-square test, bur this is not the case
for mixture models. However, you can still inspect
the closeness-of-fit for latent class models by exam-
ining the standardized residuals. Unlike residuoal
diagnostics in the regression model, which compare
each individual’s predicred outcome to the observed
values, or residual diagnostics in factor analysis,
which compare the model-estimated means, vari-
ances, covariances, and correlations to the observed
values, the LCA residuals are constructed using
the same information that goes into the overall
goodness-of-fic test statistic: the model-estimated
response pattern frequencies and the observed fre-
quencies. The raw residual for each response pattern
is simply the difference berween the observed and
model-estimated frequency, res, = f; — j‘;’-, and the
standardized residual is calculated by

B et (11)

stdres, =

The values of the standardized residuals can be
compared to a standard normal distribution (Haber-
man, 1973), with large values {e.g., Istdr?.c,l >
3) indicating response patterns that were more
poorly fir, contributing the most to the X7, and

the rejection of the model. Because the number
of possible response patterns can become large
very quickly with increasing numbers of indicators
and/or response categories per indicator, it is com-
mon to have an overwhelmingly large number of
response patterns, many with observed and expected
frequencies that are very small—that is, approach-
ing or equal to zero. However, thete is usually a
much smaller subset of response patterns with rel-
atively high frequencies, and it can be helpful to
focus your attention on the residuals of these pat-
terns where the bulk of dara reside (Muthén &
Asparouhov, 2006). In addition to examining the
particular response patterns with large standardized
residuals, it is also relevant to examine the overall
proportion of response patterns with large standard-
ized residuals. For a well-fitting model, one would
still expect, by chance, to have some small per-
centage of the response patterns to have significant
residual values, so you would likely only rake pro-
portions in notable excess of, say, 1% to 5%, to be
an indication of a poor-fitting model.

Relative Fir. In evaluating the relative fir of a
model, you are comparing the model’s representa-
tion of the data to another model’s representarion.
Evaluations of relative fit do not tell you anything
about the absolute fit so keep in mind even if one
model is a far better fit to the data than another, both
could be poor in overall goodness of fit.

There are two categories of relative fit compar-
isons: (1) inferential and (2) informarion-heuristic.
Themostcommon ML-based inferential comparison
is the likelihood ratio test (LRT) for nested mod-
els. For a Model 0 (null model) to be nested within
a Model 1 (alternative model), Model 0 must be a
“special case” of Model 1—that is, Model 0 is Model
1 with certain parameter restrictions in place. The
likelihood ratio test statistic (LRTS) is computed as

Xpp = —2(LLy — LLy), (12)

where LLg and LLy are the maximized log likelihood
values to which the EM algorithm converges during
the model estimation for Model 0 and Model 1,
respectively. Under the null hypothesis that chere is
no difference berween the two models (i.e., that the
parameter restrictions placed on Model 1 to obtain
Model 0 are restrictions that match the true popula-
tion model) and with certain regularity conditions
in place (e.g., the parameter restrictions do not fall
on the boundary of the parameter space), X ijf has
a chi-square distribution with degrees of freedom
given by

%ﬁr =dy — dy, (13)
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where ¢y and dy are the numbers of parameters
estimated in Model 1 and Model 0, respectively.
Failure to reject the null hypothesis implies there
is not statistically significant difference in fit to the
dara between Model 0 and Model 1. Thus, Model
0 would be favored over Model 1 since it is a sim-
pler model with comparable fit. Rejection of the
null hypothesis would imply that the parameter
restrictions placed on Model 1 to obtain Model 0
resulted in a statistically significant decrement of fit.
In general, this result would lead you to favor Model
1, unless the absolute fic of Model 0 was already
deemed adequately. Following the principle of par-
simony, if Model 0 had adequate absolute fit, then
it would likely be favored over any more compli-
cated and parameter-laden model, even if the more
complicated model fit significantly better, relatively
speaking.

There are two primary limitations of the like-
lihood ratio test comparison of relative model fi:
(1) ic only allows the comparison of two models ata
time, and (2) those two models must be nested under
certain regularity conditions. Information-heuristic
tools overcome those two limitations by allowing
the comparison of relative fic across a set of mod-
els that may or may not be nested. The downside
is the comparisons are descriptive—that is, you can
use these tools to say one model is “better” than
another according to a particular criterion but you
can’t test in a statistical sense, as you can with the
X jlf, how much better. Most information-heuristic
comparisons of relative fit are based on information
criteria tharweigh the fit of the model (as captured by
the maximum log likelihood value) in consideration
of the model complexity. These criteria recognize
that although one can always improve the fit of
a model by adding parameters, there is a cost for
that improvement in fit to model parsimony. These
information criteria can be expressed in the form

—2LL 4+ penalyy, (14)

where LL is the maximized log likelihood function
value to which the EM algorithm converges dur-
ing the model estimation. The penalty term is some
measure of the complexity of the model involving
sample size and the number of parameters being
estimated in the model. For model comparisons, a
particular informarion criterion value is computed
for each of the models under consideration, and the
model with the minimum value for that criterion is
judged as the (relative) best among that set of mod-
els, Whar follows is a cataloging of the three most
common information criteria used in mixture model

relative fit comparisons. These criteria differ only in
the computation of the penalty term.

» Bayesian Information Criterion (BIC; Schwarz,
1978)
BIC = —2LL + dlog(n), (15)

where 4 is the number of parameters estimated in
the model; 7 is the number of subjects or cases, in
the analysis sample.

o Consistent Akaike’s Information Criterion

(CAIC; Bozdogan, 1987)
CAIC = —2LL + d[log(n) + 1]. (16)

o Approximate Weight of Evidence Criterion
(AWE; Banfield & Raftery, 1993)

AWE = —2LL+ 2d[log(n) + 1.5].  (17)

Although the information-heuristic descriptive
comparisons of model are usually ordinal in nature,
there are a few descriptive quantifications of rela-
tive fit based on information criteria that, although
still noninferential, do allow you to get a sense of
“how much” better one model is relative to another
model or relative to a whole set of models. The
two quantifications presented here are based on
rough approximations to comparisons available in a
Bayesian estimation framework and have been pop-
ularized by Nagin (1999) in the latent class growth
modeling literature.

The first, the approximate Bayes Factor (BF), is
a pairwise comparison of relative fit berween two
models, Model A and Model B. It is calculated as

BFy p = exp[SICy — SICp, (18)

where SIC is the Schwarz Information Criterion
(Schwarz, 1978), given by

SIC = —0.5BIC. (19)

BF,p represents the ratio of the probability of
Model A being the correct model to Model B being
the correct model when Models A and B are con-
sidered the competing models. According to Jeffrey’s
Scale of Evidence (Wasserman, 1997),1 < BFyp <
3 is weak evidence for Model A, 3 < BF 3 < 101is
moderate evidence for Model A, and BFyp > 10 s
considered strong evidence for Model A. Schwarz
(1978) and Kass and Whasserman (1995) showed
that Bﬁ'A,B as defined in Equation 18 is a reason-
able approximation of BF4,p when equal weight is
placed on the prior probabilities of Models A and B
(Nagin, 1999).

The second, the approximate correct model prob-
ability (cmP), allows relative comparisons of each of
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J models to an entire set of /models under consid-
eration. There is a cmP value for each of the models,

Model A(A =1, ..., /) computed as

. SICH — SIChax
t‘rﬂPA — jexp( /A 13 ) , (20)

32 exp (SIC; = SICr)
j=1

where S/Cp is the maximum SIC score of the /
models under consideration. In comparison to che
BFy4 g, which compares only two models, the cmP
is a metric for comparing a set of more than two
models. The sum of the cmP values across the set of
models under consideration is equal to 1.00—that
is, the true model is assumed to be one of the models
in the set. Schwarz (1978) and Kass and Wasserman
(1995) showed that P4 as defined in Equation 20
is a reasonable approximarion of the actual proba-
bility of Model A being the correct model relacive
to the other / models under consideration when
equal weight is placed on the prior probabilities of
all the model (Nagin, 1999). The ratio of emPy o
cmPg when the set of models under consideration is
limited to only Models A and B reduces to B z.

Classification Diagnostics. Evaluating the preci-
sion of the latent class assignment for individuals
by a candidate model is another way of assessing
the degree of class separation and is most useful
in direct applications wherein one of the primary
objectives is to extract from the full sample empie-
ically well-separated, highly-differendiated groups
whose members have a high degree of homogene-
ity in their responses on the class indicators. Indeed,
if there is a plan to conducr latent class assignment
for use in a subsequent analysis—that is, in a2 mul-
tistage classify—analyze approach, the within-class
homogeneity and across-class separation and dif-
ferentiation is of primary importance for assessing
the quality of the model (Collins 8 Lanza, 2010).
Quality of classification could, however, be com-
pletely irrelevant for indirect applications. Further,
itis important to keep in mind that it is possible fora
mixture model to have a good fit to the data bur still
have poor latent class assignment accuracy. In other
words, model classification diagnostics can be used
to evaluate the utility of the latent class analysis asa
model-based clustering tool for a given set of indi-
cators observed on a particular sample but should
not be used to evaluate the model-data consistency
in either absolute or relative terms.

All of the classification diagnostics presented here
are based on estimated posterior class probabilities.
Posterior class probabilities are the model-estimared
values for each individual’s probabilities of being in

each of the latent classes based on the maximum
likelihood parameter estimates and the individual’s
observed responses on the indicator variables. The
posterior class probability for individual 7 corre-
sponding to latent Class £, py, is given by

. A Prlule; = k8- Pr(e; = b
/)M,:P[‘((‘,’:MU,‘,H): r(UIIL‘l - ) Pl‘(C/ ),
Prlu;)

21

where 8 is the set of parameter estimares for the
class-specific item response probabilities and che
class proportions. Standard post hoc model-based
individual classification is done using modal class
assignment such that each individual in the sample
is assigned to the latent class for which he or she
has the Jargest posterior class probabilicy. In more
formal terms, model-based modally assigned class
membership for individual 7, €y0da1,i» is given by

Tmodal,i = &t max(Dits ... pic) = pi- (22)

Table 25.2 provides examples of four individual
sets of estimated posterior class probabilities and
the corresponding modal class assignment for the
hypotherical three-class LCA. example. Although
individuals 1 and 2 are both modally assigned to
Class 1, individual 1 has a very high estimated poste-
rior class probability for Class 1, whereas individual
2 is not well classified. If there were many cases like
individual 2, then the overall classification accuracy
would be low as the model would do almost no bet-
ter than random guessing at predicting latent class
membership. If there were many cases like individ-
ual 1, then the overall classification accuracy would
be high. The first classification diagnostic, relative
entropy, offers a systematic summary of the lev-
els of posterior class probabilities across classes and
individuals in the sample.

Relative entropy, E, is an index that summa-
rizes the overall precision of classification for the
whole sample across all the latent classes (Ramasway,
DeSarbo, Reibstein, & Robinson, 1993). It is
computed by

n K
Zl kz [—pi In(di)]
i=1 k=1

Er =1-—
& nlog(K)

(23)

Ex measures the posterior classification uncer-
tainty for a K-class model and is bounded
berween 0 and 1; Ex = 0 when posterior
classification is no better than random guessing
and Ex = 1 when there is perfect posterior
classification for all individuals in the sample—that
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Table 25.2. Hypothetical Example: Estimated
Posterior Class Probabilities and Modal Class
Assignment Based on Three-Class
Unconditional Latent Class Analysis for Four
Sample Participants
i ity

Pn  Pn b
1 0.95 0.05 0.00 1

Cmodal(i)

0.40 0.30 0.30 1

0.20 0.70 0.10 2

Lo I -

0.00 0.00 1.00 3

is, max(p;1, pizs . - - » Pix) = 1.00, Vi, Because even
when Ef isclose to 1.00 there can be a high degree of
larent class assignment error for particular individu-
als, and because posterior classification uncertainty
may increase simply by chance for modelswith more
latent classes, Ex was never intended for, nor should
it be used for, model selection during the class enu-
meration process. However, Ex values near 0 may
indicate that the latent classes are not sufficiently
well separated for the X classes that have been esti-
mated (Ramaswamy et al., 1993). Thus, Ex may be
used to identity problematic overextraction of latent
classes and may also be used to judge the uiility of
the LCA directly applied to a particular set of indica-
tors to produce highly-differentiated groups in the
sample.

The next classification diagnostic, the average
posterior class probability (AvePP), enables evalua-
tion of the specific classification uncertaincy for each
of the latent classes. The AvePP for Class &, AvePPy,
is given by

AvePPy, = Mean{py, Vi : lodali = £} (24)

That is, AvePP;, is the mean of the Class £ pos-
terior class probabilities across all individuals whose
maximum posterior class probability is for Class 4.
In contrast to Ex which provides an overall sum-
mary of latent class assignment error, the set of
AvePPy, quantities provide class-specific measures of
how well the set of indicators predict class mem-
bership in the sample. Similarly to Ex, AvePP, is
bounded between 0 and 1; AvePP, = 1 when the
Class £ posteriori probability for every individual
in the sample modally assigned to Class £ is equal
to 1. Nagin (2005) suggests a rule-of-thumb that

all AvePP values be above 0.70 (i.e.,, AvePP, >
.70, Yk) to consider the classes well separated and
the latent class assignment accuracy adequate.

The odds of correct classification ratio (OCC;
Nagin, 2005) is based on the AvePP;, and providesa
similar class-specific summary of classification accu-
racy. The odds of correction classification ratio for
Class £, OCC,, is given by

Awpp"/ (1 — AvePPy)

(1 - 7y)

where 77 is the model-estimated proportion for
Class 4. The denominator is the odds of correct
classification based on random assignment using
the model-estimated marginal class proportions, 7.
The numerator is the odds of correct classification
based on the maximum posterior class probabil-
ity assignment rule (i.e., modal class assignment).
When the modal class assignment for Class £ is no
better than chance, then OCC}, = 1.00. As AvePP,
gets close to the ideal value of 1.00, OCC}, gets
larger. Thus, large values of OCC;, (i.e., values 5.00
or larger; Nagin, 2005) for all X classes indicate a
latent class model with good larent class separation
and high assignment accuracy.

The final classification diagnostic presented here
is the modal class assignment proportion (mcaP).
This diagnostic is also a class-specific index of clas-
sification certainly. The modal class assignment
proportion for Class &, mcaPy, is given by

0CC, =

, o (25)

n
_Z: I[Emodal,i = k}
meaPy, = =X - .. (26)

Put simply, mcaPy, is the proportion of individ-
uals in the sample modally assigned to Class £. If
individuals were assigned t Class £ with perfect
certainty, then meaP, = 7. Larger discrepan-
cies between meaPy, and 7, are indicative of larger
latent class assignment errors. To gage the discrep-
ancy, each mecaPy can be compared to the to 95%
confidence interval for the corresponding 7.

Class Enumeration. Now that you have a full set
of tools for evaluating models in terms of absolute
fit; relative fir, and classification accuracy, I can dis-
cuss how to apply them to the first critical step
in the latenc class modeling process: deciding on
the number of latent classes. This process usually
begins by specifying a one-class LCA model and
then firting additional models, incrementing the
number of classes by one, until the models are no
longer well identified (as defined in the subsection
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“Mode] Estimation”). The fit of each of the mod-
els is evaluated in the absolute and relative terms.
The parsimony principle is also applied such that
the model with the fewest number of classes that is
statistically and substantively adequate and useful is
favored.

In terms of the relative fit comparisons, the
standard likelihood ratio chi-square difference test
presented earlier cannor be used in this setring,
because the necessary regularity conditions of the
test are violated when comparing a K -class model to
a (K — g)-class model (McLachlan & Peel, 2000);
in other words, although X}'Zf can be calculated,

it does not have a chi-square sampling distribution
under the null hypothesis. However, two alterna-
tives, currently implemented in mainstream mixcure
modeling software, are available: (1) the adjusted
Lo-Mendell-Rubin likelihood ratio test (adjusted
LMR-LRT; Lo, Mendell, & Rubin, 2001), which
analyrtically approximates the Xi]f sampling distri-
bution when comparing a K-class to a (K — g)-class
finite mixture model for which the classes differ
only in the mean structure; and (2) the parametric
bootstrapped likelthood ratio test (BLRT), recom-
mended by McLachlan and Peel (2000), which
uses bootserap samples (generated using paramerter
estimates from a [K — g]-class model) to empiri-
cally derive the sampling distribution of X/ jﬂunder
the null model. Both of these tests and their per-
formance across a range of finite mixture models
has been explored in detail in the simulation study
by Nylund, Asparouhov, and Muthén (2007). As
executed in Mplus V6.1 (Muthén 8 Muthén, 1998-
2011), these tests compare a (K — 1)-class model
(the null model) with a K-class model (the alter-
native, less restrictive model), and a stadstically
significant p-value suggests the K-class model fits
the data significantly better than a model with one
less class.

As mentioned before, there is no single method
for comparing models with differing numbers of
latent classes thar is widely accepred as best (Muthén
8 Asparouhov, 2006; Nylund et al., 2007). How-
ever, by careful and systematic consideration of a set
of plausible models, and utilizing a combination of
statistical and substantive model checking (Muthén,
2003), researchers can improve their confidence in
the tenability of their decision regarding the number
of latent classes. I recommend the follow sequence
for class enumeration, which is illustrated in detail
with the empirical example that follows after the
next subsection.

1. Fit a one-class model, recording the log
likelihood value (LL); number of paramerters
estimated. (npar); the likelihood ratio chi-square
goodness-of-fit statistic (X7, with df and
corresponding p-value); and the model BIC,
CAIC, and AWE values.

2. Fit a two~class model, recording the same
quantities as listed in Step 1, along with: the
adjusted LMR-LRT p-value, testing the two-class
model against the null one-class model; the BLRT
p-value, testing the two-class model against the
null one-class model; and the approximate Bayes
factor (Bf’l,g), estimaring the ratio of the
probability of the one-class model being the correct
model to the probability of the two-class being the
correct model.

3. Repeat the following for X' > 3, increasing X
by 1 at each reperition until the K-class model is
not well identified:

Fit a K -class model, recording the same
quantities as listed in Step 1, along with the
adjusted LMR-LRT p-value, testing the K'-class
mode] against the null (K — 1)-class model; the
BLRT p-value, testing the X'-class model against
the null (X" — 1)-class model; and the approximate
Bayes factor (Bﬁ}(..l,;(), estimating the ratio of the
probability of the (K" — 1)-class model being the
correct model to the probability of the K'-class
being the correct model.

4. Let Kk be the largest number of classes that
could be extracted in a single model from Step 3.
Compute the approximate correct model
probability (cmP?) across the one-class through
Kinax-class models fit in Steps 1-3.

5. From the Kp,, models fit in Steps 1 through
3, select a smaller subset of two to three candidate
models based on the absolute and relative fir
indices using the guidelines (a)-(e) that follow. I
assume here, since it is almost always the case in
pracrice, that there will be more than one “best”
model identified across the different indices.
Typically, the candidate models are adjacent to
each other with respect to the number of classes
{e.g., three-class and four-class candidate
models).

a. For absolute fit, the “best” model should be
the model with the fewest number of classes that
has an adequate overall goodness of fit—that is, the
most parsimonious model that is not rejected by
the exact fit test.
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b. For the BIC, CAIC, and AWE, the “best”
model is the model with the smallest value.
However, because none of the information criteria
are guaranteed to arrive at a single lowest value
corresponding to a X -class model with X' < Ky,
these indices may have their smallest value at the
Kmax-class model. In such cases, you can explore
the diminishing gains in model fit according to
these indices with the use of “elbow” plots, similar
to the use of scree plots of Eigen values used in
exploratory factor analysis (EFA). For example, if
you graph the BIC values versus the number of
classes, then the addition of the second and third
class may add much more information, but as the
number of classes increases, the marginal gain may
drop, resulting in a (hopefuily) pronounced angle
in the plot. The number of classes at this point
meets the “elbow criterion” for that index.

c. For the adjusted LMR-LRT and BLRT, the
“best” model is the model with the smallest
number of classes that is oz significantly improved
by the addition of another class—thar is, the most
parsimonious K -class model that is not rejected in
favor of a (K -+ 1)-class model. Note that the
adjusted LMR-LRT and BLRT may never yield a
non-significant p-value, favoring a K-class model
over a (K + 1)-class model, before the number of
classes reaches K. In these cases, you can
examine a plot of the log likelihood values for an
“elbow” as explained in Substep b.

d. For the approximare BF, the “best” model is
the model with the smallest number of classes for
which there is moderate to strong evidence
compared to the next largest model—that is, the

" most parsimonious K -class model with a BF > 3
when compared to a (K + 1)-class model.

e. For the approximare correct model
probabilities, the “best” model is the model with
the highest probability of being correce. Any model
with emPg > .10 could be considered a candidate
model.

6. Examine the standardized residuals and the
classification diagnostics (if germane for your
application of mixture modeling) for the subset of
candidate models selected in Step 5. Render an
interpretation of each latent class in each of the
candidate models and consider the collective
substantive meaning of the resultant classes for
each of the models. Ask yourself whether the
resulrant latent classes of one model help you to

understand the phenomenon of interest
(Magnusson, 1998) better than those of another,
Weigh the simplicity and clarity of each of the
candidate models:(Bergman & Trost, 2006) and
evaluate the utility of the additional classes for the
less parsimonious of the candidate models.
Compare the modal class assignments of
individuals across the candidate models. Don't
forger about label switching when you are making
your model comparisons. And, beyond label
switching, remember that if you estimate a K -class
model and then a (K + 1)-class model, then there
is no guarancee that any of the X classes from the
K-class model match up in substance or in label to
any of the classes in the (X + 1)-class model.

7. On the basis of all the comparisons made in
Steps 5 and 6, select the final model in the class
enumeration process.

If you have the good fortune of a very large
sample, then the class enumeration process can
be expanded and strengthened using a split-sample
cross-validarion procedure. In evaluating the “large-
ness” of your sample, keep in mind that sample size
plays a critical role in the detection of what may be
less prevalent classes in the popularion and in the
selection between competing models with differing
class structures (Lubke, 2010) and you don’t want to
split your sample for cross-validation if such a split
compromises the quality and validity of the analyses
within each of the subsamples because they are not
of adequate size. For a split-sample cross-validation
approach:

i. Randomly partition the full sample into two
(approximately) equally sized subsamples:
Subsample A (the “calibration” data set) and
Subsample B (the “validation” data
set).

it. Conduct latent class enumeration Steps 1-7
on Subsample A.

iii. Retain all the model parameters estimates
from the final K -class model selected in Step 7.

iv. Fit the K -class model to Subsample B, fixing
all parameters to the estimated values retained in
Step iil.

v. Evaluate the overall fit of the model, If the
parameter estimates obtained from the K-class
model fit to Subsample A, then provide an
acceptable fit when used as fixed parameter values
for a K-class model applied to Subsample B, then
the model validates well and the selection of the
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K -class model is supported (Collins, Graham,
Long, & Hansen, 1994).

vi. Next fit a K -class model to Subsample B,
allowing all parameters to be freely estimated.

vii. Using a nested-model] likelihood ratio test,
compare the fit of the K -class model applied to
Subsample B using fixed parameter values based on
the estimates from the Subsample A K-clags model
estimation to the fit of the K-class model applied
to Subsample B with freely estimated parameters.
If there is not a significant decrement in fit for the
Subsample B K-class model when fixing parameter
values to the Subsample A K -class model
parameters estimates, then the model validates
well, the nature and distribution of the K larent
classes can be considered stable across the two
subsamples, and the selection of the K-class model
is supported.

There are variations on this cross-validarion pro-
cess that can be made. One variation is to carry out
Steps iii through vii for all of the candidate models
selected in Step 5 rather than just the final model
selected in Step 7 and then integrate in Step 6 the
additional information regarding which of the can-
didate models validated in Subsample B according
to the resulis from both Steps v and vii. Another vari-
ation is to do a double (or twofold) cross-validation
(Collins ecr al.,, 1994; Cudek & Browne, 1983)
whereby Steps ii through vii are applied using Sub-
sample A as the calibration data setand Subsample B
as the validation data set and then are repeated using
Subsample B as the calibration data ser and Subsani-
ple A as the validation data set. Ideally, the same
“best” model will emerge in both cross-validation
iterations, although it is not guaxanu.ed (Collins &
Lanza, 2010). I illustrate the double cross-validation
procedure in the empirical example that follows after
the next subsection.

Missing Data

Because most mixture modeling software already
utilizes a maximum likelihood estimation algorithm
designed for ignorable missing data (primarily the
EM algorithm), it is possible to accommodate miss-
ingness on the manifest indicators as well, as long as
the missing data are either missing completely ar ran-
dom (MCAR) or missing at random (MAR). Assum-
ing the darta on the indicator variables are missing at
random means the probability of a missing response
for an individual on a given indicator is unrelated
to the response that would have been observed,

conditional on the individual’s actual observed dara
for the other response variables. Estimation with the
EM algorithm is a fill information maximum like-
lihood (FIML) method in which individuals with
complete data and partially complete data all con-
tribute to the observed data likelihood function. The
details of missing data analysis, including the mul-
tiple imputation alrernative to FIML, is beyond the
scope of this chapter. Interested readers are referred
to Lirdle and Rubin (2002), Schaefer (1997), and
Enders (2010) for more information.

Of all the evaluarions of model fit presented prior,
the only one that is different in the presence of
missing darta is the likelihood ratio goodness-of-
fic test. With partially complete data, the num-
ber of observed response patterns is increased o
include observed response patterns with missing-
ness. Returning to the five binary indicator hypo-
thetical example, you might have some of the
following incomplete response pacterns:

wy wy wus usy us f,

1 1 1 1 1 §

11 1 1 0 4

1 1 1 1 ™ f

Sre—2
fre—1

e 0O 0O 0 O ﬁ*

o 0 0 0 ¢

where “o” indicates a missing response and R*is
the number of observed response patterns, includ-
ing partially complete response patterns. The LR
chi-square goodness-of-fir test statistic is now calcu-

lated as
_ f
X _zz fixlog (7)
pF=1

where fi+is the observed frequency count for the
response pattern 7* and ﬁa is the model-estimated
frequency count for the response pattern r*. The
degrees of freedom for the test is given by

df =R* —d —1. (28)

This test statistic, because it includes contribu-
tions from both complete and partially complete
response patterns using model-estimated frequen-
cies from a model estimated under the MAR

MASYN | 573



assumption, is actually a test of both the exact
fit and the degree to which the data depart from
MCAR against the MAR alternative (Collins &
Lanza, 2010; Little & Rubin, 2002). Thus, the
X7, with missing data is inflated version of a sim-
ple test of only model goodness-of-fit. However, the
X?p is easily adjusted by subtracting the contribu-
tion to the chi-square from the MCAR component,
and this adjusted X7, can then be compared to the
reference chi-square distribution (Collins 8 Lanza,
2010; Shafer, 1997). Note that the standardized
residuals for partially complete response patterns
are similarly inflated, and this should be considered
when examining residuals for specific complete and
partially complete response patterns.

The next subsection should be the most illu-
minating of all the subsections under Latent Class
Analysis, as it is here that 1 fully illustrate the uncon-
ditional LCA modeling process with a real dara
example, show the use of all the fit indices, clas-
sification diagnostics, the double cross-validation
procedures, and demonstrate che graphical presen-
tation and substantive interpretation of a selected
model.

Longitudinal Study of American Youth
Example for Latent Class Analysis

The data used for the LCA example come from
Cohort 2 of the Longitudinal Study of Ameri-
can Youth (LSAY), a national longitudinal study,
funded by the National Science Foundation (NSF)
(Miller, Kimmel, Hoffer, & Nelson, 2000). The
LSAY was designed to investigate the development
of student learning and achievement—particularly
related to mathemarics, science, and technology—
and to examine the relationship of those student
outcomes across middle and high school to post-
secondary educational and early career choices. The
students of Cohort 2 were first measured in the fall of
1988 when they were in eighth grade. Study partici-
pants were recruited through their schools, which
were selected from a probability sample of U.S.
public school districts (Kimmel & Miller, 2008).
For simplicity’s sake, I do not incorporate informa-
tion related to the complex sampling design or the
clustering of schools within districts and students
within school for the modeling illustrations in this
chapter; however, the analytic framework presented
does extend to accommodare sampling weights and
multilevel data. There were a rotal of 7 = 3116 stu-
dents in the original LSAY Cohort 2 (48% female;
52% male).

For this example, nine items were selected from
the eighth grade (Fall, 1998) student survey related
to math atritudes for use as observed response indi-
cators for an unconditional latent class variable that
was intended to represent profiles of latent math
dispositions. The nine self-report items were mea-
sured on a five-point, Likert-type scale (1 = strongly
agree; 2 = agree; 3 = not sure; 4 = disagree; 5 =
strongly disagree). For the analysis, I dichotomized
the items to a 0/1 scale after reverse coding certain
items so that all item endorsements (indicated by a
value of 1) represented pro-mathematics responses,
Table 25.3 presents the original language of the sur-
vey prompt for the set of math attitude items along
with the full text of the each item statement and the
response categories from the original scale thar were
recoded as a pro-math item endossements, In exam-
ining the items, I determined that the items could
be tentatively grouped into three separate aspects of
math disposition: items 1-3 are indicators of posi-
tive mathaffecrand efficacy; items 4-5 are indicators
of math anxiety; and items 6-9 are indicators of
the student assessment of the utility of mathematics
knowledge. Tanticipated that this conceprual three-
part formation of the items might assist in the inter-
pretation of the resulrant latent classes from the LCA
modeling,

Table 25.3 also displays the frequencies and rela-
tive frequencies of pro-math item endorsements for
the full analysis sample of » = 2,675 (excluding
441 of the total participant sample who had missing
responses on @l nine of selected items). Note that
all nine items have a reasonable degree of variabil-
ity in responses and therefore contain information
about individual differences in math dispositions. If
there were items with relative frequencies very near
0 or 1, there would be very little informarion abouc
individual differences to inform the formation of the
latent classes.

With nine binary response items, there are 2° =
512 possible response pattern, but only 362 of
those were observed in the sample data. Of the
total sample, 2,464 participants (92%) have com-
plete data on all the items. There are 166 observed
response patterns in the data with at least one
missing response. Of the total sample, 211 par-
ticipants (8%) have missing data on one of more
of the items, with 135 (64%) of those partic-
ipants missing on only one item. Upon closer
inspection, there is not any single item thart stands
out with a high frequency of missingness that
might indicate a systemaric skip pattern of respond-
ing that would make one reconsider that item’s
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Table 25.3. 1LSAY Example: Pro-math Item Endorsement Frequencies (f) and Relative Frequencies (rf) for the Total Sample and
the Two Random Cross-Validation Subsamples, A and B

Survey prompt:

“Now we would like you to
tell us how you feel about
math and science. Please

indicate for you feel about  Pro-math Total sample (nt== 2675)  Subsample A (ng = 1338)  Subsample B (ng = 1337)
each of the following response

statements.” categories™ f f f f f f

1) I enjoy math. sa/a 1784 0.67 894 0.67 890 0.67

2) Iam good at math. sala 1850 0.69 912 0.68 938 0.70

3) I usually understand safa 2020 0.76 1011 0.76 1009 0.76

what we are

doing in math.

4) Doing math often m;\kes d/sd 1546 0.59 765 0.59 781 0.59
Ime nervous of upset.

5) I often get scared when 1 d/sd 1821 0.69 917 0.69 904 0.68
open my math book see a

page of problems.

6) Math is useful in safa 1835 0.70 908 0.69 927 0.70
everyday problems.

7) Math helps a person sala 1686 0.64 854 0.65 832 0.63
think logically.

8) It is important to know safa 1947 0.74 975 0.74 972 0.74

math to get a good job.

9) I will use marth in many sala 1858 0.70 932 0.70 926 0.70
ways as an adult.

*Qriginal rating scale: 1 = strongly agree (sa); 2 = agree (a); 3 = not sure (ns); 4 = disagree (d); 5 = strongly disagree (sd).
Recoded to 0/1 with 1 indicating a pro-math response.



inclusion in the analysis. The three most frequent
complete data response patterns with observed fre-
quency counts are: (1,1,1,1,1,1,1,1,1), f =
502; (1,1,1,0,0,1,1,1,1), f = 111; and
(1,1,1,0,1,1,1,1,1), f = 94. More than 70%
(258 of 362) of the complete data response pat-
terns have f < 5. The three most frequent
incomplete data response patterns with observed fre-
quency counts are: (1,1,1,2,1, 1,1, 1, 1), f = 9;
(1,1,14,1,141,L31), f =7and (1,1,1,1,1,1,
L1, f = 6 {where *?” indicates a missing
value).

Because this is a large sample, it is possible
to utilize a double cross-validation procedure for
establishing the unconditional latent class model
for math dispositions. Beginning with Step i, the
sample is randomly split into halves, Subsample
A and Subsample B. Table 25.3 provides the item
response frequencies and relative frequencies for
both subsamples.

The class enumeration process begins by fitting
10 unconditional latent class models with X' = 1
to K = 10 classes. After K = 8, the models ceased
to be well identified (e.g., there was a high level of
nonconvergence across the random sets of starting
values; a low level of maximum log likelihood solu-
tion replication; a small condition number; and/or
the smallest class proportion corresponded to less
than 20 individuals). For K = 1 to K = 8,
the models appeared well identified. For example,
Figure 25.5 illustrates a high degree of replication of
the “best” maximum likelihood value, —6250.94,
for the five-class model, depicting the relative fre-
quencies of the final stage log likelihood valuesat the
local maxima across 1000 random sets of start values.

0.9
0.8+
0.74
0.6 4
0.54
0.4+
0.3
0.24

--6250.94

01 I--czs&n
6288,

o L-6268.00

-6290.00

-6259.21 v _6251.04

~6280.00 ~6270.00 -6260.00 ~6250.00
fiinal stage log likelihood value ar loeal maximum

Figure25.5 LSAY example: Relative frequency plot of final stage
log likelihood values at local maxima across 1000 random sets of
start values for the five-class unconditional LCA.

Table 25.4 summarizes the results from class enu-
meration Steps 1through 5 for Subsample A. Bolded
values indicate the value corresponding to the “best”
model according to each fir index and the boxes
indicate the candidate models based on each index
(which include the “best” and the “second best”
models). For the adjusted LR chi-square test of exact
fit, the four-class model is marginally adequare and
the five-class model has a high level of model-data
consistency. Although the six-, seven-, and eight-
class models also have a good fit to the darta, the
five-class model is the most parsimonious. The BIC
has the smallest value for the five-class model but the
six-class BIC value is very close. The same is true for
the CAIC. The AWE has the smallest value for the
four-class model, with the five-class value a close
second. The four-class model is rejected in favor of
the five-class model by the adjusted LMR-LRT, but
the five-class model is nor rejected in favor of the
six-class model. All K'-class model were rejected in
favor of a (K + 1)-class model by the BLRT for all
values of K considered so there was no “best” or even
candidate models to be selected based on the BLRT,
and those results are not presented in the summary
table. According to the approximare BE chere was
strong evidence for the five-class model over the
four-class model, and there was strong evidence for
the five-class model over the six-class model. Finally,
based on the approximate correct model probabili-
ties, of the eight models, the five-class model has the
highest probability of being correct followed by the
six-class model. Based on all these indices, I select the
four-, five-, and six-class models for attempted cross-
validation in Subsample B, noting that the five-class
model is the one of the three candidate models most
favored across all of the indices.

The first three rows of Table 25.5 summarize the
cross-validation resules for the Subsample A candi-
date models. For the firse row, I took the four-class
parameters estimates obtained by ficting a four-class
model to Subsample A, used those estimates as fixed
parameter values in Subsample B, and evaluated the
overall fic of the model, following cross-validation
Steps iv through v. The overall fit of the model,
as determined by the LR chi-square goodness-of-fit
test, was not adequate, and by this criterion, the esti-
mated four-class model from Subsample A did not
replicate in Subsample B. I next estimated a four-
class model in Subsample B, allowing all parameters
to be freely estimated, and compared the fit to the
model with all the parameters fixed ro the estimated
values from Subsample A, following cross-validation
Steps vi through vii. The likelihood ratio test of
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Table 25.4. LSAY Example: Model Fit Indices for Exploratory Latent Class Analysis Using Calibration Subsample A (n,=1338)

Adj. LMR-
LRT p-value
. op2 . .
Adj. XLR (Ho:K classes;
H;:K+1 ~ A
Model LL mpar’  (df), p-value  BIC CAIC AWE classes) BFy k. cmPy
one-class 732810 9 1289.21 14721.00  14730.00  14812.79 <0.01 <0.10 <0.01
: (368), <.01 : : : : : :
two-class 661288 19 909.29 13362.55 1338155  13556.33 <0.01 <0.10 <0.01
: (358), <.01 : : : : : :
three-class 643253 29 35176 13073.83  13102.83  13369.60 <0.01 <0.10 <0.01
: (348), <.01 : : : : : :
347.24
four-class  -6331.81 39 1294438 12983.38 | 13342.13 <0.01 <0.10 <0.01
(338), .35
five-class ~ -6250.94 49 199 81 12854.63 | 12903.63 | 13354.37 0.15 6.26 0.87
: (328), >.99 . . : : - -
six-class 621681 59 157.25 1285835 | 12917.35 | 13460.09 0.13 >10 0.13
: (318), >.99 : : : : :
sevenclass 619232 69 105.70 1288137 1295037  13585.09 0.23 >10 <0.01
: (308), >.99 : : ~ : .
cight-class  -6171.11 79 69.55 12910.93  12989.93  13716.64 . . <0.01
& : (298), >.99 : : : :

nine-class

Not well identified

ten-class

Not well identified

. .
number of parameters estimate




Table 25.5. LSAY Example: Double Cross-Validation Summary of Model Fit Using the Two
Random Subsamples, A and B (ny = 1338; ng = 1337)

Model  Calibration  Validation  Adj. X%% df pvalue LRTS™ df*** povalue
four-class Subsample A Subsample B 501.975 363 <0.001 38.50 39 0.49
five-class 353.036 363 0.64 5971 49 0.14

six-class 365.876 363 045 136.66 59 <0.001

four-class  Subsample B Subsample A 425.04 377 0.04 43.67 " 39 0.28
five-class 282.63 377 1.00 6421 49 0.07

six-class 260.37 377 1.00 10185 59 <0.001

*Goodness-of-fit of the model to validation subsample with all paramerer values fixed at the estimates obtained from the

calibration subsample.

* LRTS = —2(LLy — LLy) where LLp is the maximized log likelihood value, —6250.94, for the K-class model fit to the
validation subsample with all parameter values fixed at the estimates obtained from the calibration subsample and LL; is the
maximized log likelihood value for the K -class model fit to the validation subsample with all parameters freely estimated.

***df = number of parameters in the K-class model

these nested models was not significant, indicating
that the parameter estimates for the four-class model
using Subsample B data were not significantly diffes-
ent from the parameter estimates from Subsample
A, Thus, by this criterion, the estimated four-class
model from Subsample A did replicate in Subsample
B (indicated by bolded rext in the table). The five-
class model from Subsample A was the only one of
the three candidate models that validated by both
criteria (indicated by the boxed text).

For a double cross-validation, the full process
above is repeated for Subsample B. I estimated
K = 1t K = 10 class models; selected a sub-
set of candidate models, which were the same four-,
five-, and six-class models as I selected for Subsample
A; favoring the five-class model; and then cross-
validated using Subsample A. As shown in Table
25.5, the five-class model from Subsample B was
the only one of the three candidate models that
cross-validated by both criteria in Subsample A.

Before the five-class model is anointed as the
“final” unconditional model, there are a few more
evaluations necessary. Although the five-class model
is not rejected in the LR chi-square exact fit test, it is
still advisable to examine the standardized residuals.
Only six of the response patterns with model-
estimared frequencies above 1.0 have standardized
residuals greater than 3.0, only slightly more than
the 1% one would expect by chance, and only one
of those standardized residuals is greater than 5.0.
Thus, closer examination of the model residuals
does not raise concern about the fit of the five-class

578

model to the data. Table 25.6 provides a summary
of the observed and model-estimated frequencies
for all observed response patterns with frequencies
greater than 10 along with the standardized residual
values.

Because I have approached this analysis as a
direct application of mixture modeling, in that I
am assuming & priori that the population is het-
erogeneous with regards to math dispositions and
that the items selected for the analysis are indica-
tors of membership in one of an unknown number
of subgroups with characteristically different math
disposition profiles, it is also necessary to examine
the classification diagnostics for the five-class model
as well as evaluate the substantive meaning and util-
ity of the resultant classes. Table 25.7 summarizes
the classification diagnostic measures for the five-
class model with relative entropy of Bs = .77. The
modal class assignment proportions {mcaP) are all
very near the estimated class proportions and well
within the corresponding 95% (bias-corrected boot-
strap) confidence intervals for 7, the AvePP are
all greater than 0.70, and the odds of correct clas-
sificarion ratios are all well above 5.0, collectively
indicating that the five classes are well separated
and there is high accuracy in the latent class assign-
ment. This result further endorses the choice of the
five-class model.

The interpretation of the resultant five classes
is based primarily on the model-estimated, class-
specificitem response probabilities provided in Table
25.8 and depicted graphically in the profile plot
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Table 25.6. LSAY Example: Observed Response Patterns (f > 10), Observed and Estimated Frequencies, and Standardized Residuals for
Subsample A with Estimated Posterior Class Probabilities and Modal Class Assignments Based on the Five-Class Unconditional LCA

Irem™ response patterns (r*) P
W@ B @ 6 O D ® O fr e sdine by bn bn  bu s imedld
1 1 1 1 1 1 1 1 1 1 254.00 234.24 144 099 001 001 000 0.00 1
2 1 1 1 0 0 1 1 1 1 53.00  47.91 075 0.00 099 000 0.01 0.00 2
3 1 1 1 0 1 1 1 1 1 46.00  44.80 0.18 0.86 012 0.01 0.01 0.00 1
4 0 0 0 0 0 0 0 0 0 36.00 23.90 250 0.00 000 000 000 100 5
5 1 1 1 1 1 1 0 1 1 31.00 39.62 -139 093 001 006 0.00 0.00 1
6 0 1 1 1 1 1 1 1 1 26.00 29.00 —056 095 000 0.02 0.03 000 1
7 1 1 1 1 1 0 1 1 1 22.00 2224 -0.05 085 002 013 0.00 0.00 1
8 1 1 1 1 0 1 1 1 1 19.00 16.91 0.51 0.00 097 002 0.01 0.00 2
9 1 1 1 1 1 0 0 0 0 18.00 10.54 231 000 000 099 0.00 001 3
10 1 1 1 1 1 1 1 1 0 17.00 1812 -0.27 0.84 001 015 0.00 0.00 1
11 0 0 0 0 0 1 1 1 1 17.00 9.51 244 0.00 000 000 1.00 0.00 4
12 1 1 1 1 1 0 0 1 1 15.00 8.07 245 037 001 061 000 0.00 3
13 0 0 0 1 1 0 0 0 0 15.00 4.75 472 000 0.00 002 001 098 5
14 1 0 1 1 1 1 1 1 1 14.00 19.63 -1.28 093 001 0.01 005 0.00 1
15 0 0 1 1 1 1 1 1 1 14.00 5.87 336 037 0.00 002 061 0.00 4
16 1 1 1 1 1 1 1 0 1 13.00 1487 ~049 088 0.02 011 0.00 0.00 1
17 1 1 1 1 1 0 1 1 0 11.00 6.74 1.65 019 0.01 0.81 000 000 3

*(1) 1 enjoy math; (2) I am good at math; (3) 1 usually understand what we are doing in math; (4) Doing math often makes me nervous or upser; (5) I often ger scared when I open my
math book see a page of problems; (6) Math is useful in everyday problems; (7) Math helps a person think logically; (8} It is important to know math to get a good job; (9) 1 will use
math in many ways as an adult. (~Reverse coded.)



Table 25.7. LSAY Example: Model Classification Diagnostics for the
Five-Class Unconditional Latent Class Analysis (E5 = .77) for Subsample

A (ny = 1338)

Class £ g 95% C.1* mealy AvePP,, 0CC,
Class 1 0.392  (0.326,0.470)  0.400 0.905 14.78
Class 2 0.130 (0.082,0.194)  0.125 0.874 46.42
Class 3 0.182  (0.098, 0.255) 0.176 0.791 17.01
Class 4 0.190 (0.139, 0.248)  0.189 0.833 21.26
Class 5 0.105 (0.080,0.136)  0.109 0.874 59.13

*Bias-corrected bootstrap 95% confidence intervals

Table 25.8. LSAY Example: Model-Estimated, Class-Specific Item Response Probabilities Based on the Five-Class
Unconditional Latent Class Analysis Using Subsample A (ns = 1338)

Wil

Item aspects  Item statements Class 1 (39%) Class 2 (13%) Class 3 (18%) Class 4 (19%) Class 5 (10%)

Mathaffecc  Ienjoy math. 0.89 0.99 0.72 0.21 0.18
and math
efficacy I am good at 0.93 091 0.84 0.17 0.14
math.
T usually 0.96 0.89 0.91 0.43 0.23
understand what
we are doing in
math.
Math anxiety  ~Doing math 0.86 0.26 0.71 0.32 0.25

often makes me
nervous or upset.

~]1 often get 1.00 0.10 0.82 0.52 0.37
scared when I

open my math

book see a page

of problems.

Math uiility ~ Math is useful in 0.92 0.85 0.33 0.77 0.09
everyday
problems.

Math helps a 0.86 0.83 0.37 0.67 0.06
person think
logically.

It is important to 0.95 0.89 0.47 0.83 0.11
know math to
get a good job.

I will use math 0.94 0.89 0.35 0.79 0.05
in many ways as
an adult.

~ Reverse coded.
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Figure 25.6 LSAY example: Model-estimated, class-specific item probability profile plot for the five-class unconditional LCA.,

in Figure 25.6. Irem response probabilities with a
high degree of class homogeneity (i.e., estimated val-
ues greater than 0.7 or less than 0.3) are bolded in
able 25.8. All the items have high class homogene-
ity for at least three of the five classes, indicating
thar all nine items are useful for characterizing the
latent classes. In Figure 25.6, the horizontal lines
at the 0.7 and 0.3 endorsement probability levels
help provide a visual guide for high levels of class
homogeneity. These lines also help with the visual
inspection of class separation with respect to each
item——for example, two classes with item response
probabilities above the 0.7 line for a given item are
likely not well separated with respect to thart item.
Table 25.9 provides all the model-estimated item
response odds ratios for each pairwise latent class
comparison. Bolded values indicate the two classes
being compared are well separated with respect
that ser of items. The numbers in Table 25.9 corre-
spond to visual impressions based on Figure 25.6;
for example, Class 1 and Class 5 both have high
homogeneity with respect to items 1 through 3 and
appear to be well separated as confirmed with very
large item response odds ratios (all in grear excess of
5.0).

Tables 25.8 and 25.9 along with Figure 25.6 also
distinguish the observed items by their affiliation
with one of three substantive aspects of math dispo-
sition previously discussed. As can be seen in both

the rables and figure, the class-specific item probabil-

ities are similar in level of class homogeneity within

each of these three aspects as are the pattern of class

separation—that is, most pairs of classes are either

well separated with respect to all or none of the items

within an aspect group. Thus, as anticipated earlier,

these three aspects can be used to refine the sub-

stantive interpretation of the five classes rather than

characterizing the classes item by item. In atrach-

ing substantive meaning to the classes, I take into

account both class homogeneity and class separation

with respect to all the items. It is also useful o return

to the actual observed response patterns in the data
o identify prototypical response patterns for each
the classes. Prototypical patterns should have rea-
sonably sized observed frequencies, non-significant
standardized residuals, and an estimated posterior
probability near 1.0 for the class to which an indi-
vidual with that response pattern would be modally
assigned. I identify prototypical patterns for each of
the five classes using the information provided in
Table 25.6; some prototypical responses are boxed
by solid lines in the table.

Class 1, with an estimated proportion of 39%,
is characterized by an overall positive math dispo-
sition, with high probabilities of endorsing positive
math affect and efficacy items, positive math anxiety
items (indicating a low propensity for math anxiety),
and positive math utility items. Class 1 has a high
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Table 25.9. LSAY Example: Model-Estimated Item Response Odds Ratios for All Pairwise Latent Class Comparisons Based on the
Five-Class Unconditional Latent Class Analysis Using Subsample A (ny = 1338)

Ojem[ik
Class Class Class Class Class Class Class Class Class Class

Item aspects Item statements 1vs.2 1vs.3 1w 4 1vs.5 2vs. 3 2vs. 4 2vs. 5 3vs. 4 3vs.5 4vs.5
Math affect and 1 enjoy math. 0.11 3.28 30.91 37.83 30.72 >100 >100 9.42 11.53 1.22
math efficacy

Iam good at math. 1.31 2.34 59.92 78.96 1.78 45.60 60.10 25.61 33.75 1.32

1 usually 2.70 215 28.99 71.52 0.80 10.75 26.52 1349  33.28 2.47

understand what

we are doing in

math.
Math anxiety ~Doing math 17.32 239 13.03 18.47 0.14 0.75 1.07 5.45 7.72 142

often makes me
nervous or upset.

~] often getscared  >100 >100 >100 >100 0.03 0.10 0.19 4.03 7.36 1.82
when I open my

math book see a

page of problems.

Math udlity Math is useful in 2.16 24.48 3.67 >100 11.36 1.70 60.04 0.15 5.29 35.30
everyday problems.
Math helps a 1.32 10.85 3.05 >100 8.19 2.30 71.66 0.28 8.75 31.16
person think
logically.

Ir is important to 2.13 19.83 3.74 >100 9.29 175 68.99 0.19 7.43 3933
know math to geta
good job.

1 will use math in 1.81 28.79 417 >100 15.91 2.30 >100 0.14 9.99 69.06
many ways as an
adult.

~Reverse coded.



level of homogeneity with respect to all the items.
This class might be labeled the “Pro-math without
anxiety” class, where “pro-math” implies both liking
and valuing the udility of mathematics. Response
pattern 1 in Table 25.6 is a provotypical response
pattern for Class 1, with individuals endorsing all
nine items.

Class 5, with an estimated proportion of 10%,
is characterized by an overall negative math dispo-
sition, with low probabilities of endorsing positive
math affect and efficacy items, positive math anxiety
items (indicating a high propensity for math anxi-
ety), and positive math utility items. Class 5 has
a high level of homogeneiry with respect to all the
items and is extremely well separated from Class 1
with respect to all the items. This class might be
labeled the “Anti-math with anxiety” class, where
“anti-math” implies both disliking and undervalu-
ing the utility of mathematics. Response pattern 4
in Table 25.6 is a prototypical response pattern for
Class 5, with individuals endorsing none of the nine
items.

Because Classes 1 and 5 represent clear profiles
of positive and negative math dispositions across the
entire set of items with high levels of class homo-
geneity across all the items (with the exception of
item 5 in Class 5) and are well separated from each
other with respect to all items (with item response
odds ratios all well in excess of 5.0), the class separa-
tion of the remaining three classes will be evaluated
primarily with respect to Classes 1 and 5.

Class 2, with an estimared proportion of 13%,
is characterized by an overall positive math disposi-
tion like Class 1, with the exception that this class
has very low probabilities of endorsing positive math
anxiety items (indicating a high propensity for math
anxiety). Class 2 has a high level of homogene-
ity with respect to all the items, is well separated
from Class 1 with respect to the math anxiety items
but not the math affect and efficacy or the math
utility items (with the exception of item 1), and
is well separated from Class 5 with respect to the
math affect and efficacy and the math urility items.
This class might be labeled the “Pro-math with anx-
iety” class. Response partern 2 in Table 25.6 is
a prototypical response pattern for Class 2, with
individuals endorsing all but the rwo marh anxiety
items.

Class 3, with an estimated proportion of 18%,
is characterized by high probabilities of endorsing
positive math affecr and efficacy items and positive
math anxiety items (indicating a low propensity for
math anxiety). Class 3 does not have a high level

of homogeneity with respect to the math urility
items which means that this class is not characrer-
ized by either high or low response propensities.
However, Class 3 is well separated from Class 1
and Class 5 with respect to those items. Generally
speaking, Class 3 is not well separated from Class
1 with respect to the math affect and efficacy and
the math anxiery items but is well separated from
Class 5 with respect to those same items. This class
might be labeled the “Math lover” class, where “love”
implies both a positive math affect and alow propen-
sity for math anxiety. Response pattern 9 in Table
25.6 is a prototypical response pattern for Class 3,
with individuals endorsing all bue the math uilicy
items.

Class 4, with an estimated proportion of 19%, is
mostly characterized by low probabilicies of endors-
ing positive math affect and efficacy items and
high probabilities of endorsing positive math ucil-
ity items. Class 4 does not have a high level of
homogeneity with respect to the math anxiety items,
which means that this class is not characterized by
either high or low response probabilities. It is well
separated from Class 1 with respect to the math
anxiety items as well as the math affect and effi-
cacy item burt not well separated from Class 5 for
those same items. Class 4 is well separated from
Class 5 with respect to the math urility item bue
not well separated from Class 1. This class might
be labeled the “I don’t like math buc I know it
good for me” class. Response pattern 11 in Table
25.6 is a prototypical response pattern for Class
4, with individuals endorsing only the math utilicy
items.

None of the five resultant classes have an esti-
mated class proportion corresponding to a majority
share of the overall population nor are any of the
classes distinguished from the rest by a relatively
small proportion. Thus, although it is quite interest-
ing that the “Pro-math withour anxiety” class is the
largest at 40%, and the “Anti-math with anxiety”
class is the smallest at 10%, the estimated class pro-
portions themselves, in this case, did not coneribute
directly to the interpretation of the classes.

As a final piece of the interpretation process, [
also examine response patterns that are not well fit
and/or not well classified by the selected model.
These patterns could suggest additional population
heterogeneity that does not have a strong “signal” in
the present data and is not captured by the resultant
latent classes. Noticing patterns thart are not well fit
or well classified by the model can deepen under-
standing of the latent classes that do emerge and
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may also suggest directions for future research, par-
ticularly regarding enhancing the item set. Enclosed
by a dashed box in Table 25.6, response pattern
13 has a large standardized residual and is not well
fit by the model. Although individuals with this
response pattern have a high posterior probability
for Class 5, their pattern of response, only endors-
ing the math anxiety items, is not prototypical of
any of the classes. These cases are individuals who
have a low propensity toward math anxiety but
are inclined to dislike and undervalue mathemar-
ics. They don' like math but are “fearless.” These
individuals could represent just a few random out-
liers or they could be indicative of a smaller class
that is not detected in this model but is one that
might emerge in a future study with a larger sam-
ple and with an expanded item set. Individuals with
response pattern 15 in Table 25.6 are also not well
classified. Although individuals with this response
pattern would be modally assigned to Class 4, the
estimated posterior probability for Class 4 is only
0.61 while the estimared posterior probability for
Class 1 is 0.37. These individuals, endorsing all but
the first two math affect and efficacy items, although
more consistent with the Class 4 profile, are very
similar to individuals with response patterns such as
pattern 14 in Table 25.6, that endorse all but one of
the math affect and efficacy items and have a high
estimated posterior probability for Class 1. Not sur-
prisingly, it is harder to classify response patterns o
classes without a high degree of homogeneity on the
full set of items, such as Classes 3 and 4, as is evi-
dent from the relative lower AvePPs found in Table
25.7 for Classes 3 and 4 compared to Classes 1, 2,
and 5. ’

Concluding now the full empirical illustration
of latent class analysis, 1 switch gears to intro-
duce traditional finite mixture modeling, also
known as LPA (the moniker used herein) and
LCCA.

Latent Profile Analysis

Essentially, a latent profile model is simply a
latent class model with continuous—rather than
categorical—indicators of the latent class vari-
able. Almost everything learned in the previous
section on LCA can be applied to LPA, but
there are a few differences—conceptual, analyric,
and practical—that must be remarked on before
proceeding to the real data example of LPA,
This section follows the same order of topics as
the section on LCA, beginning with LPA model
formulation.

Model Formulation

1 begin the formal LPA model specification with
an unconditional model in which the only observed
variables are the continuous manifest variables of the
latent class variable. This model is the uncondirional
measurement model for the latent class variable.

Suppose there are Mcontinuous (interval scale)
latent class indicators, y1,52,...,yum, observed on
n study participants, where y,,; is the observed
response to item 7 for participant 7. It is assumed for
the unconditional LPA thart there is an underlying
unordered categorical latent class variable, denoted
by ¢, with Kclasses, where ¢; = £ if individual
7 belongs to Class 4. As before, the proportion
of individuals in Class 4, Pr(c = #), is denoted
by 7 4. The X classes are exhaustive and mutually
exclusive such that each individual in the popula-
tion has membership in exactly one of the X latent
classes and Ty = 1. The relationship between the
observed responses on the M items and the latent
class variable, ¢, is expressed as

K
foy =Y [me iy, (29)
k=1
where y; = (1ni .- - ¥Mi)> f(yi) is the muld-
variate probability density function for the overall
population, and £ (y;) = f(yile; = &) is the class-
specific density function for Class #. Thus, the LPA
measurement model specifies chat the overall joint
distribution of the M continuous indicators is the
result of a mixing of X' component distributions
of the M indicators, with fi(y;) representing the
component-specific joint distribution for y;.
Aswith the LCA model, thestructural parameters
are those related to the distribution of the latent class
variable, which for the unconditional LPA model are
simply the class proportions, 4. The measurement
parameters are all those related to the class-specific
probability distributions. Usually, as was done in
the very first finite mixture model applications, the
within-class distribution of the continuous indicator
variables is assumed to be multivariate normal. That
is,

[yilei = £] ~ MVN(e, Zp),  (30)
where oy, is the vector of the Class £ means for the ys
(i.e., E(yiie) = o) and I is the Class £ variance—
covariance matrix for the ys (i.e., Var(yip) = Zp).
Alternatively, the expression in Equation 30 can be
written as

Yile = O + €,
(3D
£, ~ MVN(0, Z,).
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Figure 25.7 Generic path diagram for an unconditional latent
profile model.

The measurement parameters are then the class-
specific means, variances, and covariances of the
indicator variables. Notice that although one nec-
essarily assumes a particular parametric distribution
within each class that is appropriate for the mea-
surement scales of the variables, there are not any
assumptions made abourt the joint distribution of
the indicators in the overall population.

The model expressed in Equations 29 and 30 can
be represented by a path diagram as shown in Figure
25.7. 1If you compare Figure 25.7 to Figure 25.2,
along with replacing the # with y to represent con-
tinuous rather than categorical manifest variables,
“residuals” terms have been added, represented by
the & indexed by £, to indicate thar there is within-
class variability on the continuous indicators that
may differ across the classes in addition to the mean
strucrure of the y that may vary across the classes
as indicated by the arrows from ¢ directy to the y.
Unlike with categorical indicators, the class-specific
estimated means and variances/covariances (assum-
ing normality within class) and can be uniquely
identified for each class.

Traditionally, the means of the y are automati-
cally allowed to vary across the classes as part of the
measurement model—that is, the mean structure is
always class-varying. The within-class variances may
be class-varying or constrained to be class-invariant
(i.e., within-class variances held equal across the
classes). And, as implied by Figure 25.7, the condi-
tional independence assumption is not necessary for
the within-class covariance structure. Unlike LCA,
latent profile models do not require partial condi-
tional independence for model identification—all
indicators can covary with all other indicators within
class. Hence, thelatent class variable does not have to

be specified to explain all of the covariation between
the indicators in the overall population.

With increased flexibility in the within-class
model specification comes additional complexity
in the model-building process. But before getting
into the details of model building for latent pro-
files models, let me formally summarize the main
within-class variance—covariance structures that may
be specified for X (presuming here that o will
be left unconstrained within and across the classes
in all cases). Starting from the least restricrive of
variance~covariance structures, there is class-varying,
unrestricted Ty, of the form

O114
O Ban

I, = . ) . ,  (32)
Ourie Barae Bpase

where 6,,,,,4 is the variance of item m in Class £ and
O mjk is the covariance between items 72 and 7 in Class
£. In this structure for £y, all the indicator variables
are allowed to covary within class, and the variances
and covariances are allowed to be different across the
latent classes. The class-invariant, unrestricted L,
has the form

f11
O O
S == . . :
Garr G B
Yee(l,...,K), (33)

such that all the indicator variable are allowed to
covary within class, and the variances and covari-
ances are constrained to be equal across the latent
classes (class-invariant). The elass-varying, diagonal
4 has the form

O114
0
Ele = . . . » (34)
0 0 Ontnan

such that conditional independence is imposed and
the covariances between the indicators are fixed at
zero within class while the variances are freely esti-
mated and allowed to be different across the latent
classes. The most constrained within-class variance~
covariance structure is the class-invariant, diagonal
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X, with the form

b1
0 6n
Ek = 2 == . )
0 0 Opmr
Veke (1,...,K), (35)

such that conditional independence is imposed and
the covariances berween the indicators are fixed at
zero within class while the variances are constrained
to be equal across the latent classes.

The determination of the number of latent classes
as well as the estimates of the structural parameters
(class proportions) and the measurement parameters
(class-specific means, variances, and covariances)
and interpretation of the resultant classes will very
much depend on the specification of the within-class
joine distribution of the latent class indicators, This
dependence is analogous to the dependence of clus-
tering on the selection of the aturibute space and the
resemblance coefficient in a cluster analysis. As it
happens, specifying a class-invariant, diagonal Zin
a K-class LPA model will yield a solution that is
the model-based equivalent to applying a K-means
clustering algorithm to the latent profile indicators
(Vermunt & Magidson, 2002).

To better understand how the number and nature
of the latent classes can be influenced by the spec-
ification of X, let’s consider a hypothetical data
sample drawn from an unknown but distinctly
non-normal bivariate population distribution. The
scatter plot for the sample observations is displayed
in Figure 25.8.a. Figure 25.8.b shows a path dia-
gram for a three-class latent profile model with a
class-invariant, diagonal ¥, along with the empir-
ical resules of applying the three-class LPA model
to the sample data depicted as a scatter plot with:
individual observations marked with symbols corre-
sponding to modal assignment into one of the three
latent classes (circles, x, and triangles); diamonds
representing the class centroids, (014, ¢24)—that s,
the model-estimared, class-specific means for y; and
92; trend lines representing the class-specific linear
associations for y; versus y; and ellipses to provide
a visual impression of the model-estimated, class-
specific variances for y; and y;, where the width of
each ellipse is equal to three model-estimated, class-
specific standard deviations for y;and the height is
equal to three model-estimated, class-specific stan-
dard deviations for y;. The model in Figure 25.8.b
imposes the conditional independence assumption,
and thus, y; and y; are uncorrelated witchin class,
shown by the flat trend lines for each of the three
classes. The model also constrains the within-class

(b)
? 1
v, [v A5} Q
o J L
Y, L
&) traaclll
. _:“ A — Y,
©
£, Y .
Y; O
Y, Y, . &
' 1' i
¢ '5 ’
0=2) T

Figure 25.8 (a) Bivariate scatterplot based on a hypothetical sample from an overall bivariate non-normal population distribution; (b)
Path diagram for a three-class model with class-invariant, diagonal L} and the scatter plot of sample values marked by modal latent
class assignment based on the three-class model; and (c) Path diagram for a two-class model with class-varying, unrestricted £y and the
scatrer plot of sample values marked by modal latent class assignment based on the two-class model. In (b) and (¢}, diamonds represent
the model-estimated class-specific bivariate mean values, trend lines depict the model-esrimated within-class bivariate associations, and
the ellipse heights and widths correspond to 3.0 model-estimated within-class standard deviations on y; and y;, respectively.

586

LATENT CLASS ANALYSIS AND FINITE MIXTURE MODELING



variance-covariance structure to be the same across
the class, shown by the same size ellipses for each of
the three classes.

Figure 25.8.c displays a path diagram for a
wwo-class latent profile model with a class-varying,
unconstrained ¥ along with the empirical resules
of applying the two-class LPA model to the sam-
ple dara depicted as a scatter plot using the same
conventions as Figure 25.8.b. The results of these
two models, shown in Figures 25.8.b and 25.8.c,
applied to the same sample data shown in Figure
25.8.a are different both in the number and nature
of the latent classes. They provide alternative rep-
resentations of the population heterogeneity with
respect o the latent class continuous indicators,
71 and y3. And they would lead to quite different
substantive interpretations. You could make com-
parisons of fit berween the two models to determine
whether one is more consistent with the observed
data, but if they both provide adequate fit and/or
are comparable in fit to each other, then you must
rely on theoretica.\ and practical considerations to
choose one representation over the other. Because
youdon’tever know the “true” within-class variance—
covariance structure just as you don’t ever know the
“correct” number of latent classes when you embark
on a latent profile analysis, and now understanding
how profoundly the specification of ¥y could influ-
ence the formation of the latent classes, the LPA
model-building process must compare models, sta-
tistically and substantively, across a full range of
specifications.

Model Interpretation

If you were engaged in an indirect application of
finite mixture modeling to obtain a semi-parametric
approximation for an overall non-normal homoge-
neous population, then you would focus on the
“remixed” results for the overall population and
would not be concerned with the distinctiveness or
separation of the latent classes and would not inter-
pret the separate mixture components. However, if
youare using a latent profile analysis in a direct appli-
cation, assuming 4 prioré thar the population is made
up of two or more normal homogeneous subpopu-
lations, then you would place high value on results
thatyield classes thar are disparate enough from each
other that it is reasonable to interpret each class as
representative of a distincr subpopulation.

In some sense, the direct application of finite
mixture modeling is a kind of stochastic model-
based clustering method in which one endeavors
to arrive at a latent class solution with the number

and nature of larenr classes (clusters) such thar the
individual variability with respect to the indicator
variables within the classes is minimized and/or the
between-class variabiliry is maximized. (For more on
mixrure modeling as a clustering method and com-
patison to other clustering techniques, see Vermunt
& Magidson, 2002, and the chapter on clustering
within this handbook.) These clustering objectives
can be restated in the terms used when presenting
the interpretation of latenc class models: For dis-
tinct and optimally interpretable latent classes, it is
desirable o have a latent profile model with a high
degree of class homogeneity (low within-class vari-
ability) along with a high degree of class separation
(high between-class variability).

Just as was done with LCA, the concepis of latent
class homogeneity and latent class separadon and
how they both relate to the parameters of the uncon-
dirional measurement model will be discussed as well
as how they inform the interpretation of the latent
classes resulting from a LPA. To assist chis discussion,
consider a hypothetical example with two contin-
uous indicators (M = 2) measuring a two-class
categorical latent variable (X' = 2). And suppose
that you decide to use a class-varying, unrestricred
X, specification for the LPA. The unconditional
model is given by

2

Fomd =) [me finiyed),  (36)

123
where

71 y2ilei = k] ~ MVN

(Ofk =[aun on | = [ Bé;f

ot )

(37)

Class Homaogeneity. The first and primary way that
you can evaluate the degree of class homogeneity
is by examining the model-estimated within-class
variances, Oy for each indicator 7 across the K
classes and comparing them to the total overall sam-
ple variance, é,,,,,,, for the continuous indicator. It
is expected that all of the within-class variances will
be notably smaller than the overall variance. Classes
with smaller values of 8,,,,, are more homogeneous
with respect to item m than classes with larger values
ofé,,,m;,. You can equivalently compare within-class

~

standard deviations, 1/ 8,2, for each item m across
the X classes, that approximate for each class the
average distance of class members’ individual values
on item m to the corresponding model-estimated
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class mean, @,,;. You want classes for which class
members are close, on average, to the class-specific
mean because you want to be able to use the class
mean values in your interpretation of the latent
classes as values that “typify” the observed responses
on the indicator variables for members of that
class.

You cannot, of course, directly compare values
of B, across items because different items may
have very different scales and the magnitude of the
variance (and, hence, the standard deviation) is
scale-dependent. Even for items with the same mea-
surement scales, you cannot compare within-class
variances across items unless the overall variances of
those jtems are comparable. However, it is possible
to summarize class homogeneity across irems and
classes by calculating the percent of the overall total
variance in the indicator set explained by the latent
class variable, similarly to the calculations done in a
principal component analysis (Thorndike, 1953).

The phrase “class homogeneity” refers here to an
expectation thar the individuals belonging to the
same class will be more similar to each other with
respect to their values on the indicator variables than
they are to individuals in other classes. However, you
should still keep in mind thata LPA assumes 4 priori
that the classes 47 homogeneous in the sense that
all members of a given class are assumed to draw
from a single, usually multivariate normal, popu-
lation distribution. And, as such, any within-class
correlation between continuous indicators, if esti-
mated, isassumed to bean association berween those
variables that holds for all members of thar class.
Evaluating the statistical and practical significance
of an estimated within-class indicator correlation,
if not fixed at zero in the model specification, can
assist in judging whether thar correlation could be
used in the characterization of the subpopulation
represented by that parricular latent class. Signifi-
cant within-class correlations, when present, may
be as much a part of what distinguishes the classes
as the class-specific means and variances,

Class Separation. The first and primary way
you can evaluate the degree of class separation is
by assessing the actual distance between the class-
specific means. It is not enough to simply calculate
the raw differences in estimated means (i.e., &) —
&,4) because what is most relevant is the degree of
overlap between the class-specific distributions. And
the degree of overlap between two normal distribu-
tions depends not only on the distance between the
means but the variances of the distributions as well.
Consider, for example, the two scenarios shown in
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Figure 25.9 Hypothetical finite mixcure distributions forasingle
continuous indicator variable with K= 2 underlying latent classes
with class-specific means of 0 and 3, respectively, and with-class
standard deviations of {a) 3, and (b) 1.

Figure 25.9. Figure 25.9.a depicts two hypothetical
class-specific indicator distributions with means 3.0
units apart and class-specific standard deviations of
3, and Figure 25.9.b depicts two hypothetical class-
specific indicator distributions with the same mean
separation as in Figure 25.9.a with class-specific
standard deviations of 1. There is considerable over-
lap of the distributions in Figure 25.9.a and very
little overlap in Figure 25.9.b. The two classes in
Figure 25.9.b are far better separated than the two
classes in Figure 25.9.a with respect to the indica-
tor, although the difference in means is the same. To
quantify class separation between Class j and Class
£ with respect to a particular item m, compute a
standardized mean difference, adapting the formula
for Cohen’s d {Cohen, 1988), as given below,

~ &m' - &mk
Aojte = ——J-.:-f'——, (38)

where Gy is a pooled standard deviation given by

(J% ) (é,,,,,y') -+ (ff /e) (émm/e)

(A7 + 7t4)

»

Omjk =

« (39

A large [2,,#] > 2.0 corresponds to less than

20% overlap in the distributions, meaning that less
than 20% of individuals belonging to cither Class
j or Class £ have values on item m that fall in
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the range of y,, corresponding to the area of over-
lap between the two class-specific distributions of

Ym A large lg”'jl‘l indicates a high degree of sep-
aradon between the Classes 7 and £ with respect
to item m. A small |2’”jkl < 0.85 corresponds to

more than 50% overlap and a low degree of sepa-
ration berween the Classes j and £ with respect 10
item m.

If you are using a latent profile model specifica-
tion thar allows a class-varying variance—covariance
seructure for the classes, then you can also evalu-
ate whether the classes are distiner from each other
with respect to the item variances or covariances.
To make a descriptive assessment of the separa-
tion of the classes in this regard, you can examine
whether there is any overlap in the 95% confidence
intervals for the estimates of the class-specific vari-
ances and covariances with non-overlap indicating
good separation. An equivalent assessment can be
made using the model-estimated class-specific irem
standard deviations and correlations.

Class Proportions. The guidelines and cautions
provided in the section on LCA for the use of the
estimarted class proportions in the interpretation of
the latent classes are all applicable for LPA as well.

Hypothetical Example. Continuing with the
hypothetical example of a wwo-class LPA with

two continuous indicators initially presented in
Figure 25.8.c, Table 25.10 provides the overall
sample means and standard deviations along with
the model-estimated class-specific means, standard
deviations, and correlations (with the standard devi-
ations and correlation estimates calculated using
the measurement parameter estimates for the class-
specific irem variances and covariances). The class-
specific standard deviations for the items y; and
y2 are all noticeably smaller than the correspond-
ing overall sample standard deviations, but Class 1
is more homogenous than Class 2 with respect to
both indicators—particularly y;. There is a small,
non-significant correlation berween y; and y; in
Class 1 but a large and significant positive corre-
lation between y; and y, in Class 2 that should
therefore be considered in the interpretation of
Class 2.

Applying Equarions 38 and 39 to the class-
specific mean and standard deviation estimares given
in Table 25.10, the standardized differences in indi-
cator means between Class 1 and Class 2 was calcu-
latedas ¢y = —2.67, indicating a high degree of sep-
aration with respect to yy, and dy = 1.70, indicating
amoderate degree of separation with respect to y2. In
terms of the class-specific variance—covariance struc-
tures, evaluate the separation between the classes

Table 25.10. Hypothetical Example: Overall Sample Mcans and Standard Deviations (SD);
Model-Estimated, Class-Specific Means, Standard Deviations, and Correlations With Corresponding
Bias-Corrected Bootstrap 95% Confidence Intervals Based on a Two-Class Latent Profile Analysis

with Class-Varying, Unrestricted %y

Correlations
Variable Mean SD (1) 2)
Overall sample N 0.06 271 1.00
2 1.47 1.70 -21 1.00
Class Variable Mean (@) SD (/8 i) Correlations
(1 @
Class 1 (33%) n -2.93 1.00 1.00
(-3.19, -2.58) (0.80, 1.26)
2 297 1.12 0.04 1.00
(2.65, 3.35) (0.95, 1.38) (-0.25, 0.26)
Class 2 (77%) n 155 1.93 1.00
(1.18, 1.93) (1.77,2.11)
2 0.73 1.41 ) 0.68 1.00
(0.45, 0.99)) {1.26,1.59) (0.54, 0.76)
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with respect to the within-class item standard devia-
tions and correlations by examining the differences
in the point estimates and also observing the pres-
ence of overlap in the 95% confidence intervals for
the point estimates. Note that the 95% confidence
intervals provided in Table 25.10 are estimated
using a bias-corrected bootstrap technique because
the sampling distributions for standard deviations
are not symmetric and estimared correlations are
nonlinear functions of three different maximum
likelihood parameter estimates. The variability in
Class 2 for y; is notably larger than Class 1, whereas
the classes are not well separated with respect to the
standard deviations for y,. The correlation between
1 and y; is very different for Classes 1 and 2 where
there is virtually no correlation at all in Class 1 but
there is a large and significant correlation within
Class 2. Thus, there is a high degree of separa-
tion berween Classes 1 and 2 with respect to the
relationship between 3 and 35.

The class homogeneity and separation informa-
tion contained in Table 25.10 is not always, but
can be, depicted graphically in a series of bivariate
scatter plots, particularly when the total number of
latent class indicator variables is small, In this exam-
ple, with only two items, a single bivariate plot is all
that is needed. The estimated class-specific means
are plotted and specially identified with data point
markers different from the observed data points. All
the observed data pointsare included in the plot and
are marked according to their modal class assign-
ment. A tend line is drawn through each class
centroid derived from the model-estimated class-
specific correlations between the two items. Ellipses
are drawn, one centered around each class centroid,
with the axis lengths of the ellipse corresponding
to three standard deviations on the corresponding
indicaror variable. All of these plot features are dis-
played in Figure 25.8.c and help to provide a visual
impression of all the aspects of the class-specific dis-
tributions that distinguish the classes (along with
those aspects that don't) and the overall degree of
class separation.

You can see visually in Figure 25.8.c what I have
already remarked on using the information in Table
25.10: Class 1 (individual cases in the sample with
modal class assignment to Class 1 have data points
marked by circles) is more homogenous with respect
to both y; and y,—particularly y;—than Class 2
(individual cases with modal class assignment to
Class 2 have data points marked by x); there is a high
degree of separation between Classes 1 and 2 with
respect to values on y; and only moderate separation

with respect to values on yz; there is a strong pos-
itive association between y; and y, in Class 2 that
is not present in Class 1. You could interpret Class
1 as a homogenous group of individuals with a low
average level on y; (@17 = —2.93), relative to the
overall sample mean, and a high average level of y,
{&21 = 2.97). You could characterize Class 2 as a
less homogeneous (relative to Class 1) group of indi-
viduals with a high average level on y1 (@12 = 1.55),
low average level of y; (@32 = 0.73), and a strong
positive association between individual levels on y
and y3 (r2 = .68).

Based on the estimated class proportions, assum-
ing a random and representative sample from the
overall population, you might also apply a modifier
label of “normal” or “typical” to Class 2 because
its members make up an estimated 67% of the
population.

Model Estimation

As with LCA, the most common approach for
latent profile model estimation is FIML estimation
using the EM algorithm under the MAR assump-
tion. And, as with latent’ class models, the log
likelihood surfaces for finite mixrure models can
be challenging for the estimation algorithms to
navigate. Additionally, although the log likelihood
function of a identified latent profile model with
class-invariant X usually has a global maximum in
theinterior of the parameter space, the log likelihood
functions for LPA models with class-varying X jare
unbounded (like Fig. 25.4.¢), which means that the
maximum likelihood estimate (MLE) as a global
maximizer does not exist. But you may stll pro-
ceed as the MLE may still exist as a local maximizer
possessing the necessary properties of consistency,
efficiency, and asymptotic normality (McLachlan &
Peel, 2000). When estimating latent profile models,
I recommend following the same stracegy of using
multiple random sets of starting values and keeping
track of all the convergence, maximum likelihood
replication, condition number, and class size infor-
mation as with LCA model estimation, to single out
models that are not well identified.

Model Building

Principled model building for LPA proceeds in
the same manner described in the section on LCA,
beginning with the establishment of the (uncon-
ditional) measurement model for the latent class
variable, with the chief focus during that stage of
model building on latent class enumeration. The
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following subsections highlight any differences in
the evaluations of absolute fit, relarive fit, classifica-
tion accuracy, and the class enumeration process for
LPA compared to what has already been advanced
in this chapter for LCA.

Absolute Fir. Ar present, there are not widely
accepred or implemented measutres ofabsolute fit for
latent profile models. Although itwould be theoreti-
cally possible to modify exact tests of fit or closeness-
of-fit indices available for factor analysis, most of
these indices are limited to assessing the model-
dara consistency with respect to only the mean and
variance~covariance structure, which would not be
appropriate for evaluation of overall fit for finite mix-
ture models. With finite mixcure modeling, you are
using an approach that requires individual level data
because the formation of the latent class variable
depends on all the high-order moments in the data
(e.g., the skewness and kurtosis)—not just the frst-
and second-order moments. You would choose finite
mixeure modeling over a robust method for estimas-
ing just the mean and variance—covariance structure
(robust to non-normality in the overall population),
even for indirect applications, if you believed that
those higher order moments in the observed data
provide substantively important information about
the overall population heterogeneity with respect
to the item set. Because the separate individual
observations are necessary for the model estimation,
any overall goodness-of-fit index for LPA models
would need to compare each observed and model-
estimated individual value across all the indicator
variables, similarly to techniques used in linear
regression diagnostics.

Although you are without measures of absolute
model fi, you are not without some absolute fit
diagnostic tools. It is possible to compute the over-
all model-estimared means, variances, covariances,
univariate skewness, and univariate kurtosis of the
latent class indicaror variables and compare them to
the sample values, providing residuals for the first-
and second-order multivariate moments and the
univariate third- and fourth-order moments for the
observed items. These limited residuals allow at least
some determination to be made about how well the
model is fitting the observed darta beyond the first-
and second-order moments and also allow some
comparisons of relative overall fit across models.

In addition to these residuals, you can provide
yourself with an absolute fit benchmark by estimat-
ing a fully-saturated mean and variance—covariance
model that # an exact fit to the dara with respect
to the first- and second-order moments but assumes

all higher-order moments have values of zero. This
corresponds to fitting a one-class LPA with an
unresiricted X specification. In the model-building
process, you would want to arrive at a measurement
model thar fit the individual data berrer (as ascer-
ained by various relative fit indices) than a model
only informed by the sample means and covariances.

Relative Fit. All of the measures of relative fie
presented and demonstrared for latent class models
are calculated and applied in the same way for latent
profile models.

Classification Diagnostics. It is possible to obtain
estimated posterior class probabilities for all individ-
uals in the sample using the maximum likelihood
parameters estimates from the LPA and the individ-
uals’ observed values on the continuous indicator
variables. Thus, all of the classification diagnostics
previously described and illustrated for latent class
models are calculable and may be used in the same
manner for evaluating latent class separation and
latent class assignment accuracy for latent profile
models.

Class Enumeration. The class enumeration pro-
cess for LPA is similar to the one for LCA bur
with the added complication that because the spec-
ification of X} can influence the formation of the
latent classes, you should consider a full range of T,
specifications. I recornmend the following approach:

Stage I: Conducr a separate class enumeration sequence
following Steps 1through 7 as outlined in the LCA
section of this chapter for each type of £
specification: class-invariant, diagonal Zy;
class-varying, diagonal X; class-invariant,
unrestricted Xz; and class-varying, unrestricted .
Note that the one-class models for the class-invariant,
diagonal X, and class-varying, diagonal =,
specifications will be the same, as will the one-class
muodels for class-invariant, unresericted Ty and
class-varying, unrestricted X, specifications. The
“benchmark” model mentioned in the subsection on
absolute fit /s the initial one-class model for
class-invariant, unrestricted I, specificarion.

Stage I1: Take the four candidate models yielded by (1)
and recalculate the approximate correct model
probabilities using just those four models as the full
set under consideration. Repeat Steps 5 through 7
with the four candidate models to arrive at your final
model selecrion.

The only two modifications of class enumeration

Steps 5 through 7 necessary for applying Stages I and
IIin LPA are in Steps 5aand 6. In regards to Step 5a:
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Rather than relying on the exacr test of fit for abso-
lute fit, the “best” model should be the model with
the fewest number of classes that has a better rela-
tive fit (in terms of the log likelihood value) than the
“benchmark” model. Regarding Step 6: Rather than
examining the standardized residuals and the classifi-
cation diagnostics, you should examine the residuals
for the means, variances, covariances, univariate
skewness, and univariate kurtosis of the indicator
variables along with the classification diagnostics.
Cross-validation of the final measurement model
can be done in the same fashion as described for
latent class analysis.

I should note that in Step 7, for both Stages I
and II, there may be occasions in the LPA setting for
which the model favored by the parsimony principle
it not the same the model favored by the interests of
conceptual simplicity and clarity. Take the hypothet-
ical example in Figure 25.8. Let’s suppose that the
two models depicted in Figures 25.8.b and 25.8.c
are comparable on all relative fit measures as well as
residuals and classification diagnostics. One might
perceive the two-class model as more parsimonious
than the three-class model (although the two-class
model has one more freely estimared parameter than
the three-class model), but to interpret and assign
substantive labels to the latent classes, you have to
account for not only the different means (locations)
of the latent classes but also the differences between
the classes with respect to the within-class variabil-
ity and the within-class correlation, which could get
decidedly unsimple and unclear in its presentation.
However, for the three-class model, you only need
to consider the different class-specific means (and
the corresponding class separation) to interpret and
assign substantive labels to the latent classes because
the model imposes constraints such that the classes
are identical with respect to within-class variability,
and the class indicators are assumed to be unre-
lated within class for all the classes. There is not
an obvious model choice in this scenario. In such
a situation, and in cases where the models are ago-
nizingly similar with respect to their fit indices, it is
essential to apply substantive and theoretical reflec-
tions in the further scrutiny of the model usefulness,
especially keeping in mind the intended conditional
models to be specified once the measurement model
is established.

In the next subsection, I fully illustrate the
unconditional LPA modeling process with a real dara
example, with special attention to elements of the
process that are distinct for LPA in comparison to
whar was previously demonstrated for LCA.

Diabetes Example for Latent
Profile Analysis

The darta used for the LPA example come from
a study of the etiology of diabetes conducted by
Reaven and Miller (1979). The data were first
made publically available by Herzberg and Andrews
(1985) and have become a “classic” example for illus-
trating multivariate clustering-type techniques (ser,
for example, Fraley & Raftery, 1998, and Vermunt
8 Magidson, 2002). The original study of 145 non-
obese subjects measured participants’ ages, relative
weights, and collected experimental data on a set
of four merabolic variables commonly used for dia-
betes diagnosis: fasting plasma glucose, area under
the plasma glucose curve for the 3-hour oral glucose
tolerance test (a measure of glucose intolerance),
area under the plasma insulin curve for the oral glu-
cose tolerance test (a measure of insulin response
to oral glucose), and the steady state plasma glucose
response (a measure of insulin resistance) (Reaven &
Miller, 1979). The corselation between the fasting
plasma glucose and area under the plasma glucose
curve was 0.97 and so the original authors excluded
the fasting plasma glucose measure in their analy-
ses of the data. For this illustration, Table 25,11
lists the same three remaining metabolic measures
utilized, by name and label, along with descriptive
statistics for the study sample. Also included in the
example data are the conventional clinical classifica-
tions of the subjects into one of the three diagnostic
groups (non-diabetics, chemical diabetics, and overt
diabetics) made by Reaven and Miller (1979) apply-
ing standard clinical criteria that each take into
account only one aspect of a participant’s carbohy-
drate metabolism. In their 1979 paper, Reaven and
Miller were interested using their data to explor-
ing the viability of a multivariare analyric technique
that could classify subjects on the basis of mulsi-
ple metabolic characteristics, independent of prior
clinical assessments, as an alternative to the rigid
clinical classificarion with arbitrary cut-off value cri-
teria (e.g., individuals with fating plasma glucose
levels in excess of 110 mg/mL are classified as overs
diabetics). In this example, the original research aim
is furthered by investigating the classification of sub-
jects using LPA and comparing the results to the
conventional clinical classifications.

In conducring the class enumeration process,
knowledge of the existing clinical classification
scheme is ignored so that is does not influence deci-
sions with respect to either the number of classes
or their interpretation. I begin Stage I of the class
enumeration by fitting six models with £ = 1
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Table 25.11. Diabetes Example: Descriptive Statistics for Indicator Measuses (n = 145)

Correlations

Measure Variable name Mean SD  Skewness Kurtosis [Min, Max] (1) )
(1) Glucose area  Glucose 54.36  31.70 1.78 2,16 [26.90, 156.80] 1.00
(mg/10mL/hr)
(2) Insulin area  Insulin 18.61  12.09 1.80 4.45 [1.00,74.80] —0.34"* 1.00
(;4U/0.10mL/hr)
(3) Stcady state  SSPG 18.42 10.60 0.69 -0.23 [2.90, 48.00] 0.77**  0.01
plasma glucose
(mg/10mL)
5 < 0.01

w K = 6 classes for each of four within-class  one-class, unrestricted X, specification. These plots

variance—covariance specifications: class-invariant,
diagonal Xj; class-varying, diagonal I class-
invariant, unrestricted X; and class-varying, unre-
stricted X, After K = 5, the models for the
diagonal unrestricted X, specifications ceased to be
well identified, as was the case after K = 4 for
the class-invariant, unrestricted X4 specification and
after K = 3 for the class-varying, unrestricted 2j.

Table 25.12 summarizes the results from the set of
class enumerations for each of the , specifications.
Ouly the results from the well-identified models are
presented. Recall that the one-class models for the
class-invariant, diagonal Xy and class-varying, diag-
onal X specifications are the same, asarethe K = 1
models for the class-invariant, unrestricted X4 and
class-varying, unrestricted £ specifications. Recall
also that the one-class model for the unrestricted
X, specification is the minimum-goodness-of-fit
benchmark model, and results from this model are
enclosed by a bold dashed box for visual recognition.
Bolded values in Columns 5 through 10 indicate the
value corresponding to the “best” model within each
set of enumerations according to each fit index. As
was the case for the LCA example, all X'-class model
were rejected in favor of a (K4 1)-class model by the
BLRT for all values of X considered so there was no
“best” or even candidare models to be selected based
on the BLRT and those results are not presented in
the summary table.

Figure 25.10 displays four panels with plots of
the: (a) LL; (b) BIC; (c¢) CAIC and (d) AWE
model values, all plotred on the y-axis versus the
number of classes. Each panel has four plot lines,
one for each of the £, specifications. The dou-
ble horizontal line corresponds to the index value
of the minimum-goodness-of-fit benchmark of the

clearly show thar all of the models with K > 2 are
improvements over the benchmark model. These
plots also illustrate the concept of the “elbow” crite-
ria mentioned in the inidal description of the class
enumeration process in the LCA section. Observe
the BIC plot for the class-varying, diagonal T, spec-
ification. Although the smallest BIC value ourt of the
K =110 K=5 class models corresponds to the four-
class model, the BIC values for the three-, four-, and
five-class models are nearly the same compared o the
values for the one- and two-class models. There is
evidence of an “elbow” in the BIC plotat K= 3. The
bolded values in Column 2 of Table 25.12 indicate
the pair of candidate models selected within each of
the class enumeration for further scrutiny (follow-
ing class enumeration Steps 5 and 6 in Stage I) and
the boxed values indicates the “best” model selected
within each of the class enumeration sets (Step 7
of Stage I). The selection of the four “best” mod-
els concluded Step I of the LPA class enumeration
process.

For Stage I1, I compared the four candidate mod-
els, one from each of the X, specifications. Column
11 in Table 25.12 displays the results of recalculating
the correct model probabilities using only those four
models. This index strongly favors the three-class
model with class-varying, unrestricted ¥, enclosed
by a solid box in Table 25.12, The single horizontal
line in all the panel plots of Figure 25.10 corresponds
to the best indice values across all the models con-
sidered. It is clear from Figure 25.10 that the models
with class-varying Z, specifications (either diagonal
or unrestricted) offer consistently beter fit over the
models with class-invariant specifications, although
the five-class models with class-invariant, diagonal
% approaches the fit of the three- and four-class
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Table 25.12. Diabetes Example: Model Fit Indices for Exploratory Latent Profile Analysis Using Four Different Within-Class
Variance-Covariance Structure Specifications (1 = 145)

. 2 3 4 5 6 7 8 9 10 1
Adj. LMR-
LRT p-value
# of classes {Hp:K dlasses;
73 (K~ LL npar* BIC CAIC AWE H;:K{ 1 classes) 1§FX, Kyt ombPy emP.
Class-invariant, 1 ~1820.68 6 367122 367722 3719.08 <0.01 <010 <0.01 -
diagonal
53X 2 —~1702.55 10 3454.88  3464.88  3534.64 <0.01 <010 <001 -
3 —1653.24 14 337615 339015  3487.82 <0.01 <010 <0.01 -
4 160630 18  3302.18  3320.18  3445.76 0.29 <010 <0.01 -
| s | -1s7821 22 326590 328790 344139 - - 099 <001
Class-varying, 1 ~1820.68 6 367122 367722 3719.08 <0.01 <010 <001 -
diagonal £, .
2 —~164195 13 334860  3361.60  3452.30 <0.01 <010  <0.01 -
3 -1562.48 20 322649 324449  3384.03 <0.01 0.38 0.25 -
l 4 l 154410 27 322257 324957  3437.95 0.15 7.76 0.66  0.08
5 ~152873 34 322667 326067  3497.88 - - 0.09 -
r -
Class-invaiant, | 1 ~1730.40 9 350560 351460  3577.39 <0.01 <010 <001 1
unrestricied L e e . - — e e e - e e e o e e o
;3%
2 166665 13 339795 341095  3501.65 <0.01 <010 <001 -
3 ~1628.86 17 334233 335933  3477.93 0.19 <010 <001 -
[ 4 l —-1591.84 21 328819  3309.19  3455.70 - -~ 099  <0.01
Class-varying, 1 ~1730.40 9 350560 351460  3577.39 <0.01 <010 <0.01 -
unrestricted g
2 —1590.57 19 327569 329469  3427.25 <0.01 <010  <0.01 -
I 3 I ~1536.64 29 321761 3246.61  3448.93 - - >099 092

*number of parameters estimated
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Figure 25.10 Diabetes example: Plots of model (a) LL, (b) BIC, () CAIC, and (d) AWE values versus the latent class enumeration
(K = 1,2, 3, 4, 5) across four different within-class variance-covariance structure specifications.

models with class-varying Zy. The three-class model
with class-varying, unrestricted X and the four-
class model with class-varying, diagonal X, were
the two candidate models selected for further inspec-
tion. Following Step 6 in Stage I1, 1 closely examined
the residuals and classification diagnostics of the
final two candidate models. Table 25.13 displays
the observed, model-estimated, and residuals for the
means, variance, covariances, and univariate skew-
ness and kurtosis values of the darta for the three-class
model with class-varying, unrestricted X showing
a satisfactory fit across all these moments. The four-
class model with class-varying, diagonal ¥, had
satisfactory fic in this regard as well, although the
fit to the variance—covariance structure of the dara
was not quite as close. Table 25.14 summarizes the
classification diagnostic measures for the three-class
model with class-varying, unrestricted p. All the
measures indicate that the three classes are very well
separated and there is high accuracy in the latent
class assignment. The four-class model with class-
varying, diagonal X; had comparably good values
on the classification diagnostics. Considering all the
information from Stage 11, Steps 5 and 6, the three-
class model with class-varying, unrestricted iy was

selecred as the “final” unconditional latent profile
model. T should remark here that this model was
not in any way conspicuously better fitting than
the other candidate model and another researcher
examining the same resules could ultimartely select
the other model by giving slightly less weight to
model parsimony and giving less consideration that
a match between the final class enumeration and
the number of diagnostic groups greatly simplifies
the planned comparison between subjects’ latent
class assignments and their convenrional clinical
classifications.

For the interpretation of the resultant three
classes from the final model, it is necessary to
examine the model-estimared, class-specific item
means, standard deviations, and correlations, pro-
vided in Table 25.15 and depicted graphically by
the three scatter plots in Figure 25.11. Inspecting
the class-specific standard deviation estimares, Class
1 has a high level of homogeneity with respect to all
three indicaror variables, with notably less variability
than in the overall sample and less than either of the
other two classes. Class 3 is the least homogeneous
with respect to glucose and SSPG, with variability in
both acrually greater than the overall sample. Class
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Table 25.13. Diabetes Example: Observed, Mixed Model-Estimated,
and Residual Values for Means, Variances, Covariances and
Correlations, Univariate Skewness, and Univariate Kurtosis Based on
the Three-Class Latent Profile Analysis with Class-Varying,

Unrestricted T, (n = 145)

Model-estimated Residual

Variable Observed

Mean(Glucose) 54.36 54.36 0.00
Mean(Insulin) 18.61 18.61 0.00
Mean(SSPG) 18.42 18.42 0.00
Var(Glucose) 1004.58 997.65 6.93
Var(Insulin) 146.25 145.24 1.01
Var(SSPG) 112.42 111.65 0.78
Cov(Glucose,Insulin) -129.18 -128.29 -0.89
(Correlation) {(-0.34) (-0.34) (0.00)
Cov{(Glucose,SSPG) 259.09 257.30 1.79
{Correlation) 0.77) (0.77) (0.00)
Cov(Insulin,SSPG) 1.02 1.01 0.01
(Correlation) {0.01) (0.01) (0.00)
Skewness(Glucose) 1.78 1.75 0.03
Skewness(Insulin) 1.80 1.49 0.31
Skewness(SSPG) 0.69 0.72 —0.03
Kurtosis(Glucose) 2.16 2.49 -0.32
Kurtosis(Insulin) 4.45 2.96 1.49
Kurtosis(SSPG) —0.23 0.19 —0.42

Table 25.14. Diabetes Example: Model Classification Diagnostics
for the Three-Class Latent Profile Analysis With Class-Varying,

Unrestricted £, (E3 = .88; » = 145)

Class /2 iy 95% C.L*

meaP),  AvePP,  OCCy

Class 1 0.512  (0.400, 0.620)

0.524 0.958 21.74

Class2 0211 (0.119,0.307)

0.221 0.918 41.86

Class 3 0.277  (0.191, 0.386)

0.255 0.973 94.06

*Bias-corrected bootstrap 95% confidence intervals

2 is the least homogenous with respect to insulin,
also having greater variability than the overall sam-
ple. The similarities and differences in the level of
class homogeneity with respect to each of the three
ftems can be judged visually in Figure 25.11 by

length and width of the overlaid ellipses in the three
plots.

In judging class separation for the two classes that
do not have a high degree of homogeneity for at
least one of the indicator variables, the distances
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Table 25.15. Diabetes Example: Model-Estimated, Class-Specific Means, Standard Deviations
{SDs), and Correlations with Corresponding Bias-Corrected Bootstrap 95% Confidence Intervals
Based on the Three-Class Latent Profile Analysis With Class-Varying, Unrestricted T (n = 145)

Correlations
Class  Variable  Mean (&) SD (/ f i) (1) @
Class 1 (1) Glucose  35.69 4.39 1.00
(52%) (34.09, 37.18) (3.11, 5.50)
(2) Insulin - 16.58 5.17 0.15 1.00
(15.31, 17.96) (4.24, 6.11) (-0.14, 0.42)
(3) SsPG 1050 4.33 0.29 0.36**
{(8.90, 12.43) (3.48, 5.97) (~0.05, 0.57) {0.08, 0.57)
Class2 (1) Glucose 47.66 7.29 1.00
(22%) (43.93, 52.72) (4.95, 10.73)
(2) Insulin ~ 34.35 15.12 0.36 1.00
(27.38, 44.06) (11.43, 19.40) (-0.33,0.77)
(3) SSPG 2441 3.71 0.03 -0.10
(22.52, 25.99) (2.15,5.49) (-0.40, 0.50) (-0.73, 0.54)
Class 3 (1) Glucose 93.92 35.76 1.00
(26%) (78.13, 112.48) (30.30, 41.51)
(2) Insulin  10.38 6.03 ~0.76** 1.00
(7.97,13.31) (4.74, 8.34) (-0.87, ~0.58)
(3) SSPG 28.48 10.65 0.73%* —-0.40**
(24.42, 33.93) (8.22, 12.80) (0.41, 0.85) (--0.61, -0.08)
5 < 0.01

berween the class means for those variables must be
large for the overlap between the classes to still be
small. Table 25.16 presents the distance estimates
(i.e., standardized differences in means) for each
pairwise class comparison on each of the three indi-
cators variables. Large estimated absolute distance
values greater than 2.0, corresponding to less than
20% overlap, are bolded for visual clarity. All classes
are well separated with moderate to large estimated
distances on at least two of the three items, and
every item distinguishes between at least two of the
three classes. The classes are all well separated with
respect to their means on glucose, with the greatest
distances between Class 1 and the other two classes.
There is a similar partern for the separation on S5PG
with large distances between Class 1 and Classes 2
and 3. However, in the case of SSPG, there is a very
small separation berween Classes 2 and 3—meaning
that there is a high degree of overlap in the distribu-
tion of individual values on SSPG across those two

classes, rendering those two classes difficult to dis-
tinguish with respect to SSPG. In contrast, Classes 2
and 3 have a large distance between their means for
insulin, whereas there is only a modest separacion
berween Classes 1 and 3. Figure 25.11 provides a
visual impression of these varying degrees of sepa-
ration across the classes with respect to each of the
three measures.

Because the final model selected had a class-
varying, untestricted %y, the distinctness of the
classes must also be evaluated with regards to the
class-specific variance~covariance structure before
a full substantive interpretation of the classes is
rendered. I have already remarked, when assessing
class homogeneity, that Class 3 was much more vari-
able than the other two classes with respect to glucose
and SSPG and that Class 2 was much more variable
with respect to imsulin. In terms of the covari-
ance structure, presented as correlations in Table
25.15, Class 3 has a large and significant negative
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Figure 25.11 Diabetes example: Scatter plots of observed sam-
ple values marked by modal latent class assignment based on the
unconditional three-class LPA for (a) insulin versus glucose, (b)
SSPG versus insulin, and (c) SSPG versus glucose. For (a)-(c),
diamonds represent the model-estimated class-specific bivariate
mean values, trend lines depict the model-estimated within-class
bivariate associations, and the ellipse heights and widths corre-
spond to 3.0 model-estimated within-class standard deviations
for the indicrors on the y- and x-axis, respectively.

correlation between glucose and insulin, whereas
that correlation is positive and non-significant for
both Classes 1 and 2. Class 3 has a large and
significant positive correlation between glucose and

Table 25.16. Diabetes Example: Estimated
Standardized Differences in Class-Specific
Indicator Means, 4,y.., Based on
Model-Estimated, Class-Specific Indicator
Meaans and Variances from the Three-Class
Latent Profile Analysis With Class-Varying,
Unrestricted X (n = 145)

Class1  Class 1 Class 2

vs. vs. vs.
Variable Class2 Class3  Class 3
(1) Glucose -2.21 -2.78 -1.73
(2) Insulin -1.91 1.13 -2.15
(3) SSPG -3.34 ~2.53 -0.49

SSPG, whereas that correlation, although positive,
is non-significant for both Classes 1 and 2. Class
3 has a moderate and significant negative correla-
tion berween insulin and SSPG, whereas Class 1 has
a moderate and significant negative correlation and
Class 2’s correlation is negative and non-significant.
Because the correlation between insulin and SSPG
is the only significant correlation for Class 1 and
none of the correlations were significant for Class
2, Classes 1 and 2 are not well separated by their
covariance structure. Class 3 is the class with two
quite large and all significant correlations, and these
features are an important part of whar distinguishes
Class 3, and Class 3 is well separated from both Class
1 and Class 2 with respect to all covariance elements.
However, because Class 3 only represents 26% of the
population, it is not surprising that the results of the
three-class model with a class-varying, diagonal X
were so close to the results of this model, allowing
the within-class correlations.

For the substantive class interpretacion, I begin
with the class most distinct in means and variance—
covariance structure from the other classes, Class
3, with an estimated proportion of 26%. Class 3
consists of individuals with high values on glucose, on
average, compared to the overall sample and Classes
1 and 2. Within this class, there is a strong negative
association berween glucose and insulin and strong
positive association between ghucose and SSPG such
that the individuals in Class 3 with higher values
on glucose have lower values on insulin and higher
values on SSPG, on average. The high average value
on glucose and SSPG with the lower average value on
insulin along with the very strong associations across
the three indicators, leads this class to be labeled the

“overt” diabetic class.
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Class 2, with an estimated proportion of 22%,
consists of individuals with Znsulin and SSPG val-
ues, higher, on average, than the overall population
meansand notably higher than Class 1. Class 2is not
much different than Class 3 with respect w0 SSPG
but has a much higher mean on nsulin. Individuals
in Class 2 have higher-than-average values for glu-
cose, and Class 2 is nearly as different from Class
1 as Class 3 Is in terms of average glucose values
even though the mean in Class 2 is lower than Class
3. There are no significant associations berween the
three indicators in Class 2. The higher-than-average
values on glucose, insulin, and SSPG, with a notably
higher /nsulin mean but lower glucose mean than
the “overt” diabetic class, suggests the label of the
“chemical” diabetic for this class.

Class 1, with an estimared proportion of 52%,
consists of individuals with glucose and SSPG values
lower, on average, than the overall population mean
and notably lower than either Class 2 or Class 3. The
individualsin Class 1 have insulin values, on average,
near the overall population mean, higher than the
“chemical” diabetic class and lower than the “overt”
diabetic class. For the Class 1 subpopulation, there
is a moderate positive association between glucose
and SSPG such that individuals with higher values
on glucose in Class 1 have higher value, on average,
for SSPG. This association is quite different from the
moderate negative association in the “overt” diabetic
group such thar among those in Class 3, individu-
als with higher values on glucose have lower values
on S5PG, on average. The lower glucose and SSPG
average levels, the average insulin levels, the posi-
tive association between glucose and SSPG, and the
estimated class proportion greater than 50% sug-
gest the label of the “normal” (non-diabetic) for chis
class.

With the results from the unconditional LPA in-
hand, 1 can compare individual model-estimated
class membership for individuals in the sample to
their clinical classifications. As it happens, a three-
class model for the LPA was selected and the latent
classes were interpreted in a way that matched, at
the conceprual level, the three clinical classifica-
tion categories. To make the descriptive, post hoc
comparisons, I use the modal class assignment for
each participant to compare to the clinical clas-
sification. Because the comparison is descriptive
(rather than inferential) and there is a very high
level of classification accuracy for all three classes
(see Table 25.14), it is reasonable to use the modal
class assignment to get a sense of the correspon-
dence between “rrue” class membership and the

clinical classifications. Table 25.17 displays a cross-
tabulation comparison between latent class {modal)
membership and the clinical classifications. Cells
corresponding to “matches” between the modal class
assignments and the clinical classifications are boxed
in bold. In general, there is a strong concordance
across all three latent classes, with only 22 (15%) of
the participants having a mismarch between modal
latent dlassification and clinical status. The high-
est correspondence is between the “normal” latent
class and the non-diabetic clinical classification, with
91% of those modally assigned to the “normal” class
also having a non-diabetic clinical status. The low-
est correspondence is berween the “chemical” latent
class and the chemical clinical classification but was
still reasonably high, with 72% of these modally
assigned to the “chemical” diabetes class also hav-
ing a chemical diabetic clinical starus. It is also
informative to examine the nature of the noncorre-
spondence. Of those individuals modally assigned to
the “normal” class, none had an overt diabetic clin-
ical status. Similarly, of those individuals modally
assigned to the “overt” class, none had a non-diabetic
clinical status. In both cases, the mismatch involved
individuals with a chemical diabetic clinical status.
Of the individuals modally assigned to the “chem-
ical” diabetes class that did not have a chemical
diabetic clinical status, most had a non-diabetic clin-
ical status, but two did have an overt diabetic clinical
status.

Because it was originally of interest whether a
multivariate model-based classification could offer
improvements over the univariate cut-off criteria
used in the clinical classifications, I closely exam-
ined the 22 cases for which there is a mismatch.
Table 25.18 summarizes the average posterior class
probabilities stratified by both modal class assign-
ments and clinical classifications. What can be seen
in this rable is thar the average posterior class proba-
bilities for the modally assigned classes, bolded and
boxed in Table 25.18, are all reasonably high. In
other words, even those groups of individuals with a
mismatch between the modal latent class member-
ship and clinical status are relatively well classified,
on average, by the model. If one examines the raw
data for these individuals, it can be seen that these
individuals were noz well classified by the clinical
criteria. For example, most of the patients with
a chemical diaberic clinical status and a “normal”
modal class assignment were all borderline on din-
ical diagnosis criteria. Some of the patients with a
non-diabetic clinical status that were hyperinsuline-
mic and insulin-resistant, but managed to mainrain
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Table 25.17. Diabetes Example: Modal Latent Class Assignment vs. Clinical
Classification Frequencies and Row Percentages

Clinical classification
Modal class assignment Non-diabetic Chemical diabetic  Overt diabetic  Toral
“Normal” 69 7 0 76
(919%) (9%) (0%) (100%)
“Chemical” 7 23 2 32
(22%) (72%) (6%) (100%)
“Overt” 0 6 31 37
(0%) (16%) (84%) (100%)
Toral 76 36 33 145

Table 25.18. Diabetes Example: Average Posterior Class Probabilities by Modal Latent Class

Assignment and Clinical Classification

Modal class assignment  Clinical classification

f Mem@uormal ) Mm@cl/mximl ) Mean@owrt)

“Normal” Non-diabetic 69 0.97 <0.01 0.02
Chemical diabetic 7 0.79 0.05 0.15
Overt diabetic - — -

“Chemical” Non-diabetic 0.06 0.85 0.09
Chemical diaberic 23 0.02 0.93 0.04
Overt diabetic 2 <0.01 >0.99 <0.01

“Overt” Non-diabetic 0 - - -
Chemical diabetic 6 0.07 0.08 0.85
Overt diabetic 31 <0.01 <0.01 >0.99

normal glucose tolerance, were modally assigned by
the model to the “chemical” diabetes class. These
differences suggest that using a model that takes
into account multiple merabolic characteristics may
offer improved and more medically comprehensive
classification over the rigid and arbitrary univariate
clinical cut-off criteria.

Latent Class Regression

The primary focus, thus far, has been on the
process for establishing the measurement model
for latent class variables with either categorical
indicators (LCA) or continuous indicators (LPA).
However, that process is usually just the first step in
a structural equation mixture analysis in which the
latent class variable (with its measurement model)
is placed in a larger system of variables that may
include hypothesized predictors and outcomes of
latent class membership. To provide readers with
a sense of how these structural relationships can
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be specified, I present in this section a latent
class regression (LCR) model for incorporating
predictors of latent class membership. This pre-
sentation is applicable for both LCA and LPA
models.

Covariates of latent class membership may serve
different purposes depending on the particular aims
of the study analysis. If attention is on develop-
ing and validating the measurement model for a
given construct using a latent class variable, covari-
ates can be used to assess criterion-related validicy of
the latent class measurement model. It may be pos-
sible, based on the conceptual framework for the
latent class variable, to generate hypotheses about
how the latent classes should relate 1o a select set of
covariates, These hypotheses can then be evaluated
using a LCR model (Dayton & Macready, 2002);
support for the hypotheses equates to increased val-
idation of the latent class variable. You may also
gain a richer characterization and interpretation of
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the latent classes through their relationships with
covariates.

Beyond construct validation, covariates can be
used to test hypotheses related to a theoretical vari-
able system in which the latent class variable opet-
ates. In such a variable system, you may have one
or more theory-driven covariates that are hypothe-
sized to explain individual variability in an outcome
whete the individual variability is captured by the
latent class variable.

In the remainder of this section I describe the
formulation of the LCR model and illustrate its use
in the LSAY example.

Model Formulation

For a LCR model, the measurement model
parameterization, describing the reladonships
between the latent class variable and its indicators,
remains the same as for the unconditional models
but the structural model changes in that the larent
class proportions are now conditional on one or
more covariates. For example, in the LCA speci-
fication, the conditional version of Equation 4 is
given by

Pe(uris uaj, - . > ipgy, xi)

K
= Z[Pl‘(cl' = klx;)-Pr(uyjs uzis . . ., upgile; = £)).

k=1
(40)

A multinomial regression is used to parameterize
the relationship between the probability of latent
class membership and a single covariare, x, such

that

exp(Vot + Yiexi)
K 3

> exp(yoj + vijxi)
j=1

Pr{c; = klx;) = (41)

where Class Kis the reference class and ppg =
yix = 0 and for identification. ¥y, is the log odds
of membesship in Class £ versus the reference class,
Class K, when x = 0 and yy;, is the log odds ratio
for membership in Class £(versus Class K) corre-
sponding to a one unit difference on x. Equations
40 and 41 are represented in path diagram for-
mat as shown in Figure 25.12. Equartion 41 can
easily be expanded to include multiple covariates.
(For more general information about multinomial
regression, see, for example, Agresti, 2002.) Ir is
also possible to examine latent class difference with
respect to a grouping or concomitant variable using a
multiple-group approach similar to multiple-group

Figuse 25.12 Generic pach diagram for a latenc class regression
model.

factor analysis (Collins 8 Lanza, 2010; Dayton &
Macready, 2002), but such models are beyond the
scope of this chapter.

Model Building

As previously explained in the earlier model-
building subsections, the first step in the model-
building process—even if the ultimate aims of
the analysis include testing hypotheses regarding
the relationships between predicting covariates and
latent class membership—is to establish the mea-
surement model for the larent class variable. Based
on simulation work (Nylund & Masyn, 2008),
showing misspecification of covariate effects in a
LCA can lead to bias in the class enumeration,
it is strongly recommended that the building of
the measurement model—particularly the class enu-
meration stage—is conducted with unconditional
models, only adding covariates once the final mea-
surement model has been selected. The selection and
order of covariate inclusion should be theory-driven
and follow the same process as with any regular
regression model with respect to risk factors or pre-
dicrors of interest, control of potential confounders,
and so forth.

The specification provided in Equations 40 and
41 assumes thart there is no direct effect of x on the
latent class indicator variables (which would be rep-
resented in Figure 25.12 by a path from x to one or
more the us). However, omission of direct covari-
ate effects (if actually present) can lead to biased
results {similarly to the omission of direct effects in
alatent factor model). If direct effects are incorrectly
omitted, then the measurement parameters for the
latent class variable can be distorted, shifting from
their unconditional model estimates and potentially
misrepresenting the nature of the latent classes; in
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addirion, the estimated latent class proportions and
the effects of the covariate on latent class member-
ship can be biased. In fact, if no direct effects are
included and the latent classes in the LCR model
change substantively in size or meaning relative to
the final unconditional latent class model, then this
can signal a misspecification of the covariare associa-
tions with the latent class indicators, recommending
a more explicit test of direct effects. The presence
of direct effects is analogous to the presence of
measurement non-invariance in a factor model or
differential item funcrioning in an item response
theory model—a direct effect on an indicator vari-
able means that individuals belonging to the same
latent class but with différent values of x have differ-
ent expected outcomes for that observed indicator.
Although elaborating on the process of testing for
direct effects and measurement non-invariance with
respect to covarjates being incorporared into a LCR
model is beyond the scope of this chapter, I do rec-
ommend that, in the absence of prior knowledge or
strong theoretical justification, direct effect should
be tested as part of the conditional model-building
process and the addition of latent class covariates.
(For more on covariate direct effects, measurement
non-invariance, and violatons of the conditional
independence assumption resulting from direct
covariate effects in LCRes, see, for example, Bandeen-
Roche, Migliorerti, Zeger, Rathouz, & Paul, 1997;
Hagenaars, 1988; and Reboussin, Ip, & Wolfson,
2008.)

I should remark here that a LCR analysis fol-
lowing the building of a latent class measurement
model using a full latent class enumeration process
without any 4 priori restrictions on the number and
nature of the latent classes is a blend of confirmatory
(LCR) and exploratory (fatent class enumeration)
elements. Although the establishment of the mea-
surement model proceeds in a more explorarory way,
the model that you carry forward to inferential struc-
tural models is not constrained in the same way it
would be when conducting an EFA and then sub-
sequent CFA in the same sample, and thus you
do not face the same dangers of inflating Type I
error rates and capitalizing on chance. However, it
is preferable, if possible, to validate the measure-
ment model with new data so that you can feel
more confident that the measurement model might
generalize to other samples and that your larent
classes are not being driven by sampling variabil-
ity and are not overfit to the particular sample data
at hand. Otherwise, it is important to acknowledge
in the interpretation of the results the exploratory
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and confirmatory character of the analysis (Lubke,
2010).

Longitudinal Study of American Youth
Example for Latent Class Regression

To illustrate LCR, I return to the LSAY exam-
ple used in the Latent Class Analysis section. In
addition to the nine math disposition items, the
example data ser also included che variable of student
sex (coded here as female = 1 for females students
and female = 0 for male students). Beginning with
the five-class unconditional model, I fit two mod-
els: Model 0, a five-class model with the latent class
variable regressed on female butwithall multinomial
regression coefficients for female fixed at zero; Model
1, a five-class model with the latent class variable
regressed on female with all multinomial regression
coefficients for female freely estimated. I conducted
parallel analyses for both Subsamples A and B and
found similar results; only the results for Subsample
A are presented here.

There is a significant overall association between
student sex and math disposition class membership
(Model 0 vs. Model 1: X3 = 27.76, df = 4,
p < .001). There was no significant shiftin the mea-
surement parameters between Model 0 and Model
1 that would have suggested the presence of one
or more direct effects of female on the irems them-
selves. This descriptive comparison of parameter
estimates is not a concrete test of direct effects (that
should normally be done), but because explicit test-
ing for differential item funcrioning in latent class
models is beyond the scope of this chapter, T will
cautiously treat this model comparison as a satisfac-
tory heuristic evaluation of measurement invariance
that allows me to proceed with an interpreta-
tion of the LCR results without including direct
effects.

Examining the results of the LCR presented in
Table 25.19, the multinomial regression parame-
ters represent the effects of student sex on class
membership in each class relative to the reference
class (selected here as Class 1: “Pro-math with-
out anxiety”). Given membership in either Class
1 (“Pro-math without anxiety”) or Class 2 (“Pro-
math with anxiety”), females are significantly less
likely to be in Class 2 than Class 1 (OR = 0.52),
whereas females are significantly more likely to be
in Class 4 (“I don't like math but I know it’s good
for me”) than Class 1 (Of? = 1.72). There is no sig-
nificant difference in the likelihood of membership
in Class 5 (“Anti-match with anxiety”) among males
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Table 25.19. LSAY Example: Five-Class Latent Class Regression Results
for the Effects of Student Sex (female = 1 for female; female = 0 for
male) on Lateat Class Membership for Subsample A (uy = 1338)

C regressed on

~

Vik se.  p-value OR

Jemale

Class 1 (ref) “Pro-math without 0.00 - - 1.00
anxiety”

Class 2 “Pro-math -0.66 0.21 <0.01  0.52
with anxiety”

Class 3 “Math lover” 0.17 0.21 0.43 1.18

Class 4 “I don’t like math 055 019 <001 1.72
but I know it’s good
for me”

Class 5 “Anti-math ~0.32  0.22 0.14 0.73

with anxiery

and females in either Class 1 or 5. Rather than mak-
ing all pairwise class comparisons for student sex by
changing the reference class, a better impression of
the sex differences in class membership can be given
through a graphical presentation such as the one
depicted in Figure 25.13, which shows the model-
estimated class proportions for the rotal population
and for the two values of the covariate—that is, for
males and females. You can see in this igure thar the
sex. differences are primarily in the distribution of
individuals across Classes 2 (“Pro-Math With Anx-
iety”) and 4 (“I Don't Like Math but I Know It’s
Good for Me”) with females more likely than males,
overall, to be in Class 4 and less likely to be in Class 2.

Post Hoc Class Comparisons

This section has presented a LCR model that
simultaneously estimates the latent class measure-
ment model and the structural relationships berween
the latent class variable and one or more covariates.
The simultaneous estimation of the measurement
and structural models is recommended whenever
possible. However, there is a not-so-unusual prac-
tice in the applied literature of doing post hoc class
comparisons, taking the modal class assignments
based on the unconditional latent class measurement
model and treating those values as observed values
on a manifest multinomial variable in subsequent
analyses. This is what I did for the diabetes exam-
ple, comparing the modal class assignments to the
clinical classifications, and such a posr hoc compar-
ison can be a very useful descriptive technique for
[further understanding and validation of the latent

classes. The problem of this post hoe classification
approach comes when modal class assignments are
used in formal hypothesis testing, moving beyond
the descriptive to inferential analyses.

Such a “classify-analyze” approach is problem-
atic because it ignores the error rates in assigning
subjects to classes. Because the error rates can vary
from class to class, with smaller classes having higher
prior probabilities of incorrect assignment, even
with well-separated classes, there can be bias in the
point estimates as well as the standard errors for
parameters related to latent class membership. In
addition, thereis error introduced from the posterior
class probabilities thar are used for the modal class
assignment because they are computed using param-
erer estimates and contain the uncertainty from
those estimates. Studies have shown thar assignment
error rates can be considerable (Tueller, Drotar, &
Lubke, 2011), posing serious threats to the validity
of post hoc testing,

Advanced Mixture Modeling

Although a substantial amount of information
has been covered in this chapter, 1 have only
scratched the surface in terms of the many types
of population heterogeneity that can be modeled
using finite mixtures. However, what is provided
here is the foundational understanding that will
enable you to explore these more advanced models.
Just as with factor analysis and craditional struc-
tural equation modeling, the basic principles of
model specification, estimation, evaluation, and
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Figure 25.13 LSAY example: Model-estimated overall and sex-specific latent class proportions for the five-class LCR.

interpretation extend quite naturally into more
complicated modeling scenarios.

This section provides a very brief overview of
some of modeling extensions currently possible in
a mixture modeling framework. The first exten-
sion relates to the latent class indicators and their
within-class distributions. I presented two models—
LCA and LPA~that had exclusively categorical or
exclusively continuous indicator variables. However,
recent advances in maximum likelihood estima-
tion using complex algorithms in a general latent
variable modeling framework (see, for example,
Asparouhov & Muthén, 2004, and Skrondal &
Rabe-Hesketh, 2004) have rendered the necessity
of uniformity of measurement scales among the
indicators obsolete, allowing indicators for a single
latent class variable to be of mixed measurement
modalities, while also expanding the permissible
scales of measures and error distributions for the
manifest variables. It is now possible to specify a
latent class variable with indicators of mixed modal-
ities or measurement scales including interval and
ratio scales of measures, censored inrerval scales,
count scales, ordinal or Likert scales, binary or
multinomial respenses, and so forth. It is also pos-
sible to specify a range of within-class distributions
for those indicators—for example, Poisson, zero-
inflated Poisson, or negative binomial for count
scales; normal, censored normal, censored-inflated
normal for interval scales, and so forth. Addition-
ally, the dass-specific distribution functions can
be from different parametric families across the
classes.
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Another extension involves the scale of the latent
class variable. In this presentation, 1 used the tra-
ditional formulation of the latent class variable as
a latent multinomial variable. However, there are
latent class models that bridge the gap between
the latent multinomial variable models and the
latent factor models, such as discretized latent trait
models, located latent class models, and latent
class scaling models (Croon, 1990, 2002; Dayton,
1998; Heinen, 1996)—all forms of ordered latent
class models. In addition, recent advances have
further blurred the lines of conventional classifica-
tion schemes for latent variable models (Heinen,
1996) by allowing both latent factors and latent
class variables to be included in the same ana-
lytic model. These so-called hybrid models, also
termed factor mixture models, include both con-
tinuous and categorical latent variables as part of
the same measurement model (Arminger, Stein, &
Wittenburg, 1999; Dolan & van der Maas, 1998;
Draney, Wilson, Gluck, & Spiel, 2008; Jedidi,
Jagpal, & DeSarbo, 1997; Masyn, Henderson, &
Greenbaum, 2010; Muchén, 2008; Vermunt &
Magidson, 2002; von Davier & Yamamoto, 2006;
Yung, 1997). These models combine features from
both conventional factor analysis and LCA. Spe-
cial cases of these hybrid models include mixture
item response theory models and growth mixture
models.

Extensions in mixture model specification and
estimation include the accommodation of com-
plex sampling weights (Patterson, Dayton, &
Graubard, 2002); the use of Bayesian estimation
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techniques (Asparouhov & Muthén, 2010; Garrett
8 Zeger, 2000; Gelfand & Smith, 1990; Lanza,
Collins, Schafer, & Flaherty, 2005) in place of full-
information maximum likelihood; the adapration
of fuzzy clustering algorithms and allowing graded
latent class membership (Asparouhoy & Muthén,
2008; Yang & Yu, 2005); and the use of multiple

impuration for missing data combined with MLE
(Vermunt, Van Ginkel, Van der Ark, & Sijtsma,
2008).

The six panels of Figure 25.14 display path dia-
gram representations of some of the many advanced
mixture models available to researchers. Figure
25.14.a depicts is a latent class mediation model
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(Petras, Masyn, & lalongo, 2011), exrending the
LCR model to include an outcome of latent class
membership that may also be influenced by the
covariate. Figure 25.14.b depicts a regression mix-
ture model (RMM; Desarbo, Jedidi, & Sinha, 2001;
Van Horn, Jaki, Masyn, Ramey, Antaramian, &
Lamanski, 2009) in which the latent class variable
is measured by the conditional distribution of an
outcome variable, y, regressed on x—that is, the
latent class is specified to characterize differential
effects of x on y present in the overall population.
Figure 25.14.c displays the longitudinal extension
of latent class analysis: latent transition analysis
(LTA). In LTA (Collins & Lanza, 2010; Nylund,
2007), a special case of a broader class of mixture
models called Markov chain models (Langeheine &
van de Pol, 2002), there is a latent class variable
at each time-point or wave, and the relationship
between the classes across time describe individ-
ual transitions in class membership through time.
Figure 25.14.d displays the multilevel extension of
LCA. In MLCA (Asparouhov & Muthén, 2008;
Henry & Muthén, 2010; Nylund-Gibson, Graham,
& Juvonen, 2010}, the class proportions within clus-
ter {represented by shaded circles on the boundary
of the within-cluster latent class variable, cw) vary
across clusters. And the variability in class propor-
tions across clusters is captured by a between-cluster
latent class variable, cb. The classes of cb repre-
sent different groups of clusters characterized by
their distributions of individuals across classes of
cw. Figures 46.14.e and 46.14.f depict two spe-
cial types of factor mixture models. The diagram
in Figure 25.14.¢ represents a discrete-time survival
factor mixture model (Masyn, 2009) in which there
isan underlying factor that captures individual-level
frailty in the discrete-time survival process measured
by the event history indicator, ¢,,, and the latent class
variable characterizes variability in the individual
frailties. The diagram in Figure 25.14.f represents
.a growth mixture model (Feldman, Masyn, &
Conger, 2009; Muthén 8 Asparouhov, 2009; Petras
& Masyn, 2010) in which there are latent growth
factors that capture the intra-individual growth pro-
cess, defining individual growth trajectories, and a
latent class variable that characterizes (part of) the
interindividual variability in the growth trajectories.
Examples of other advanced mixture models not
depicted in Figure 25.14 include pattern-mixcure
and selection models for non-ignorable missing
data (Muthén, Asparouhov, Hunter, & Leuchter,
2011) and complier average causal effect mod-
els (Jo, 2002). What I have provided here is by

no means a fully comprehensive or exhaustive list
of advanced mixture models but is intended to
give the reader a flavor of what extensions are
possible.

Conclusion

This chapter represents what I believe to be the
current, prevailing “best practices” for basic mixture
modeling, specifically LCA and LPA, in terms of
model specification, estimation, evaluation, selec-
tion, and interpretation. I have also provided a very
limited introduction to structural equation mixture
modeling in the form of LCR. In addition, in the
previous section, you have been given a parrial sur-
vey of the many more advanced mixture models
cutrently in use. It should be evident that mixture
models offer a flexible and powerful way of modeling
poputation heterogeneity, However, mixture mod-
eling, like all statistical models, has limitations and
is perhaps even more susceptible to misapplication
that other more established techniques. Thus, I take
the opportunity in closing to remind readers about
some of the necessary (and untestable) assumptions
of mixture modeling and caution against the most
common misuses.

Most of this chapter has focused on direct appli-
cations of mixture modeling, for which one assumes
a priori that the overall population consists of two
or more homogeneous subpopulations. The direct
application is far more common in social science
applications than the indirect application. One
assumes that there are, in truth, distinct types of
groups of individuals that are in the population to
be revealed. “This assumption is cricical, because it
is always possible to organize any set of darta into
classes, which then can be said to indicate types,
but there is no real finding if an analysis merely
indicates classifications in a particular sample. To
be of scientific value, the classifications must rep-
resent lawful phenomena, must be replicable, and
must be related to other variables within a network
that defines construct validity.” (Horn, 2000, p.
927) Because this assumption is an 4 prieri assump-
tion of a mixture model, utilizing a direct mixture
modeling approach does not test a hypothesis about
the existence of discrete groups or subtypes. (There
are analytic approaches that are designed to explore
the underlying latent structure of a given construct,
e.g., whether the underlying construct is continu-
ous or categorical in nature, and interested readers
are referred to the chapter in this handbook on rax-
ometric methods and also Masyn, Henderson, and
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Greenbaum, 2010.) Nor does the fact that a K-
class model is estimable with the sample data prove
there are K classes in the population from which the
sample was drawn.

Furchermore, the (subjective) selection of a final
K -class model does not prove the existence of exactly
K subgroups. Recall how the specification of £ ina
latent profile analysis can influence which class enu-
meration is “best.” The number of latent classes that
you settle on at the conclusion of the class enumer-
ation process could very well not reflect the actual
number of distinct groups in the population. Ateen-
tion must also be paid, during the interpretadion
process, to the fact that the latent classes extracted
from the daca are inextricably linked to the items
used to identify those classes because the psycho-
metric properties of the items can influence the
formation of the classes. You assume that you have
at your disposal the necessary indicators to identify
all the distinct subgroups in the population and can
only increase confidence in this assumption through
validation of the latent class structure.

I did nor provide concrete guidelines about sam-
ple size requirements for mixture modeling because
they depend very much on the model complex-
ity; the number, nature, and separation of the
“truc” classes in the populadon; and the proper-
ties of the latent class indicarors themselves (Lubke,
2010). "Analyses for a very simple latent class mod-
els may be carried out probably with as few as 30
subjects, whereas other analyses require thousands
of subjects.” (Lubke, 2010, p. 215) Thus, what
is critical o be mindful of in your interpretation
of findings from a mixture model is thar mixture
models can be sensitive to sampling fuctuation that
may limit the generalizability of the class structure
found in a given sample and that smaller samples
may be underpowered to detect smaller and/or not
well-separated classes (Lubke, 2010).

None of chese limitations detracts from the use-
fulness of mixture modeling or the sciencific value of
the emergent latent class structure for characrerizing
the population heterogeneity of interest. However,
any interpretation must be made with these limita-
tions in mind and care must be taken not to reify
the resultant latent classes or to make claims about
proof of their existence.

Future Directions

In the historical overview of mixture modeling
at the beginning of this chapter, I remarked on
the rapid expansion in the statistical theory (model

specification and estimation), software implemen-
tation, and applications of mixture modeling in the
last 30 years. And the evolution of mixture model-
ing shows no signs of slowing. There are numerous
areas of development in mixture modeling, and
many investigations are currently underway. Among
those areas of development are: measures of over-
all goodness-of-fit, individual fir indices, graphical
residual diagnostics, and assumption-checking post
hoc analyses—particularly for mixture models with
continuous indicators and factor mixture models;
Bayesian estimation and mixture model selection;
class enumeration processes for multilevel mixeure
models with latent class variable on two or more
levels; missing data analysis—particularly maxi-
mum likelihood approaches and muldiple impu-
tarion approaches for non-ignorable missingness
related to latent class membership; detection pro-
cedures for differential item functioning in latent
class measurement models; multistage and simulta-
neous approaches for analyzing predictors and distal
outcomes of latent class membership including mul-
tiple imputation of latent class membership by way
of plausible values from Bayesian estimation tech-
niques; integration of causal inference techniques
such as propensity scores and principal stratification
with mixture models; and informed study design,
including sample size determination, power calcu-
lations, and item selection. In addirion to rhese
more specific areas of methods development, the
striking trend of extending other statistical mod-
els by integrating or overlaying finite mixtures will
surely continue and more hybrid models are likely
to emerge. Furthermore, there will be advancing
substantive areas, yielding new kinds of data, for
which mixture modeling may prove invaluable—
for example, genotypic profile analysis of single
nucleotide polymorphisms. And although it is dif-
ficult to predict which area of development will
prove most fruitful in the coming decades, it is
certain that mixture modeling will continue to
play an increasingly prominent role in ongoing
empirical quests to describe and explain general
patterns and individual variability in social science
phenomena.

List of Abbreviations

ANOVA  Analysis of variance
(ANCOVA—Analysis of
covariance)

Average posterior class

probability

AvePP
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AWE  Approximate weight of evidence
criterion

BF Bayes factor

BIC Bayesian information criterion

CACE Complier average causal effect

CAIC  Consistent Akaike information
criterion

CFA  Confirmatory factor analysis
(EEA—Exploratory factor
analysis)

cmP  Correct model probability

df Degree(s) of freedom
DIF  Differential item functioning
Ex Entropy

EM Expectation-maximization
algorithm
GMM  Growth mixture model

IRT  Item response theory

LCA  Latent class analysis
LCCA Latent class cluster analysis
LCR  Latent class regression

LL Log likelihood

IPA  Latent profile analysis

LR Likelihood ratio (LRT—Likelihood
ratio test; LRTS—LRT statistic;
LMR-LRT—Lo, Mendell, & Rubin
LRT; BLRT—bootstrapped

LRT)

LSAY Longitudinal Study of American
Youth

LTA  Lartent transition analysis

MAR  Missing at random
(MCAR—missing completely at
random)

mcaP  Modal class assignment proportion

ML Maximum likelihood
(MLE—Maximum likelihood
estimate; FIML—Full information
maximum likelihood)

MVN  Multivariate normal distribution
npar  Number of free parameters
OCC  Odds of correct classification ratio

OR Odds ratio

RMM Regression mixture model
SIC Schwarz information criterion
SSPG  Steady state plasma glucose

Appendix

A technical appendix with Mplus synrax and
supplementary Excel files for tabulating and con-
structing graphical summaries of modeling results is
available by request from the chapter author.
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