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1 Likelihood Ratio Test

In this section we describe how Mplus computes the likelihood ratio test

(LRT) with multiple imputations. The LRT is computed only for the ML

estimator for single level SEM models using the method described in Meng

and Rubin (1992), see also Enders (2008). For these models the LRT is

computed for the estimated model against the unrestricted mean and vari-

ance/covariance model, i.e., the usual test of fit. For all other estimators

and models the fit statistic is not computed but the distribution of the test

statistic over the different imputed data sets is reported.

The LRT test statistics is computed as follows. Suppose that there are M

imputed data sets. Let Tm be the test of fit statistic for the m−th imputed

data set. Let the parameter estimates of the H0 and H1 models, using the

m−th imputed data set, be Q0m and Q1m. Let the number of parameters

for the H0 and H1 models respectively be p0 and p1. Define the average

quantities as

T̄ =
1

M

M∑
m=1

Tm

Q̄0 =
1

M

M∑
m=1

Q0m

Q̄1 =
1

M

M∑
m=1

Q1m

Now compute the LRT test statistic for the H0 model against the H1 model

where the parameter estimates are fixed to Q̄0 and Q̄1 respectively, using

the m−th imputed data set and denote this test statistic value by T ′m. This
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statistic is averaged over all imputed data sets

T̄ ′ =
1

M

M∑
m=1

T ′m.

Then final test statistics is

Timp =
T̄ ′

1 + r3
(1)

which has approximately a chi-square distribution with the same degrees of

freedom as the usual test of fit statistics, i.e., p1 − p0. The correction factor

r3 is computed as follows

r3 =
M + 1

(M − 1)(p1 − p0)
(T̄ − T̄ ′).

The above approximation may be quite poor if the amount of missing data

is relatively large or the number of imputations M is low.

2 Wald Test

For imputed data the Wald test is computed for all estimators and mod-

els. The computation is based on estimating the joint distribution of the

parameter estimates. Suppose that we need to test F (Q) = 0 where F is

a multivariate function and Q are the model parameters. Let the param-

eter estimates for the m−th imputed data set be Qm and their estimated

asymptotic distribution be Vm. The combined estimates are computed as

Q̄ =
1

M

M∑
m=1

Qm

and their asymptotic distribution is computed as follows

V =
1

M

M∑
m=1

Vm +
M + 1

M(M − 1)

M∑
m=1

(Qm − Q̄)(Qm − Q̄)T .
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The correct Wald test can now be computed the usual way

W = F (Q̄)(F ′(Q̄)V (F ′(Q̄))T )−1F (Q̄)T

where F ′ is the first derivative of F with respect to the parameters Q. Under

the null hypothesis, F (Q) = 0, the distribution of W is a chi-square with d

degrees of freedom, where d is the dimension of the restrictions F . In the

above formula the delta method is used to obtain the asymptotic covariance

of F (Q) from the asymptotic covariance of Q. This method however does

not utilize the actual chi-square values across the different imputations as

in the previous section. Instead, it computes the Wald test simply by using

the estimated asymptotic variance of the parameters, just as the Wald test

is computed for complete data analysis.

3 A simulation study

In this section we conduct a simulation study to evaluate the performance

of the imputation LRT statistic Timp given in (1). As a comparison we also

use the T̄ statistic, which is simply the averaged of the chi-square statistics

across the imputed data sets. In the simulation study we use the following

two factor analysis model. Let the two factors in the model be η1 and η2 and

let each factor has three observed indicator variables. The model is given by

the following two equations. For j = 1, ..., 3

yj = µj + λjη1 + εj (2)

and for j = 4, ..., 6

yj = µj + λjη2 + εj. (3)
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where yj are the observed variables, εj are the residual variables, µj are the

intercept parameters and λj are the loading parameters. We generate 100

data sets according to this model of sample size N . Then we generate MAR

missing data in each data set. Using the multiple imputation utilities in

Mplus, see Asparouhov and Muthén (2010), we create 5 imputed data sets

for each simulated data set. The imputed data sets are then analyzed with

the true model and the two test statistics Timp and T̄ are computed. Since

we analyze the data with the true model we expect the test statistics to

accept, i.e., not reject the model, or more specifically to reject the model at

the nominal level of 5%.

The data is generated using the following parameter values: µj = 0,

λj = 1, the factor variances and the residual variances are set to 1 and the

correlation between the two factors is set to 0.5. We generate data sets of 3

different sample sizes N = 100, 500 and 1000. The missing data is generated

according to the following missing data mechanism. For j > 3 the variable Yj

has no missing values, while for j = 1, ..., 3 the missing values are generated

using the following formula

P (Yj is missing) = Exp(α + βYj+3)/(1 + Exp(α + βYj+3)), (4)

i.e., in this missing data mechanism the missing values for Yj are predicted

by another indicator variable Yj+3. We use two different sets of parameters

α and β to generate two different levels of missing data. Using α = −1.5

and β = 1 we get approximately L = 25% of missing data for the variables

Yj, j = 1, ..., 3. Using α = −1 and β = 2 we get approximately L = 40% of

missing data for these variables.

Table 1 contains the average test statistic values and the rejection rates
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Table 1: Average value (rejection rate) of different LRT test statistics in

factor analysis model estimated with imputed data.

N L T̄ Timp

100 25% 18.0(.45) 9.2(.12)

500 25% 16.2(.45) 7.8(.08)

1000 25% 15.7(.46) 8.1(.05)

100 40% 26.5(.90) 18.8(.15)

500 40% 25.9(.86) 8.7(.09)

1000 40% 25.5(.78) 8.3(.09)

for both test statistics Timp and T̄ . The degrees of freedom for this test is 8

so we expect to see average test statistic value of 8 if the test statistic works

correctly. The results clearly indicate that the naive statistic T̄ does not work

correctly. It overestimates the test statistic value and underestimates the P-

value. As a consequence this naive test statistic leads to inflated rejection

rates. The more missing data the worse the performance of that test statistic.

On the other hand the statistic Timp appear to perform correctly in all cases.

The average test statistic value is close to 8 and the rejection rate near the

nominal level. It is clear also from the results that Timp performs worst when

the sample size is small N = 100 and there is a large portion of missing data,

L = 40% for the first 3 variables. This is expected since Timp is an asymptotic

statistic. In that case the rejection rate is slightly inflated. The average

test statistic value is also inflated, however that is mostly due to a single

odd replication. In this simulation study we also encountered computational
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problems for Timp. When N = 100 and L = 25% we had 1 replication with

Timp computational problems out of 100 replications. When N = 100 and

L = 40% we had 9 replications with Timp computational problems out of 100

replications. Thus we can conclude that small sample sizes and large amount

of missing data are also the causes for Timp computational problems.

Overall we conclude that Timp yields an effective way to conduct LRT

testing when we use multiple imputation data.

4 A power study

In this section we evaluate the power of the Timp statistic to reject an incor-

rect model and we compare that to the power of the usual chi-square test

statistic obtained by the FIML (full information maximum likelihood) esti-

mator which we denote by TFIML. The simulation study is conducted as in

the previous section with the only change that the correlation between the

two factors is set to 0.8. To evaluate the power of the chi-square statistics

we use an incorrect model to analyze the data, we use a one factor analysis

model. Thus we expect the chi-square statistics to reject the incorrect model

particularly when the sample size is large. Tables 2 and 3 contain the rejec-

tion rates for the two test statistics for sample sizes N = 100, 150, 200, 250

and 300. Table 2 contains the results when the missing data is L = 25%

while table 3 contains the results when the missing data is L = 40%.

It is clear from these results that TFIML is slightly more powerful than

Timp. The loss of power in Timp appears to be increasing as the amount

of missing data increases. Overall this loss of power appears to be small.

7



Table 2: Power study results for 25% missing data case. Percentage rejection

rate.

N 300 250 200 150 100

Timp 85 75 68 53 34

TFIML 92 86 76 60 50

Table 3: Power study results for 40% missing data case. Percentage rejection

rate.

N 300 250 200 150 100

Timp 69 51 44 32 30

TFIML 84 75 55 52 40

In addition Timp has the advantage that the imputed missing data may be

imputed from data that is not used in the estimated model and therefore can

carry more information than the unimputed data set. This can lead to more

accurate estimation and testing.
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