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This article explores a method for modeling associations among binary and ordered categori-
cal variables. The method has the advantage that maximum-likelihood estimation can be used
in multivariate models without numerical integration because the observed data log-likelihood
has an explicit form. The association model is especially useful with mixture models to han-
dle violations of the local independence assumption. Applications to latent class and latent

transition analysis are presented.
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This article explores a method for modeling associations
among binary and ordered categorical variables. The method
has the advantage that maximum likelihood (ML) estima-
tion can be used in multivariate models without numerical
integration because the observed data log-likelihood has
an explicit form. The association model is especially use-
ful with mixture models to handle violations of the local
independence assumption.

Typically in latent class analysis (LCA) all indicators
are assumed to be independent conditional on the latent
class. Muthén (1984) considered tetrachoric and polychoric
correlations in multivariate modeling via the weighted
least squares method, but this method cannot be used to
estimate mixture models. Qu, Tan, and Kutner (1996) used
continuous latent variables in mixture modeling to capture
a residual correlation. This approach is generalized in
Uebersax (1999). The problem with this approach is that it
is not scalable to a large number of variables. In a model
with a larger number of latent class indicators, it might be
necessary to add multiple residual correlations, which will
result in the addition of multiple latent variables. That in
turn leads to high-dimensional numerical integration and
a loss of precision even when the numerical integration is
done with a Monte Carlo integration method.

The main purpose of the association parameters in this
article is to be able to add additional correlations between

Correspondence should be addressed to Tihomir Asparouhov, Muthén
& Muthén, 3463 Stoner Avenue, Los Angeles, CA 90066. E-mail:
tihomir@statmodel.com

indicators beyond what the main LCA model explains and
to prevent such minor residual correlations from interfer-
ing with the main modeling focus regarding latent classes.
This is a scalable approach that can easily accommodate
any number of association parameters; that is, the associ-
ation parameters do not introduce additional computational
burden. We also make the point that the association parame-
ters can be interpreted the same way that residual correlation
parameters are interpreted and thus make this new parame-
terizations easily understandable.

The next section presents the proposed approach. We then
consider the relationship between the uniform association
parameter and the polychoric correlation parameter. The
following section describes an LCA with uniform associa-
tions simulation study. We then describe a latent transition
model with uniform associations and conduct a simulation
study. Different methods for discovering residual associ-
ations among latent class indicators are described next.
We then illustrate the new methodology with a real data
example before the conclusion. All analyses are carried out
using Mplus Version 7.2. Scripts are available at www.
statmodel.com.

THE RESIDUAL ASSOCIATION APPROACH

The residual association model proposed here is the uniform
association model defined in Goodman (1979). This model
is a restricted log-linear contingency table model. The model
generalizes naturally to mixture modeling with within-class
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association. As a contrast, consider first the standard log-
linear model. Suppose that there are two ordered categorical
variables U; and U, with observed categories 1,...,/; and
1,...,I>. The standard log-linear model is given by

EXP(TLaI + 10,0, + ﬁalag)
> Exp(ti + 7 + By)

P(Uy=a1,U, =ay) = (D

where Ty, = 124, = B1,; = Bu, = 0 for identification pur-
poses. In the LCA context, log-linear modeling of residual
association has been considered in Hagenaars (1988) and
Magidson and Vermunt (2004). For the importance of con-
sidering residual associations, see also Berzofsky, Biemer,
and Kalsbeek (2014) and Van Smeden, Naaktgeboren,
Reitsma, Moons, and de Groot (2013).

The log-linear model is a fully saturated model when con-
sidering two variables and the number of free parameters is
lil, — 1. The parameters B; represent the deviation from
independence of the two variables and there are (I, —1) (/; —
1) such parameters. The interpretation of these parameters is,
however, not as natural as the polychoric correlation param-
eter. In addition, the power to discover nonindependence
will be lower for the log-linear model simply because the
polychoric correlation model is more parsimonious. Suppose
that we are using the likelihood ratio test to test the inde-
pendence model. If both the polychoric and the log-linear
models hold, the test statistic value will be the same and the
degrees of freedom will be larger for the log-linear model;
that is, (/; — 1) (I, — 1) degrees of freedom for the log-linear
model versus 1 df for the polychoric correlation model. Thus
the power to reject the independence model will be lower for
the log-linear model.

The uniform association model resolves the preceding
problems by restricting the log-linear model to

Bij =B xix]. 2)

Thus the uniform association model for two variables is
given by

Exp(TI,ul + T4, + ,3611612)

PUy =a;,U, =a) = —
Cr=antz=a) > Exp(ti + 7 + Bij)

Note now that the nonindependence of U, and U, is modeled
entirely by a single coefficient 8. We call this coefficient the
association of U; and U,. If this coefficient is O the vari-
ables are independent and thus the association coefficient is
similar that way to the polychoric correlation. Becker (1989)
showed that under certain conditions the association coeffi-
cient is approximately p/(1 — p?) where p is the polychoric
correlation. This approximate relationship can be reversed
and using B we can approximate the residual correlation
as (/1 +4p%—1)/(2B). Note also that we still have the
identifying constraints 71, = 12, = 0, and the constraints

Bij = Bir, = 0 are now replaced by Equation 2. If the vari-
ables U and U, are both binary, then the uniform association
model is equivalent to the log-linear model as they are both
saturated.

Another advantage of the uniform association model over
the log-linear model is the fact that this model uses the
ordered nature of the variables. The log odds for U, over two
consecutive categories, conditional on U, is a linear function
of U,. Thus higher values of U, are associated with higher
values of U when the association parameter is positive.

An advantage of the uniform association model over the
polychoric correlation model is missing data modeling. The
weighted least squares estimation of the polychoric corre-
lation model does not support missing at random (MAR)
missing data and it generally gives unbiased estimates only
when the missing data is missing completely at random
(MCAR). The ML estimation of the association model guar-
antees unbiased estimates even when the missing data is
MAR.

It is easy to extend the association model to a multivariate
model with more than two variables. Suppose that Uj,...,U,
are ordered categorical variables and the observed categories
for U; are 1,...,/;. The uniform association model is given by

PUy=a,h=a,...,.U =a,)=

ExP(Zi Tig, T Zi<j :Bijaiaj> G)
Zal,az,‘ oy Exp(Zi Tig, + Zi<j ﬂijaiaj)

where B;; represents the association coefficient between U;
and U; and can be thought of as the association equivalent
of the polychoric correlation between U; and U;. Not all of
these associations need to be present in the model. Some of
the association parameters can be zero. Note here that if the
variables Uj,...,U, can be split in two groups with no associ-
ation between them, the two groups will be independent. For
example, if the two groups are Uj...., Uy and Uy, 41,..., U and
all the associations 8;; = 0 when i < k and j > k, then

PU, =a,U =a,...,U,=a,) =

P(U1 =di,. . .,Uk :ak)P(UkH = Ak+1, - - .,Ur :Clr).

This property of the multivariate association model usually
allows us to reduce the multivariate model to small groups
of independent models, which improves computational
efficiency.

The uniform association model naturally extends to mix-
ture modeling and in particular to LCA and latent transition
analysis (LTA) models with residual associations. If C rep-
resents a latent class variable measured by the observed
variables U; the LCA association model is given by



Downloaded by [University of California, Los Angeles (UCLA)] at 11:59 27 March 2015

RESIDUAL ASSOCIATIONS IN LATENT CLASS AND LATENT TRANSITION ANALYSIS 171

PU =a,,Uy=a,..., U, =a|C)=

Exp(zi Tiae + D icj ,BU,Ca[aj) “4)
i ar EXP(Zi Tiane + 2is ﬁij,caiaj)

where B are class-specific residual associations. One can
selectively add residual associations to the LCA model if
they appear to be significant. This approach can be partic-
ularly useful in LCA where certain latent class indicators
might have higher associations or correlations than explained
by the latent class variable of the LCA model. Such resid-
ual associations if left out of the model will most likely lead
to spurious class formations (see Asparouhov & Muthén,
2011). Thus in a practical application where standard class
enumeration criteria such as Bayesian information criterion
lead to many more classes than the analyst can interpret,
the LCA association model can be used to eliminate spu-
rious class formations that are due to residual indicator
associations.

The t parameters in Equation 4 are not the same T param-
eters that usually come from a probit or logistic link function.
Those t parameters will be different and they do depend
on the association parameters. If the association parameters
are all O then the 7 parameters will be the same as if the
latent class indicators are nominal indicators. The best way
to understand the impact of the T parameters is to look at
the class-specific marginal estimated indicator distributions
on the probability scale.

The Appendix gives an outline of the ML estimation of
the mixture model with the uniform residual associations.
In the case when all the indicator variables are binary, the
association modeling is equivalent to the local dependence
LCA model discussed in Hagenaars (1988) and Magidson
and Vermunt (2004). For binary indicator variables the
LCA model with residual tetrachoric correlations can also
be estimated with Bayesian methods (see Asparouhov &
Muthén, 2011).

THE CONNECTION BETWEEN THE
ASSOCIATION PARAMETER AND THE
POLYCHORIC CORRELATION PARAMETER

This section illustrates the connection between the associ-
ation parameter and the polychoric correlation parameter
using simulated data. We generate ordered categorical data
with five categories using a bivariate probit model where
the thresholds for both variables are —1.5, —0.5, 0.5, and 1.5,
respectively. We vary the polychoric correlation and compare
the estimates of the polychoric correlation and the associa-
tion parameter. We generate a large sample of size N = 10°
so that variation across samples is eliminated and the asymp-
totic estimates are obtained. The results of this simulation are
presented in Table 1. The results indicate that the connection

TABLE 1
Comparing Polychoric Correlation and Uniform Association

Polychoric Correlation  Uniform Association — Becker’s Approximation

P B (JT+4B% - 1)/2P)
0.10 0.09 0.09
0.30 0.29 0.27
0.50 0.56 0.45
0.70 1.05 0.63
0.90 2.46 0.82

between the polychoric correlation and the uniform associ-
ation is very strong and larger values of the correlation are
equivalent to larger values of the association parameter. The
relationship is not one to one and the association parameter is
not restricted to be less than 1. The Becker’s approximation
is quite good for smaller values but it appears to be underesti-
mating the polychoric parameters when the values are large.
It is important to note here that this evaluation is simply an
example. The connection between polychoric correlation and
the uniform association in general depends on the number
of categories as well as the threshold values and in other
examples might not be similar to the results in Table 1.
We can, however, always expect that the general pattern will
be preserved. A simulation study with negative polychoric
correlations looks identical to the results in Table 1 with all
values having a negative sign.

Next we conduct a simulation study using the same model
generation but now we generate 100 samples of size N =
1,000. We compute the average Pearson chi-square statistic
over these 100 samples to evaluate the ability of the model
to fit the bivariate distribution. With 24 df in the data and
9 estimated parameters (1 association parameter and 2 x
4 univariate distribution parameters) the Pearson chi-square
has 15 df. Average test values near 15 or lower mean that
the bivariate distribution table was fitted well. We use three
bivariate models. The first one is the polychoric correlation
model, which is identical to the model used to generate the
data. The second model is the uniform association model.
The third model is the Qu et al. (1996) model (QTK), which
uses a logit link function and a normally distributed latent
variable within a logistic regression to model the correla-
tion between the observed variables. The QTK method in
this situation is simply the Samejima (1969) graded response
model.

Table 2 contains the average Pearson chi-square statistic
for the three methods and varying polychoric correlation. It is
clear that all three methods fit the data well. Thus we con-
clude that the uniform association method, which is the only
scalable method, works just as well as other standard meth-
ods for fitting bivariate distributions and residual covariation
between ordered categorical variables. Note that in Table 2 as
the polychoric correlation increases the Pearson test statistic
values decrease on average. This is explained by the fact that
when the correlation between the two variables is bigger,
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TABLE 2
Comparing the Average Pearson Chi-Square Values for the
Polychoric Correlation Model, the Uniform Association, and the QTK

Model
P Polychoric Correlation Uniform Association QTK
0.10 15.3 15.3 15.4
0.30 15.0 15.0 15.5
0.50 13.8 14.1 14.6
0.70 13.2 139 134
0.90 9.9 8.5 11.6

TABLE 3
Absolute Bias and Coverage for the Uniform Association
Parameters in Latent Class Analysis

Parameter Simulation 1 Simulation 2
Bi2 .01 (.97) .01 (.96)
Bie .01 (.94) .01 (.91)
Baa .01 (.96) .02 (.94)
B3g .01 (.95) .01 (.94)
Bao .00 (.96) .01 (.95)
Bs, 10 .01 (.96) .01 (.96)

Note. QTK = Qu, Tan, & Kutner (1996) model.

some cells of the bivariate distribution will be empty and that
decreases the degrees of freedom and in turn affects the test
statistic distribution.

LCA SIMULATION STUDIES

In this section we present some LCA simulation studies to
evaluate the performance of the ML estimation when esti-
mating the LCA model with residual associations. In the first
simulation we consider a model where the associations are
held equal across class and in the second simulation we con-
sider an example where the associations are class specific.
We consider an LCA model with two equal-sized classes,
10 indicator variables, and three categories. The threshold
parameters given in Equation 4 are as follows: t;;; = —1,
Ti21=0,7;1,20=0, 7,22 = 1. We also introduce for our
first simulation the association parameters 81,2 . = Bi16c =
B27.c = B3 s.c = Ba,9,c = Bs, 10, = 0.3 for both classes
c =1 and ¢ = 2. We generate 100 data sets of sample size
2,000 using the LCA association model and we analyze the
data using the same model holding the association parame-
ters equal across classes. We add to the LCA model only the
six nonzero associations listed earlier.

In the second simulation we use f1,2.2 = B16.1 = B2.7.1 =
B3s1 = Pao1 = Psi0a = 0.3; that is, the associations are
not the same between the two classes. Class-specific asso-
ciations are created again both for the generation of the data
and for the estimation. Because the estimated model and the
generating model are identical in the two simulations, we
expect to see unbiased estimates and 95% coverage. We also
introduce MAR missing data in the simulation studies. The
probability that U; is observed is 1/(1 + Exp(—1)) = 0.73
fori =3, ..., 10, U, is always observed, and the probability
of U, to be observed is 1/(1+Exp(—1—U,;)). This method
of generating missing data yields MAR missing data, rather
than simply MCAR, because the probability that U; is
missing depends on Us.

The results of the simulation are presented in Table 3.
In both simulations, class-invariant and class-specific
uniform association parameters are estimated well. The bias
is negligible and the coverage is near the nominal levels of
95%.

LTA SIMULATION STUDIES

In LTA, typically the same instrument is used to measure a
latent class over several time points. The goal of LTA is to
evaluate how the latent class changes over time. When the
same item is administered over time to the same individ-
ual it is common to observe residual correlation that goes
beyond what the item is supposed to measure. This is due
to personal perceptions to particular questions, and personal
biases and interpretation of particular items. In this section
we explore the consequences of ignoring these item-specific
residual correlations.

We generate 100 samples of size N = 1,000 using an
LTA model with two time points. At each time point we
have two latent classes. The latent class variable is mea-
sured by five binary indicators. We denote the latent class
variable at Time points 1 and 2 by C; and C,. The bivariate
distribution for C; and C, is generated using the following
parameters:

P =P(C =1,C,=1)=03l1
Py =P(C; =1,C,=2)=0.19
Py =P(C; =2,C,=1)=0.25
Py =P(C, =2,C,=2)=025

Once the latent class variables are generated, we use the fol-
lowing LTA model with uniform associations to generate the
indicator variables. Denote the indicator variables i at time
point j by Uj;.

P(Uii =ayy, . ..,Usy = a|C,C) =

l_[P(Un =a;,Up = ap|Ci,Cy) =

l—[ Exp(Tiay.c, + Tiane, T Bianan)  (5)
O Y anan B (Tiae + Tiane, + Bidinap)

Exp(37; Y, Tiayei + 2_; Bidinain)
D s EXPQ D Ty + D, Bianan)”
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TABLE 4
Average Estimate and Coverage for the Class Allocation and
Transition Probabilities in Latent Transition Analysis (LTA)

Parameter True Value LTA With Association LTA Without Association

P 31 31(97) 34 (.90)
Pa1 .19 .19 (.96) .16 (.56)
P2 25 25 (.96) 21(52)
o 25 25 (.95) 29 (71)
a 62 62 (.94) 68 (.63)
@ 50 .50 (.95) 58(51)

In this uniform association model, the marginal distribution
of [U;|C;] is the same across time points. The threshold
parameters are time invariant. The uniform association f; is
the residual association between the same indicator at the
two time points U;; and U;,. We generate the data according
to the preceding model using the following parameter val-
ues 7;;; = 1l and 7;;, = —1 and B; = 0.3. We estimate
two LTA models, both holding the conditional distribution
[U;;|C;] invariant over time; that is, by holding the t param-
eters equal across time. The first LTA model includes the
uniform association and the second model does not.

We report the estimated class allocation probabilities p;;
in Table 4. We also report the results for the transition
probability ¢; where

qi = P(C, = i|Cy =i).

The results clearly show that if the residual associations are
not accounted for, the LTA results are biased. The LTA with
the uniform association yields unbiased estimates and good
coverage. The standard LTA without the uniform associa-
tions underestimated the number of individuals that change
latent class. The number of individuals that remained in the
same class was overestimated by 7% on average. The cover-
age for the class allocation parameters for the standard LTA
model is also quite poor. This result is natural and expected.
When the residual similarities between the indicators are not
accounted for, the standard LTA will attempt to explain it by
additional correlation between the latent class variables.

METHODS TO DISCOVER RESIDUAL
CORRELATIONS

Two methods are discussed in this section that can be used
to find unaccounted residual correlation in LCA. The first
method is based on finding misfit in the bivariate distri-
bution via the bivariate Pearson test statistic. The second
method is based on directly estimating an LCA model with
a large number of uniform associations, possibly all asso-
ciations. Both methods have advantages and disadvantages
that we briefly discuss. The two methods also have differ-
ent statistical power to discover residual associations. The

formal evaluation of the power is beyond the scope of this
article.

To illustrate the two methods we use a generated data set
of size N = 5,000 using a two-class LCA model with residual
associations. We generate the data as in Simulation 1 earlier
with the exception that no missing data are generated; that is,
there are 10 latent class indicator variables and there are no
missing data in any of them. We generate a single data set and
we apply the two methods to determine which association
should be added to the standard LCA model.

Bivariate Pearson Testing

Consider first the bivariate Pearson method. For each pair of
indicator variables U; and U; we compute the Pearson test
statistic

1, = Y e = o)’

Eijfllaz

where Ejjz 4, is the model-estimated number of observations
for which U; = a; and U; = a, and Ojjq,4, is the corre-
sponding observed quantity.' This statistic is not a chi-square
statistic because the estimated and the observed quantities
are a part of a bigger model and thus the testing setup is
formally not the same as the standard Pearson test, which
evaluates the entire contingency table rather than just a
bivariate table. However, the test statistic is still a good indi-
cator for a residual association as this example illustrates.
As an approximate degrees of freedom value for this test
statistic, we would suggest [;l; — I; — [; + 1, because there
are ;[; — 1 degrees of freedom in the bivariate contingency
table and there are /; — 1 + [; — 1 univariate distribution
parameters. In our case because /; = [; = 3, the approximate
degrees of freedom for this test statistic would be 4 with an
upper 5% quintile of 9.45; that is, any value above 9.45 can
be considered as an indication of a possible residual associ-
ation. Note, however, that this approach needs to account for
multiple testing; that is, we can expect that just by chance at
least one in 20 of the test statistics will be above that cutoff
value and thus a higher cutoff value is a better choice. In a
practical situation, it is best if the Pearson test statistics are
ordered in descending order and only the top few are con-
sidered. That way the uncertainty of the distribution of the
Pearson test statistic will be avoided. Oberski, Kollenburg,
and Vermunt (2013) used bootstrap methods to determine the
distribution of the bivariate Pearson test statistic.

Another problem with the Pearson test statistic is that
it is not a reliable source of information in the presence of
missing data. This is because we are comparing the observed
univariate and bivariate values to the model estimated
values. In the presence of missing data, the observed values

I'This test is obtained using the Mplus TECH10 option.
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TABLE 5
Pearson Statistic for Bivariate Fit in Latent Class
Analysis With Class-Invariant Associations

Parameter Pearson
B3s 72
Bao 60
B2 48
Bs.10 38
Biz 28
Bis 20
Bas 12
Bsa 11

are inferior to the estimated values because they are not
based on the full information contained in the entire data as
are the estimated values. Thus misfit in the bivariate Pearson
chi-square statistic might be due to MAR missing data rather
than an omitted residual association; that is, the value of the
statistic might be large because the observed values have
selection bias.

The bivariate Pearson method is very easy to use and it
only requires the estimation of the standard LCA model. For
our generated data set, Table 5 shows all association param-
eters with Pearson statistic above 10 in descending order.
The top six most significant associations come out to be
exactly the true associations used to generate the data. If we
examine the Pearson test statistic after we include those six
associations in the LCA model, the largest Pearson test statis-
tic value is now 11, and we can conclude that the added
association parameters have resolved the bivariate misfit.

Yet another drawback of this method is that it does not
distinguish between a class-specific association and a class-
invariant association. The Pearson statistic is a measure of
bivariate fit for all the classes together. If an association is
positive in one class and negative in another, it is unlikely
that the Pearson statistic will detect that association at all.
If, however, an association is positive in one class and zero
in another, the Pearson statistic can detect such an associa-
tion although with diminished power. A data set generated as
in Simulation 2 earlier where the associations are class spe-
cific yields smaller but similar Pearson test values. Table 6
contains the test values bigger than 10 in that case. Four
out of the six associations were detected. Presumably lack
of power made the other two associations go undetected.
In both cases, the Pearson test statistic did not erroneously
suggest any associations that are not in the data.

Including All Uniform Associations

The second method we discuss here is based on directly
estimating the LCA model with all uniform associations
included in the model. This method is feasible and can
directly detect significant associations. However, this method
has drawbacks as well. Including all association parameters

TABLE 6
Pearson Statistic for Bivariate Fit in Latent Class
Analysis With Class-Specific Associations

Parameter Pearson

Bis 27

B2 22

Bao 20

B3s 14
TABLE 7

Associations T Statistic for Latent Class Analysis With
All Class-Invariant Associations

Parameter Association T Value
B3s 0.39 8.7
B2 0.39 6.7
Bs.10 0.28 5.3
Bao 0.32 5.0
Bia 0.35 3.9

in the model reduces the power to detect significance.
Another drawback is that if there are a large number of
class indicators, the computation can become slow, in par-
ticular when there are missing data. In our example of
10 indicators with no missing data, the estimation with all
45 class-invariant associations included in the model took
6 min to estimate. For comparison purposes, the LCA analy-
sis with just the true six associations takes 1 sec to estimate.
Thus, this is a more computationally intensive method than
the Pearson statistic. Unlike the Pearson statistic, the LCA
model with all associations included yields reliable results
even in the presence of missing data.

Using our generated data set we estimate the LCA with
all class-invariant associations included and report in Table 7
all associations with T-statistic values above 2 in descending
order. Here five out of the six true associations were detected
and again no spurious associations were detected.

In principle the LCA model can be estimated with all
class-specific associations or with all class-invariant asso-
ciations. The model with all class-specific associations is
identified in principle. When the ordered variable has 10 cat-
egories or more the estimation of the model becomes very
similar to a latent profile analysis where all variables are
treated as normally distributed variables. It is well known
that all correlations can be included as class-specific corre-
lations in a latent profile analysis. Also, it was pointed out
in Asparouhov and Muthén (2011) that in the case where all
variables are binary the model with all class-specific corre-
lations can be estimated with the Bayes estimator. However,
unless the sample size is very large and the number of indi-
cators is small, including all class-specific associations will
yield a model with many local solutions that will most likely
hinder this method’s usability. In our generated example,
after including all class-specific associations, the LCA model
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did not have two equal-sized classes even when using good
starting values. This means that the LCA with the all class-
specific uniform association is so different from the original
LCA model that the significance of association cannot be
trusted to apply in the original LCA model. Thus we can
recommend using the second method with all class-invariant
associations only.

These association detection tools can be thought of as
data mining tools. Ultimately whether an association param-
eter is included in the LCA model should be decided by the
LRT based on the model with and without that association,
by the BIC criterion, or by the T test when the association
is included in the LCA model. To test if a particular asso-
ciation is class-specific or class-invariant, one can use the
LRT test or the T test for the difference between the class-
specific associations, or in the case of more than two classes,
the Wald test can be used to test simultaneously the equality
across all classes. Additional association detection tools and
power analysis are discussed for the case of binary items in
Oberski et al. (2013).

REAL DATA ILLUSTRATION

In this section we use a real data example to illustrate the
advantages of the LCA model with uniform associations.
The data we consider consist of 17 antisocial behavior items
obtained from the National Longitudinal Survey of Youth
(NLSY). A sample of n = 7,326 subjects ages 16 to 23 is
used. The items concern the frequency of various behaviors
during the past year. For the present purpose, these items are
dichotomized and scored as 0 or 1, with O representing never
in the last year. The items are damaged property, fighting,
shoplifting, stole less than $50, stole more than $50, use of
force, seriously threaten, intent to injure, use marijuana, use
other drugs, sold marijuana, sold hard drugs, “con” someone,
take auto, broken into building, held stolen goods, gam-
bling operation. We consider a latent class analysis for the
17 antisocial behavior items.

Table 8 contains the BIC for the LCA model with three,
four, five, and six latent classes. As is often the case, BIC
does not show a decrease followed by an increase as is
needed for using the minimum BIC as a guide to the num-
ber of classes. The five-class solution has a clear substantive
interpretation, whereas the six-class solution merely has
two slight variations on one of the classes in the five-class
solution. For each of these LCA models, we also count
the number of pairs with Pearson test statistic > 30. Such
bivariate test values can be considered severe violations of
model fit. The number of such a degree of misfit stabilizes
at five classes. Instead of adding additional classes so that
these residual associations are accounted for, one can simply
add a few residual associations, thereby keeping the number
of classes as low as possible. Instead of 18 extra parameters
when adding a class, a few residual association parameters

TABLE 8
Latent Class Analysis for the Antisocial Behavior data
Pearson

Model Log-Likelihood BIC > 30  No. of Parameters
three-class LCA —41713 83898 15 53
four-class LCA —41007 82647 8 71
five-class LCA —40808 82409 5 89
six-class LCA —40658 82269 4 107
five-class LCA-UA —40498 81842 0 95

Note. BIC = Bayesian information criterion; LCA = latent class
analysis; LCA-UA = latent class analysis model with uniform associations.

TABLE 9
Bivariate Associations in 5-Latent Class
Analysis for the Antisocial Behavior Data

Item Item Pearson
THREAT INJURE 87.462
DRUG SOLDPOT 60.218
SOLDPOT SOLDDRUG 57.812
DRUG SOLDDRUG 37.042
FIGHT THREAT 31.398

can be added. This enhances the chances of finding a solution
with a best minimum BIC.

Using the five-class solution we explore adding associa-
tion parameters instead of more classes. Table 9 contains the
five pairs of items with Pearson statistic > 30 in the five-
class LCA. We notice that a group of three items (DRUG,
SOLDPOT, SOLDDRUG) all have a residual association
among each other. The remaining two residual associations
also involve the same item THREAT. To form a complete
group we also consider the additional association between
FIGHT and INJURE and we form another block of three
items (FIGHT,INJURE,THREAT) with all residual associ-
ations in the group. In total we add six residual associations.
The results for the estimated five-class LCA model with uni-
form associations (LCA-UA) are also reported in Table 8.
The BIC shows that the the five-class LCA—UA provides the
best fit to the data among the models we considered. The
likelihood improvement due to the six association parame-
ters is much greater than that of the added sixth class. The
Pearson test statistic in the LCA-UA model shows that no
pairs of variables display a severe bivariate misfit; that is, all
test statistics are smaller than 30. The uniform association
modeling approach avoids adding spurious classes in LCA to
account for violations of the local independence assumption.

Further exploration that goes beyond the purpose of this
illustration can illuminate the data analysis and the mea-
surement instrument itself. Analysis should be conducted for
each association to see if the association is statistically sig-
nificant in all classes, and if the association is the same in
all classes if it is significant. In classes where an associa-
tion is not statistically significant, the association parameter
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can be fixed to 0 and in the remaining classes the association
parameter can be class specific if the differences between the
association parameters are statistically significant. If certain
items are highly correlated in all classes, one can go fur-
ther and question the need for a particular item or perhaps
revise the item so that it extracts more information or com-
bine the highly correlated items to form a single item that
will represent the sum of highly correlated items.

CONCLUSION

The uniform association modeling approach can be very use-
ful in LCA and LTA. It can prevent model misspecification,
the addition of spurious classes, and violations of the local
independence assumption. It can also eliminate the need
for more computationally intensive models with many latent
factors used to capture residual associations.

The uniform association approach also provides an easily
interpretable parameterization due to the fact that the associ-
ation parameters behave so similar to the well-understood
correlation parameters. Computationally the LCA-UA is
straightforward. This is valuable in those situations where
many random starting values are used to search for latent
class solutions. The computation does not involve numerical
integration and is essentially similar in computational work
to the estimation of the standard LCA model.

There are currently some limitations to this modeling
as implemented in Mplus Version 7.2. Direct effects from
covariates to latent class indicators cannot be included in
LCA-UA models together with continuous latent factors
measured by the latent class indicators. These limitations,
however, might be resolved in the near future.
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APPENDIX

In this appendix we provide some details on the ML estimation of the LCA—
UA model. As a first step we describe the ML estimation for the uniform
association model with a single class; that is, without mixture modeling.
‘We can rewrite Equation 3 as follows:

Exp(u(ay,. . .,ay))
Zalﬂaz,A L.ar Ex[)(ll(tll o ar))
(A.1)

PUy=a,Uy=az,...,U-=a) =

where

nay,. . .,a;) = Z Tia; T Z,szfdiaj~
i

i<j
The log-likelihood function F is given by

F=) NaTia+ Y. Nijaabitd

ia; i<j,a,-,u,'

nlog( > EXP(/L(al,..',a,-)))

1,2 5.5y

where n; 4, is the number of observations for which U; = a;; n; J-,a,.,afis the
number of observations for which U; = a; and U; = a;; and n is the
total number of observations. To maximize F we need to compute the first
derivatives of F with respect to the parameters 7;,, and B;; and then use
a general maximization algorithm such as the quasi-Newton method that
requires only first derivatives evaluation. The derivatives are computed as
follows

oF
871’,(11

=njq — nP(U; = a;)

where P(U; = a;) is the marginal probability implied by the current
parameter estimates and can be computed as follows, for i = 1:

PU; =a1)= =~ .
: : Zal,az,....ar Exp('u(al’ “"ar))

The derivatives with respect to the association parameters are computed as
follows:
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oF
B E aiQjNija;a; — N E aiaiP(U; = a;, Uj = a))
Y aj.aj aj,aj

where P(U; = a;, U; = a;) is again the marginal probability that U; = q;
and U; = a; implied by the current parameter estimates. The standard errors
of the parameter estimates can be computed using the first derivatives (see
Muthén, 2001), or using the second derivatives of the log-likelihood that are
computed similarly.

To generalize the preceding estimation to the case of the LCA-UA
model, we follow the EM algorithm described in Muthén and Shedden
(1999). The computation of the posterior class probabilities in the E-step
is the same as in Muthén and Shedden (1999) with the exception that
now the class-specific indicator distribution is computed via Equation 4.
The M-step is computed as described previously in the one-class model
with the modification that n;, and Nijaja; Are NOW the class-specific
quantities derived from the posterior class probabilities computed in the
E-step.
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