
Chapter 19

Latent Variable Analysis
Growth Mixture Modeling and Related

Techniques for Longitudinal Data

Bengt Muthén

19.1. Introduction

This chapter gives an overview of recent advances in
latent variable analysis. Emphasis is placed on the
strength of modeling obtained by using a flexible com-
bination of continuous and categorical latent variables.
To focus the discussion and make it manageable in
scope, analysis of longitudinal data using growth
models will be considered. Continuous latent variables
are common in growth modeling in the form of random
effects that capture individual variation in development
over time. The use of categorical latent variables in
growth modeling is, in contrast, perhaps less familiar,
and new techniques have recently emerged. The aim
of this chapter is to show the usefulness of growth
model extensions using categorical latent variables.
The discussion also has implications for latent variable
analysis of cross-sectional data.

The chapter begins with two major parts corre-
sponding to continuous outcomes versus categorical
outcomes. Within each part, conventional modeling
using continuous latent variables will be described
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first, followed by recent extensions that add categorical
latent variables. This covers growth mixture model-
ing, latent class growth analysis, and discrete-time
survival analysis. Two additional sections demonstrate
further extensions. Analysis of data with strong floor
effects gives rise to modeling with an outcome that
is part binary and part continuous, and data obtained
by cluster sampling give rise to multilevel modeling.
All models fit into a general latent variable frame-
work implemented in the Mplus program (Muthén &
Muthén, 1998–2003). For overviews of this model-
ing framework, see Muthén (2002) and Muthén and
Asparouhov (2003a, 2003b). Technical aspects are
covered in Asparouhov and Muthén (2003a, 2003b).

19.2. Continuous Outcomes:
Conventional Growth Modeling

In this section, conventional growth modeling will
be briefly reviewed as a background for the more
general growth modeling to follow. To prepare for this
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Figure 19.1 LSAY Math Achievement in Grades 7 to 10

All students

Grades 7−10
7 8 9 10

40
60

80
10

0

 

Students with only HS Expectations in G7

Grades 7−10
7 8 9 10

40
60

80
10

0

 

transition, the multilevel and mixed linear modeling
representation of conventional growth modeling will
be related to representations using structural equation
modeling and latent variable modeling.

To introduce ideas, consider an example from math-
ematics achievement research. The Longitudinal Study
of Youth (LSAY) is a national sample of mathematics
and science achievement of students in U.S. public
schools (Miller, Kimmel, Hoffer, & Nelson, 2000).
The sample contains 52 schools with an average of
about 60 students per school. Achievement scores were
obtained by item response theory equating. There were
about 60 items per test with partial item overlap across
grades. Tailored testing was used so that test results
from a previous year influenced the difficulty level of
the test of a subsequent year. The LSAY data used here
are from Cohort 2, containing a total of 3,102 students
followed from Grade 7 to Grade 12 starting in 1987.
Individual math trajectories for Grades 7 through 10
are shown in Figure 19.1.

The left-hand side of Figure 19.1 shows typical
trajectories from the full sample of students. Approx-
imately linear growth over the grades is seen, with the
average linear growth shown as a bold line. Conven-
tional growth modeling is used to estimate the average
growth, the amount of variation across individuals in
the growth intercepts and slopes, and the influence
of covariates on this variation. The right-hand side of
Figure 19.1 uses a subset of students defined by one
such covariate, considering students who, in seventh
grade, expect to get only a high school degree. It is
seen that the intercepts and slopes are considerably
lower for this group of low-expectation students.

A conventional growth model is formulated as
follows for the math achievement development related

to educational expectations. For ease of transition
between modeling traditions, the multilevel notation
of Raudenbush and Bryk (2002) is chosen. For time
point t and individual i, consider the variables

yti = repeated measures on the outcome (e.g., math
achievement),

a1ti = time-related variable (time scores) (e.g.,
Grades 7–10),

a2ti = time-varying covariate (e.g., math course
taking),

xi = time-invariant covariate (e.g., Grade 7
expectations),

and the two-level growth model,

Level 1: yti = π0i + π1i a1t i + π2ti a2ti + eti, (1)

Level 2:




π0i = β00 + β01xi + r0i

π1i = β10 + β11xi + r1i .

π2i = β20 + β21xi + r2i

(2)

Here, π0i , π1i , and π2i are random intercepts and
slopes varying across individuals. The residuals
e, r0, r1, and r2 are assumed normally distributed with
zero means and uncorrelated with a1, a2, and w. The
Level 2 residuals r0, r1, and r2 are possibly corre-
lated but uncorrelated with e. The variances of et

are typically assumed equal across time and uncor-
related across time, but both of these restrictions can
be relaxed.1

1The model may alternatively be expressed as a mixed linear model
relating y directly to a1, a2, and x by inserting (2) into (1). Analogous
to a two-level regression, when either ati or π2ti varies across i, there
is variance heteroscedasticity for y given covariates and therefore not a
single covariance matrix for model testing.
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The growth model above is presented as a
multilevel, random-effects model. Alternatively, the
growth model can be seen as a latent variable model,
where the random effects π0, π1, and π2 are latent
variables. The latent variables π0, π1 will be called
growth factors and are of key interest here. As will be
shown, the latent variable framework views growth
modeling as a single-level analysis. A special case
of latent variable modeling is obtained via mean-
and covariance-structure structural equation model-
ing (SEM). Connections between multilevel, latent
variable, and SEM growth analysis will now be briefly
reviewed.

When there are individually varying times of obser-
vation, a1ti in (1) varies across i for given t. In this
case, a1ti may be read as data. This means that in
conventional multilevel modeling, π1i is a (random)
slope for the variable a1ti. When a1ti = a1t for all t

values, a reverse view can be taken. In SEM, each a1t

is treated as a parameter, where a1t is a slope multiply-
ing the (latent) variable π1i . For example, accelerated
or decelerated growth at a third time point may be
captured by a1t = (0, 1, a3), where a3 is estimated.2

Typically in conventional multilevel modeling, the
random slope π2ti (1) for the time-varying covariate
a2t is taken to be constant across time, π2ti = π2i .

It is possible to allow variation across both t and
i, although it may be difficult to find evidence for
in data. In SEM, however, the slope is not random,
π2ti = π2t , because conventional covariance struc-
ture modeling cannot handle products of latent and
observed continuous variables.

In the latent variable modeling and SEM frame-
works, the distinction between Level 1 and Level 2
is not made, but a regular (single-level) analysis is
done. This is because the modeling framework consid-
ers the T -dimensional vector y = (y1, y2, . . . , yT )′ as
a multivariate outcome, accounting for the correlation
across time by the same random effects influencing
each of the variables in the outcome vector. In contrast,
multilevel modeling typically views the outcome as
univariate, accounting for the correlation across time
by the two levels of the model. From the latent variable
and SEM perspective, (1) may be seen as the mea-
surement part of the model where the growth factors
π0 and π1 are measured by the multiple indicators yt .

In (2), the structural part of the model relates growth
factors and random slopes to other variables. A growth

2When choosing a11 = 0, π0i is defined as the initial status of the growth
process. In multilevel analysis, a1ti is often centered at the mean (e.g.,
to avoid collinearity when using quadratic growth), whereas in SEM,
parameters may get highly correlated.

Figure 19.2 Growth Model Diagram
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model diagram corresponding to the SEM perspective
is shown in Figure 19.2, where circles correspond
to latent variables and boxes correspond to observed
variables.

There are several advantages of placing the growth
model in an SEM or latent variable context. Growth
factors may be regressed on each other—for exam-
ple, studying growth while controlling for not only
observed covariates but also the initial status growth
factor. Or, a researcher may want to study growth
in a latent variable construct measured with multiple
indicators. Other advantages of growth modeling in a
latent variable framework include the ease with which
to carry out analysis of multiple processes, both paral-
lel in time and sequential, as well as multiple groups
with different covariance structures. More generally,
the growth model may be only a part of a larger model,
including, for instance, a factor analysis measurement
part for covariates measured with errors, a mediational
path analysis part for variables influencing the growth
factors, or a set of variables that are influenced by the
growth process (distal outcomes).

The more general latent variable approach to growth
goes beyond the SEM approach by handling (1)
as stated (i.e., allowing individually varying times
of observation and random slopes for time-varying
covariates). Here, a1ti = a1t and π2ti = π2t are allowed
as special cases. The latent variable approach thereby
combines the strength of conventional multilevel mod-
eling and SEM. An overview showing the advantages
of this combined type of modeling is given in Muthén
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Figure 19.3 LSAY Math Achievement in Grades 7 to 10 and High School Dropout
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and Asparouhov (2003a), and a technical background
is given in Asparouhov and Muthén (2003a). In addi-
tion, general latent variable modeling allows modeling
with a combination of continuous and categorical latent
variables to more realistically represent longitudinal
data. This aspect is the focus of the current chapter.

19.3. Continuous Outcomes:
Growth Mixture Modeling

The model in (1) and (2) has two key features. On
one hand, it allows individual differences in develop-
ment over time because the growth intercept π0i and
growth slope π1i vary across individuals, resulting in
individually varying trajectories for yti over time. This
heterogeneity is captured by random effects (i.e., con-
tinuous latent variables). On the other hand, it assumes
that all individuals are drawn from a single population
with common population parameters. Growth mix-
ture modeling relaxes the single population assumption
to allow for parameter differences across unobserved
subpopulations. This is accomplished using latent tra-
jectory classes (i.e., categorical latent variables). This
implies that instead of considering individual varia-
tion around a single mean growth curve, the growth
mixture model allows different classes of individuals
to vary around different mean growth curves. The
combined use of continuous and categorical latent
variables provides a very flexible analysis framework.
Growth mixture modeling was introduced in Muthén
and Shedden (1999) with extensions and overviews in
Muthén and Muthén (1998–2003) and Muthén (2001a,
2001b, 2002).

Consider again the math achievement example and
the math development shown in the right-hand part of
Figure 19.3. This is the development for individuals
who are later classified as having dropped out by
Grade 12. Note that although Figure 19.1 considers
an antecedent of development, Grade 7 expectations,
Figure 19.3 considers a consequence of development,
high school dropout. It is seen that, with a few
exceptions, the high school dropouts typically have
a lower starting point in Grade 7 and grow slower
than the average students in the left-hand part of the
figure. This suggests that there might be an unobserved
subpopulation of students who, in Grades 7 through
10, show poor math development and who have a high
risk for dropout. In educational dropout research, such
a subpopulation is often referred to as “disengaged,”
where disengagement has many hypothesized predic-
tors. The subpopulation membership is not known
during Grades 7 through 10 but is revealed when
students drop out of high school. The subpopula-
tion membership can, however, be inferred from the
Grade 7 through 10 math achievement development.

19.3.1. Growth Mixture Model Specification

To introduce growth mixture modeling (GMM),
consider a latent categorical variable ci representing the
unobserved subpopulation membership for student
i, ci = 1, 2, . . . , K. Here, c will be referred to as a
latent class variable or, more specifically, a trajectory
class variable. Assume tentatively that in the math
achievement example, K = 2, representing a disen-
gaged class (c = 1) and a normative class (c = 2). An
example of the different parts of the model is shown
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Figure 19.4 GGMM Diagram
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in the model diagram in Figure 19.4. The model has
covariates x and xmis, a latent class variable c, repeated
continuous outcomes y, and a distal dichotomous out-
come u. For simplicity, time-varying covariates are not
included in this example. The covariate x influences c

and has direct effects on the growth factors π0 and π1,
as well as a direct effect on u. In this section, the xmis
covariate will be assumed to have no role in the model.
Its effects will be studied in later sections.

Consider first the prediction of the latent class
variable by the covariate x using a multinomial logistic
regression model for K classes,

P(ci = k|xi) = eγ0k+γ1kxi

∑K
s=1 eγ0s+γ1s xi

, (3)

with the standardization γ0K = 0, γ1K = 0. With a
binary c(c = 1, 2), this gives

P(ci = 1|xi) = 1

1 + e−li
, (4)

where l is the logit (i.e., the log odds),

log[P(ci = 1|xi)/P (ci = 2|xi)] = γ01 + γ11 xi,

(5)

so that γ11 is the increase in the log odds of being in
the disengaged versus the normative class for a unit
increase in x. For example, assume that x is dichoto-
mous and scored 0, 1 for females versus males. From
(4), it follows that eγ11 is the odds ratio for being in
the disengaged class versus the normative class when
comparing males to females. For example, γ11 = 1
implies that the odds of being in the disengaged class

versus the normative class is e1 = 2.72 times higher
for males than females.

Generalizing (1) and (2), GMM considers a sepa-
rate growth model for each of the two latent classes.
Key differences across classes is typically found in the
fixed effects β00, β10, and β20 in (2). For example, the
disengaged class would have lower β00 and β10 values
(i.e., lower means) than the normative class. Class dif-
ferences may also be found in the covariate influence,
with class-varying β01, β11, and β21. In addition, class-
varying variances and covariances for the r residuals
may be found. In (1), the type of growth function
for Level 1 is perhaps different across class as well.
For example, although the disengaged class may be
well represented by linear growth, the normative class
may show accelerated growth over some of the grades
(e.g., calling for a quadratic growth curve). Here, the
variance for the e residual may also be class varying.

The basic GMM can be extended in many ways.
One important extension is to include an outcome that
is predicted from the growth. Such an outcome is often
referred to as a distal outcome, whereas in this context,
the growth outcomes are referred to as proximal out-
comes. Dropping out of high school is an example of
such a distal outcome in the math achievement context.
Given that the growth is succinctly summarized by
the latent trajectory class variable, it is natural to let
the latent trajectory class variable predict the distal
outcome. With the example of a dichotomous distal
outcome u scored 0, 1, this model part is given as a
logistic regression with covariates c and x,

P (ui = 1|ci = k, xi) = 1

1 + eτk−κkxi
, (6)

where the main effect of c is captured by the class-
varying thresholds τk (an intercept with its sign
reversed), and κk is a class-varying slope for x. For
each class, the same odds ratio interpretation given
above can be applied also here. Model extensions of
this type will be referred to as general growth mixture
modeling (GGMM).

19.3.1.1. Latent Class Growth Analysis

A special type of growth mixture model has been
studied by Nagin and colleagues (see, e.g., Nagin,
1999; Nagin & Land, 1993; Roeder, Lynch, & Nagin,
1999) using the SAS procedure PROC TRAJ (Jones,
Nagin, & Roeder, 2001). See also the 2001 special
issue of Sociological Methods & Research (Land,
2001). The models studied by Nagin are character-
ized by having zero variances and covariances for r in
(2); that is, individuals within a class are treated as
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homogeneous with respect to their development.3

Analysis with zero growth factor variances and covari-
ances will be referred to as latent class growth analysis
(LCGA) in this chapter. As will be discussed in the
context of categorical outcomes, the term LCGA is
motivated by it being more similar to latent class
analysis than growth modeling.

LCGA may be useful in two major ways. First,
LCGA may be used to find cut points on the GMM
growth factors. A k-class GMM that has within-
class variation may have a model fit similar to that
of a k + m-class LCGA for some m > 0. The
extra m classes may be a way to objectively find
cut points in the within-class variation of a GMM to
the extent that such further grouping is substantively
useful. This situation is similar to the relationship
between factor analysis and latent class analysis, as
discussed in Muthén (2001a), where latent classes of
individuals were identified along factor dimensions.
From a substantive point of view, however, this poses
the challenge of how to determine which latent classes
represent fundamentally different trajectories and
which represent only minor variations. Second, as
pointed out in Nagin’s work, the latent classes of
LCGA may be viewed as producing a nonparametric
representation of the distribution of the growth factors,
resulting in a semi-parametric model. This view will
be further discussed in the next section.

LCGA is straightforward to specify within the
general Mplus framework. The zero variance restric-
tion makes LCGA easy to work with, giving relatively
fast convergence. If the model fits the data, the simplic-
ity can be a practically useful feature. Also, LCGA can
be used in conjunction with GMM as a starting point for
analyses. Section 19.3.4.1 discusses the use of LCGA
on data that have been generated by a GMM in which
covariates have direct influence on the growth factors.
This misapplication leads to serious distortions in the
formation of the latent classes.

19.3.1.2. Nonparametric Estimation
of Latent Variable Distributions

In the GMM described earlier, the normality
assumption for the residuals on Level 1 and Level 2 is
applied to each class. Within class, the latent variables
of π0, π1, and π2 of (2) may have a nonnormal dis-
tribution due to the influence of a possibly nonnormal

3Nagin’s work focuses on count data using Poisson distributions. As
discussed in later sections, modeling with count outcomes and categorical
outcomes can also use nonzero variance for r.

x covariate, and the distribution of y in (1) is further
influenced by possibly nonnormal Level 1 covariates.
This implies that the distribution of the outcomes y can
be nonnormal within class. Strong nonnormality for y

is obtained when latent classes with different means
and variances are mixed together.

The normality assumption for the residuals is not
innocuous in mixture modeling. Alternative distribu-
tions would result in somewhat different latent class
formations. The literature on nonparametric estimation
of random-effect distributions reflects such a concern,
especially with categorical and count outcomes already
in nonmixture models. Maximum likelihood estima-
tion for logistic models with random effects typically
uses Gauss-Hermite quadrature to integrate out the
normal random effects. The quadrature uses fixed
nodes and weights for a set of quadrature points. As
pointed out by Aitkin (1999), a more flexible distribu-
tional form is obtained if both the nodes and the weights
are estimated, and this approach is an example of
mixture modeling. The mixture modeling approxima-
tion to a continuous random-effect distribution, such
as a random intercept growth factor, is illustrated in
Figure 19.5 using an approximately normal distribu-
tion as well as a skewed distribution. In both cases, five
nodes and weights are used, corresponding to a mixture
with five latent classes. Aitkin argues that the mixture
approach may be particularly suitable with categorical
outcomes in which the usual normality assumption for
the random effects has scarce empirical support. For
an overview of related work, see also Heinen (1996);
for a more recent discussion in the context of logistic
growth analysis, see Hedeker (2000).

The Mplus latent variable framework can be used
for this type of nonparametric approach. Correspond-
ing to Figure 19.5, a random intercept growth factor
distribution can be represented by a five-class mix-
ture. Here, the estimation of the nodes is obtained
by estimating the growth factor means in the different
classes, and the estimation of the weights is obtained
by estimating the class probabilities (the growth factor
variance parameter is held fixed at zero). If a single-
class model is considered, the other parameters of the
model are held equal across classes; otherwise, they
are not.

19.3.1.3. Growth Mixture
Modeling Estimation

The growth mixture model can be estimated by
maximum likelihood using an EM algorithm. For
a given solution, each individual’s probability of
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Figure 19.5 Random-Effects Distributions Represented by Mixtures
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membership in each class can be estimated, as well
as the individual’s score on the growth factors π0i and
π1i . Measures of classification quality can be consid-
ered based on the individual class probabilities, such
as entropy. This has been implemented in the Mplus
program (Muthén & Muthén, 1998–2003). Technical
aspects of the modeling, estimation, and testing are
given in Technical Appendix 8 of the Mplus User’s
Guide (Muthén & Muthén, 1998–2003), Muthén and
Shedden (1999), and Asparouhov and Muthén (2003a,
2003b). Missing data on y are handled using MAR.
Muthén, Jo, and Brown (2003) discuss nonignorable
missing data modeling using missing data indicators.
As with mixture modeling in general, local optima are
often encountered in the likelihood. This phenomenon
is well known, for example, in latent class analysis,
particularly in models with many classes and data that
carry limited information about the class membership.
Because of this, the use of several different sets of
starting values is recommended, and this is automated
in Mplus.

19.3.1.4. The LSAY Example

To conclude this section in a concrete way using the
LSAY math achievement data, a brief preview of the
analyses in Section 3.5 is of interest. Figure 19.6 shows
that three latent trajectory classes are found, includ-
ing their class probabilities, the mean trajectory and
individual variation for each class, and the probability
of dropping out of high school for each class. Of the
students, 20% are found to belong to a disengaged
class with poor math development. Membership in
the disengaged class dramatically enhances the risk
of dropping out of high school, raising the dropout
percentage from 1% and 8% to 69%. Section 3.5

presents the covariates predicting latent trajectory class
membership, and it is found that having low educa-
tional expectations and dropout thoughts already by
Grade 7 are key predictors.

Before going through the analysis steps for the
LSAY math achievement example, model interpreta-
tion, estimation, and model selection procedures will
be discussed. Latent variable modeling requires good
analysis strategies, and this is even more true in the
framework of growth mixture modeling, where both
continuous and categorical latent variables are used.
Many statistical procedures have been suggested
within the related statistical area of finite mixture
modeling (see, e.g., McLachlan & Peel, 2000), and
some key ideas and new extensions will be briefly
reviewed. Both substantive and statistical consider-
ations are critical and will be discussed. Early pre-
diction of class membership is also of interest in
growth mixture modeling and will be briefly cov-
ered. In the LSAY math achievement example, it is
clearly of interest to make such early predictions of
risk for high school dropout to make interventions
possible.

19.3.2. Substantive Theory and
Auxiliary Information for Predicting
and Understanding Model Results

GGMM should be investigated using substantively
based theory and evidence. Auxiliary information can
be used to more fully understand model results even at
an exploratory stage, when little theory exists. Once
substantive theory has been formulated, it can be
used to predict a related set of events that can then be
tested.
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Figure 19.6 LSAY Math Achievement in Grades 7 to 10 and High School Dropout
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Substantive theory building typically does not
rely on only a single outcome measured repeatedly,
accumulating evidence for a theory only by sorting
into classes observed trajectories on a single outcome
variable. Instead, many different sources of auxiliary
information are used to check the theory’s plausibility.
Mental health research may find that a pattern of a
high level of deviant behavior at ages when this is not
typical is often accompanied with a variety of neg-
ative social consequences, so that there is a distinct
subtype. A good education study of failure in school
also considers what else is happening in the student’s
life, involving predictions of accompanying problems.
Gene-environment interaction theories may predict the
emergence of problems as a response to adverse life
events at certain ages. These are the situations when
GGMM is particularly useful. GGMM can include
the auxiliary information in the model and test if the
classes formed have the characteristics on the auxiliary
variables that are predicted by theory. Auxiliary infor-
mation may take the form of antecedents, concurrent
events, or consequences. These are briefly discussed
in turn below.

19.3.2.1. Antecedents

Auxiliary information in the form of antecedents
(covariates) of class membership and growth factors
should be included in the set of covariates to cor-
rectly specify the model, find the proper number
of classes, and correctly estimate class proportions
and class membership. The fact that the “uncondi-
tional model” without covariates is not necessarily

the most suitable for finding the number of classes
has not been fully appreciated and will be discussed
below.

An important part of GGMM is the prediction of
class membership probabilities from covariates. This
gives the profiles of the individuals in the classes.
The estimated prediction of class membership is a key
feature in examining predictions of theory. If classes
are not statistically different with respect to covariates
that, according to theory, should distinguish classes,
crucial support for the model is absent.

Class variation in the influence of antecedents
(covariates) on growth factors or outcomes also pro-
vides a better understanding of the data. As a caveat,
one should note that if a single-class model has gen-
erated the data with significant positive influence of
covariates on growth factors, GGMM that incorrectly
divides up the trajectories in, say, low, medium, and
high classes might find that covariates have lower and
insignificant influence in the low class due to selection
on the dependent variable. If a GGMM has generated
the data, however, the selected subpopulation is the
relevant one to which to draw the inference. In either
case, GGMM provides considerably more flexibility
than what can be achieved with conventional growth
modeling. As an example, consider Muthén and
Curran’s (1997) analysis of a preventive interven-
tion with a strong treatment-baseline interaction.
The intervention aimed at changing the trajectory
slope of aggressive-disruptive behavior of children
in Grades 1 through 7. No main effect was found,
but Muthén and Curran used multiple-group latent
growth curve modeling to show that the initially more
aggressive children benefited from the intervention
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in terms of lowering their trajectory slope. The
Muthén-Curran technique is not, however, able to
capture a nonmonotonic intervention effect that exists
for children of medium-range aggression and is absent
for the most or least aggressive children. In contrast,
such a nonmonotonic intervention effect can be han-
dled using GGMM with the treatment/control dummy
variable as a covariate having class-varying slopes (see
Muthén et al., 2002). There are probably many cases
in which the effect of a covariate is not strong or even
present, except in a limited range of the growth factor
or outcome.

19.3.2.2. Concurrent Events
and Consequences (Distal Outcomes)

Modeling with concurrent events and consequences
speaks directly to standard considerations of concur-
rent and predictive validity. In GGMM, concurrent
events can be handled as time-varying covariates that
have class-varying effects, as time-varying outcomes
predicted by the latent classes, or as parallel growth
processes. Consequences can be handled as distal
outcomes predicted by the latent classes or as sequen-
tial growth processes. Examples of distal outcomes
in GGMM include alcohol dependence predicted by
heavy drinking trajectory classes (Muthén & Shedden,
1999) and prostate cancer predicted by prostate-
specific antigen trajectory classes (Lin, Turnbull,
McCulloch, & Slate, 2002).

A very useful feature of GMM, even if a single-class
nonnormal growth model cannot be rejected, is that
cut points for classification are provided. For instance,
individuals in the high class, giving the higher prob-
ability for the distal outcome, are identified, whereas
this information is not provided by the conventional
single-class growth analysis. It is true that this classifi-
cation is done under a certain set of model assumptions
(e.g., within-class conditional normality of outcomes
given covariates), but even if the classification is not
indisputable, it is nevertheless likely to be useful in
practice. In single-class analysis, one may estimate
individuals’ values on the growth factors and attempt
a classification, but it can be very difficult to identify
cut points, and the classification is inefficient. The
added classification information in GMM versus con-
ventional single-class growth modeling is analogous to
the earlier discussion of latent class and latent profile
analysis adding complementary information to factor
analysis. In addition, GMM classification is an impor-
tant tool for early detection of likely membership in a
problematic class, as will be discussed in the example
below.

19.3.3. Statistical Aspects of Growth Mixture
Modeling: Studying Model Estimation Quality
and Power by Monte Carlo Simulation Studies

Because growth mixture modeling is a relatively
new technique, rather little is known about require-
ments in terms of sample size and the number of time
points needed for good estimation and strong power.
Monte Carlo studies are useful for gaining understand-
ing about this. Figure 19.4 shows a prototypical growth
mixture model with a distal outcome. The following is
a brief description of how a Monte Carlo study can be
carried out based on this model using Mplus. For back-
ground about Monte Carlo studies of latent variable
models using Mplus, see Muthén and Muthén (2002).
As argued in that article, general rules of thumb are not
likely to be dependable, but Monte Carlo studies can
be done in settings similar to those of the study at hand.

A total of 100 data sets were generated according
to the Figure 19.4 model without the xmis covari-
ates, using a sample size of 3,000, similar to that
of LSAY. Here, the class percentages are 27% and
73%. Maximum likelihood estimation was carried out
and results summarized over the 100 replications. The
Mplus output contains average parameter estimates,
parameter estimate standard deviations, average stan-
dard errors, 95% coverages, and power estimates.
Here, power refers to the proportion of replications in
which the hypothesis that the parameter value is zero
is rejected.4

The results indicate very good estimation of param-
eters and standard errors as well as good coverage. The
quality is a function of the sample size, the number of
time points, the separation between the classes, and
the within-class variation. Here, the intercept growth
factor means in the two classes are one standard devi-
ation apart. As examples of the power estimates, the
regression coefficient for the slope growth factor on
the covariate is 0.43 for the smaller class, which has
a smaller coefficient, and 1.00 for the larger class,
which has a larger coefficient. Changing the sample
size to 300, the results are still acceptable, although the
power estimates for the slope growth factor regression
coefficients are now reduced to 0.11 and 0.83.

The Mplus Monte Carlo facility is quite flexible. For
example, to study model misspecification, one could
analyze a different model than the one that generated
the data. In latent class models, the misspecification
may concern the number of classes. For Monte Carlo

4The Mplus input and output for this analysis are given in Example 1 at
www.statmodel.com/mplus/examples/penn.html.
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designs that are not offered in Mplus, externally
generated data can be analyzed using the RUNALL
utility.5 An extensive Monte Carlo study of growth
mixture and related factor mixture models is given in
Lubke and Muthén (2003).

19.3.4. Statistical Aspects of Growth Mixture
Modeling: Model Selection Procedures

This section gives an overview of strategies and
methods for model selection and testing. An emphasis
is placed on practical analysis steps and recent testing
developments.

19.3.4.1. Analysis Steps

In conventional growth modeling, a common
analysis strategy is to first consider an “unconditional
model” (i.e., not introducing covariates for the growth
factors). This strategy can lead to confusion with
growth mixture modeling. Consider the growth mix-
ture model diagram shown earlier in Figure 19.4. Here
the model has covariates x and xmis, a latent class
variable c, repeated continuous outcomes y, and a
distal dichotomous outcome u. The covariate x influ-
ences c, has direct effects on the growth factors π0 and
π1, and also has direct effects on u.

Consider first an analysis of this model without u

and without the xs. Here, the class formation is based
on information from the observed variables y, chan-
neled through the growth factors. A distorted analysis
is obtained if the xs are excluded because they have
direct effects on the growth factors. This is because
the only observed variables, y, are incorrectly related
to c if the xs are excluded. The distortion can be under-
stood based on the analogy of a misspecified regression
analysis. Leaving out an important predictor, the slope
for the other predictor is distorted. In Figure 19.4, the
other predictor is the latent class variable c, and the
distortion of its effect on the growth factors causes
incorrect evaluation of the posterior probabilities in
the E step and therefore incorrect class probability
estimates and incorrect individual classification. If, on
the other hand, the x covariates do not have a direct
influence on the growth factors (and no direct influ-
ence on y), the “unconditional model” without the xs
would be correct, giving correct class probabilities and
growth curves for y.

To further explicate the reasoning above, consider
a data set generated by the model in Figure 19.4

5See http://www.statmodel.com/runutil.html.

without the xmis covariate, using the Monte Carlo
feature of Mplus discussed earlier.6 Analysis of the
generated data by the correct model recovers the popu-
lation parameters well, as expected. The estimated
Class 1 probability of 0.26 is close to the true value
of 0.27. The entropy is not large, despite the cor-
rectness of the model, 0.57, but this is a function
of the degree of separation between the classes and
the within-class variation. In line with the discussion
above, the influence of the covariate x is of special
interest. The model that generated the data has a posi-
tive slope for the influence of x on being in the smaller
Class 1, positive slopes for the influence on the growth
factors, and a positive slope for the influence on u. The
estimated class-specific means and variances of the x

covariate are 0.63 and 0.79 for Class 1 and −0.20
and 0.82 for Class 2. The higher mean for Class 1
is expected, given the positive slope for the influence
on the Class 1 membership. Being in Class 1, in turn,
implies higher means for the growth factors. Within
class, the growth factor means are higher due to the
direct positive influence of x on the growth factors.
With x left out of the model, the latent class variable
alone needs to account for the differences in growth
factor values across individuals. As a result, the class
probabilities are misestimated. In the generated data
example, the Class 1 probability is now misestimated
as 0.35.7

Analyzing the Figure 19.4 model excluding u but
correctly including x gives the correct answer in terms
of class membership probabilities for c and growth
curves for y. This is because excluding u does not
imply that the observed variables (y or x) are incor-
rectly related to c. Excluding u simply makes the
standard errors larger and worsens the classification
precision (entropy). In the generated data example, the
Class 1 probability is well estimated as 0.26, whereas
the entropy is now lowered to 0.50.8

In practice, model estimation with and without a
distal outcome u may give different results for the
class probabilities and growth curves for two reasons.
First, if you include u but misspecify the model by
not allowing direct effects from the xs to u, you get
distorted parameter estimates (e.g., incorrect class
probabilities) by the same regression misspecification
analogy given above. In the generated data example,

6The Mplus input and output for this analysis is given in Example 2 at
www.statmodel.com/mplus/examples/penn.html.

7The Mplus input and output for this analysis is given in Example 3 at
www.statmodel.com/mplus/examples/penn.html.

8The Mplus input and output for this analysis are given in Example 4 at
www.statmodel.com/mplus/examples/penn.html.
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this misspecification gave the strongly distorted Class
1 probability estimate as 0.40. Second, key covariates
may have been left out of the model (i.e., may not have
been measured or are missing), causing a model mis-
specification. The notation xmis in Figure 19.4 refers
to such a covariate. Consider two cases, both assuming
that xmis is not available. First, if xmis influences only
u and not the growth factors, the analysis excluding
u gives correct results, but the analysis including u

gives incorrect and hence different results. Second,
if xmis influences both the growth factors and u, the
analyses with and without u give incorrect results and
are different.

In conclusion, the proper choice of covariates is
important in growth mixture modeling. Substantive
theory and previous analyses are needed to make a
choice that is sufficiently inclusive. The covariates
should be allowed to influence not only class member-
ship but also the growth factors directly, unless there
are well-motivated reasons not to. An analysis without
covariates can be useful to study different growth in
different trajectory classes. However, it should not
be expected that the class distribution or individual
classification remains the same when adding covari-
ates. It is the model with covariates properly included
that gives the better answer.

It should also be noted that choosing the correct
within-class variance structure is important. The data
above were generated from a model with class-varying
variances for the residuals of e in (1). Misspecifying
the model by holding these variances equal across
class leads to an estimated Class 1 probability of 0.23.
Larger distortions would be obtained if the growth
factor variances differ across classes.

It is instructive to consider model misspecification
results if data generated by the growth mixture model
are analyzed by a latent class growth analysis. In the
generated data example above, LCGA leads to a mis-
specified model. The misspecification can be studied in
two steps, first by restricting the residual (co)variances
and second by also not allowing the direct influence
from x to the growth factors. In both cases, the distal
outcome is u. In the first step, the estimated Class 1
probability is found to be 0.42, a value far off from
the true probability of 0.27. In the second step, the
estimated Class 1 probability is even more strongly
distorted, 0.51. It is noteworthy that the misspecifica-
tion of not letting x have a direct effect on the growth
factors cannot be discovered using LCGA. Note that in
the last two analyses, the entropy values are strongly
overestimated, 0.80 and 0.85. It is also likely that more
than two classes are needed to account for the within-
class variation. This implies that some of the classes

are merely slight variations on a theme and do not have
a substantial meaning.

19.3.4.2. Equivalent Models

With latent variable models in general and mixture
models in particular, the phenomenon of equivalent
models may be encountered. Here, equivalent models
means that two or more models fit the same data
approximately the same so that there is no statistical
basis on which to base a model choice. Consider two
psychometric examples. First, in exploratory factor
analysis, a rotated solution using uncorrelated factors
gives the same estimated correlation matrix as a rotated
solution with correlated factors. Second, Bartholomew
and Knott (1999, pp. 154–155) point out a well-known
psychometric fact that a covariance matrix generated
by a latent profile model (a latent class model with
continuous outcomes) can be perfectly fitted by a factor
analysis model. A covariance matrix from a k-class
model can be fitted by a factor analysis model with
k − 1 factors. Molenaar and von Eye (1994) show that
a covariance matrix generated by a factor model can be
fitted by a latent class model. This should not be seen
as a problem but merely as two ways of looking at the
same reality. The factor analysis informs about under-
lying dimensions and how they are measured by the
items, whereas the latent profile analysis sorts individ-
uals into clusters of individuals who are homogeneous
with respect to the item responses. The two analyses
are not competing but are complementary.

The issue of alternative explanations is classic in
finite mixture statistics. Mixtures have two separate
uses. One is to simply fit a nonnormal distribution
without a particular interest in the mixture components.
The other is to capture substantively meaningful sub-
groups. For a historical overview, see, for instance,
McLachlan and Peel (2000, pp. 14–17), who refer to
a debate about blood pressure. A classic example con-
cerns data from a univariate (single-class) lognormal
distribution that are fitted well by a two-class model
that assumes within-class normality and has different
means. Bauer and Curran (2003) consider the anal-
ogous multivariate case arising with growth mixture
modeling.9 The authors use a Monte Carlo simula-
tion study to show that a multiclass growth mixture
model can be arrived at using conventional Bayesian
information criterion (BIC) approaches (see below)
to determine the number of classes when data, in
fact, have been generated by a nonnormal multivariate

9Multivariate formulas that show equivalence are not given.
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distribution that is skewed and kurtotic. Although the
authors only consider GMM, the resulting overex-
traction of classes would be more pronounced for
LCGA. Bauer and Curran’s study serves as a caution to
researchers to not automatically assume that the latent
trajectory classes of a growth mixture model have sub-
stantive meaning. Their article is followed by three
commentaries and a rejoinder that place the discussion
in a larger context. Two of the commentaries, including
one by Muthén (2003), point out that BIC does not
address model fit to data but is a relative fit measure
comparing competing models. Muthén discusses new
mixture tests that aim to address data fit, which are
mentioned below. The use of these alternative models
ultimately has to be guided by arguments related to
substantive theory, auxiliary information, predictive
validity, and practical usefulness.

19.3.4.3. Conventional Mixture Tests

The selection of the number of latent classes
has been discussed extensively in the statistical
literature on finite mixture modeling (see, e.g.,
McLachlan & Peel, 2000). The likelihood ratio
comparing a k − 1 and a k-class model does not
have the usual large-sample chi-square distribution
due to the class probability parameter being at the
border (zero) of its admissible space. A commonly
used alternative procedure is the BIC (Schwartz, 1978),
defined as

BIC = −2 log L + p ln n, (7)

where p is the number of parameters and n is the
sample size. Here, BIC is scaled so that a small
value corresponds to a good model with a large log-
likelihood value and not too many parameters.

Consider as an example the generated data example
of the previous section. Here, the analysis without the
x covariate or the u distal outcome gave the following
BIC values for one, two, and three classes: 39,676.166,
39,603.274, and 39,610.785. This points correctly to
two classes, despite the fact that the model is misspec-
ified due to not including x and its direct effect on
the growth factors. This fortunate outcome cannot be
relied on, however.

19.3.4.4. New Mixture Tests

This section briefly describes two new mixture test
approaches. A key notion is the need for checking
how well the mixture model fits the data, not merely
basing a model choice on k classes fitting better

than k − 1 classes. It should be emphasized that
there are many possibilities for checking model fit
against data in mixture settings, and the methodology
for this is likely to expand considerably in the future.
One promising approach is the residual diagnostics
based on pseudo-classes, proposed in Wang, Brown,
and Bandeen-Roche (2002).

Lo, Mendell, and Rubin (2001) proposed a like-
lihood ratio–based method for testing k − 1 classes
against k classes. The Lo-Mendell-Rubin approach
has been criticized (Jeffries, 2003), although it is
unclear to which extent the critique affects its use
in practice. The Lo-Mendell-Rubin likelihood ratio
test (LMR LRT) avoids a classic problem of chi-
square testing based on likelihood ratios. This concerns
models that are nested, but the more restricted model
is obtained from the less restricted model by a param-
eter assuming a value on the border of the admissible
parameter space—in the present case, a latent class
probability being zero. It is well known that such like-
lihood ratios do not follow a chi-square distribution.
Lo, Mendell, and Rubin consider the same likelihood
ratio but derive its correct distribution. A low p-value
indicates that the k − 1-class model has to be rejected
in favor of a model with at least k classes. The Mplus
implementation uses the usual Mplus mixture model-
ing assumption of within-class conditional normality
of the outcomes given the covariates. When nonnormal
covariates are present, this allows a certain degree of
within-class nonnormality of the outcomes. The LMR
LRT procedure has been studied for GMMs by Monte
Carlo simulations (Masyn, 2002). More investigations
of performance in practice are, however, of interest,
and readers can easily conduct studies using the Mplus
Monte Carlo facility for mixtures.

Muthén and Asparouhov (2002) proposed a new
approach for testing the fit of a k-class mixture model
for continuous outcomes. As opposed to the LMR LRT,
this procedure concerns a test of a specific model’s
fit against data. The procedure relies on testing if the
multivariate skewness and kurtosis (SK) estimated by
the model fit the corresponding sample quantities. The
sampling distributions of the SK tests are assessed by
computing these values over a number of replications
in data generated from the estimated mixture model.
Obtaining low p-values for skewness and kurtosis
indicates that the k-class model does not fit the data.
Univariate and bivariate test results are also provided
for each variable and pair of variables. These tests
may provide a useful complement to the LMR LRT.
Currently, the SK tests are not available with missing
data. Given the inherent sensitivity to outliers, the SK
testing should be preceded by outlier investigations.
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The SK procedure needs further investigation but is
offered here as an example of the many possibilities
of testing a mixture model against data (see also Wang
et al., 2002).

19.3.5. The LSAY Math Achievement Example

This section returns to the analysis of the mathe-
matics achievement data from the LSAY data men-
tioned earlier. Based on the educational literature, the
following covariates are included: female; Hispanic;
Black; mother’s education; home resources; the
student’s educational expectations, measured in
seventh grade (1 = high school only, 2 = voca-
tional training, 3 = some college, 4 = bachelor’s
degree, 5 = master’s degree, 6 = doctorate); the
student’s thoughts of dropping out, measured in sev-
enth grade; whether the student has ever been arrested,
measured by seventh grade; and whether the student
has ever been expelled by seventh grade. Correspond-
ing to individuals with complete data on the covariates,
the analyses consider a subsample of 2,757 of the
total 3,116 individuals. The analyses were carried
out by maximum likelihood estimation using Mplus
Version 2.13.

19.3.5.1. Statistical Checking

The univariate skewness and kurtosis sample values
in the LSAY data are as follows:

Skewness = (0.168 0.030 0.063 −0.077), (8)

Kurtosis = (−0.551 −0.338 −0.602 −0.559).

(9)

In line with the earlier discussion of the LMR LRT, due
to the low nonnormality in the outcomes, it is plausible
that this test is applicable in the LSAY analysis for
testing a one-class model versus more than one class.
In the LSAY analysis, this test points to at least two
classes with a strong rejection (p = .0000) of the
one-class model. The SK tests carried out on the list-
wise present subsample of 1,538 reject the one-class
model (p = .0000 for both multivariate skewness
and multivariate kurtosis) but do not reject two classes
(p = .4300 and .5800). The LMR LRT for two versus
three or more classes obtained a high p-value (.6143)

in support of two classes. Taken together, the statistical
evidence points to at least two classes. Given that
the skewness and kurtosis tests found that two- and
three-class GMMs fit the data, the LMR LRT is
useful for testing the multiclass alternatives against
each other.

19.3.5.2. Substantive Checking
and Further Statistical Analysis

This section compares analysis results using a con-
ventional one-class growth model and different forms
of GMMs and discusses substantive meaningfulness
based on educational theory, auxiliary information,
and practical usefulness. Figure 19.7 shows a diagram
of the general model.

19.3.5.2.1. Conventional one-class growth
modeling. As a first step, the conventional one-class
growth model results are considered. Briefly stated,
a linear growth model fits reasonably well and has a
positive growth rate mean of about 1 standard deviation
across the four grades. The covariates with significant
influence (sign in parentheses) on the initial status are
as follows: female (+), Hispanic (−), Black (−),
mother’s education (+), home resources (+), expec-
tations (+), dropout thoughts (−), arrest (−), and
expelled (−). The covariates with significant influ-
ence (sign in parentheses) on the growth rate are as
follows: female (−), Hispanic (−), home resources
(+), expectations (+), and expelled (−).

19.3.5.2.2. Two-class GMM. The two-class
solution is characterized by a low class of 41%, which,
in comparison to the high class, has a lower initial
status mean and variance, a lower growth rate mean,
and a higher growth rate variance. It is interesting to
consider what characterizes these students apart from
their poor mathematics achievement development. The
multinomial logistic regression for class membership
indicates that, relative to the high class, the odds of
membership in the low class are significantly increased
by being male, being Hispanic, having a mother with
a low level of education, having low seventh-grade
educational expectations, having had seventh-grade
thoughts of dropping out, having been arrested, and
having been expelled. The low class appears to be a
class of students with problems both in and out of
school. The profile of the low class is reminiscent
of individuals at risk for dropping out of high school
(see, e.g., Rumberger & Larson, 1998, and references
therein). Many of these students are “disengaged,” to
use language from high school dropout theories.

The within-class influence of the covariates on the
initial status and growth rate factors varies significantly
across class. The low class has no significant predic-
tors of growth rate, whereas the growth rates of the
two higher classes are significantly enhanced in well-
known ways by being male, having a mother with a
high level of education, having high home resources,
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Figure 19.7 GGMM Diagram for LSAY Data
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and having high expectations. To the extent that the
low class has substantive meaning, the findings suggest
that different processes are in play for students in the
low class.

19.3.5.2.3. Three-class GMM including a distal
outcome. To more specifically investigate the data
from the high school dropout perspective and further
characterize the low class, the distal binary outcome of
dropping out of high school, as recorded in Grade 12,
was added. The overall dropout rate in the sample is
14.7%, or 458 individuals. Here, class membership
in the GMM is, to some extent, also determined by
the Grade 12 dropout indicator and not only by
the covariates and math achievement development.
Adding the distal outcome, the LMR LRT rejected
the two-class model in favor of at least three classes
(p = .0060). The three-class solution produces a more
distinct low class of 19%, a middle class of 28%, and
a high class of 52%. Here, the low class (estimated as
536 students) has a lower growth rate mean and lower
growth rate variance than in the two-class solution
without the distal outcome.10

10The Akaike information criterion (AIC) points to at least three classes,
whereas the Bayesian information criterion (BIC) points to two classes.
The one-class log-likelihood, number of parameters, AIC, and BIC values
are as follows: −30,021.955, 27, 60,097.909, and 60,257.791. The two-
class log-likelihood, number of parameters, AIC, BIC, and entropy values
are as follows: −29,676.457, 63, 59,478.914, 59,851.971, and 0.552. The
three-class log-likelihood, number of parameters, AIC, BIC, and entropy
values are as follows: −29,566.679, 99, 59,331.359, 59,917.591, and
0.620.

The class membership regression part of the model
indicates that for the low class relative to the highest
class, the same covariates as in the two-class solu-
tion are significant, except that Hispanic and mother’s
education are insignificant, whereas Black and home
resources are significant. Interestingly, comparing the
middle class to the high class, the disengagement
covariates of low educational expectations, seventh-
grade dropout thoughts, having been arrested, and
having been expelled are no longer significant. This
suggests that the low class is now a more distinct class
that is more specifically characterized as disengaged
and at risk for high school dropout. The two higher
classes may or may not make a substantively mean-
ingful distinction among students, but their presence
helps to isolate the low class. In a two-class solution
including the distal outcome, the low class is not very
different from the more unspecific low class of the
initial two-class solution without the distal outcome. It
is interesting to note that although the LMR LRT does
not point to three classes without the distal outcome,
the three-class solution without the distal outcome
shows a similar low class as in the three-class solution
with the distal outcome. As will be shown next, the
three-class solution with the distal outcome gets not
only statistical support from the LMR LRT but also
substantive support from predicting dropout.

Further bolstering the notion that the low class is
prone to high school dropout, the probability of drop-
ping out, as estimated from the three-class model, is
distinctly different in the low class. The probabilities
are .692 for the low class, .076 for the middle class,
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and .006 for the high class. Other concurrent and distal
events were also added to the three-class model to fur-
ther understand the context of the low class, including
responses to the following 10th grade question: “How
many of your friends will drop out before graduating
from high school?” (1 = none, 2 = a few, 3 = some,
4 = most). Treating this as an ordered polytomous
outcome influenced by class and the covariates resulted
in estimated probabilities for response in either of the
three highest categories (few, some, most): .259 for
the low class, .117 for the middle class, and .030 for the
high class. Considerably more students in the low class
have friends who are also thinking of dropping out. In
contrast, heavy alcohol involvement in Grade 10 was
not distinctly different in the low class. The estimated
growth curves and individual trajectories can be seen
in Figure 19.6.

19.3.5.2.4. Practical usefulness. An educational
researcher is likely to find it interesting that the analy-
ses suggest that dropout by Grade 12 can be predicted
already by the end of Grade 10 with the help of
information on problematic math achievement devel-
opment. Whether the division into growth mixture
classes is meaningful is largely a substantive question.
An argument in favor of there being a distinct “fail-
ing class” is obtained from the distal outcome of high
school dropout. The fact that the dropout percentage is
dramatically higher for the low class than for the other
two, 69% versus 8% and 1%, suggests that the three
classes are not merely gradations on an achievement
development scale but that the low class represents a
distinct group of students.

From the point of view of intervention, it is valuable
to explore whether a dependable classification into
the low class can be achieved earlier than Grade 10.
GGMM can help answer this question. For example, by
Grade 7, the covariates and the first math achievement
outcome are available, and given the estimated three-
class model, new students can be classified based on
the model and their Grade 7 data. GGMM allows the
investigation of whether this information is sufficient
or if math achievement trend information provided by
adding Grade 8 information (or Grades 8 and 9 infor-
mation) is needed before a useful classification can
be made.

19.4. Categorical Outcomes:
Conventional Growth Modeling

With categorical outcomes, the Level 1 model part (1)
has to be replaced with a model that describes the

probability of the outcome at different time points for
different individuals. This model has been studied by
Hedeker and Gibbons (1994). Here, logistic regression
will be used, so that with the example of a binary
outcome u scored 0 and 1,

P(uti = 1|a1ti, a2ti, xi) = 1

1 + eτ−logit(uti)
, (10)

Level 1 (Within): logit(uti) = π0i + π1i a1ti

+ π2tia2ti + eti, (11)

Level 2 (Within):




π0i = β00 + β01xi + r0i

π1i = β10 + β11xi + r1i .

π2i = β20 + β21xi + r2i

(12)

A perhaps more common parameterization is to fix
the threshold parameter τ in (10) at zero, which enables
the identification of β00.11 The variance of e is not a free
parameter but is fixed in line with logistic regression.
With ordered polytomous outcomes, Mplus uses the
proportional odds logistic regression model (see, e.g.,
Agresti, 1990, pp. 322–324). This may be thought of
as a threshold model for a latent response variable, so
that with C categories, there is a series of C−1 ordered
thresholds. The thresholds are held equal across time.
As a standardization, β00 = 0 may be chosen, or
alternatively, the first threshold may be set at zero.
Hedeker and Gibbons (1994) describe maximum like-
lihood estimation and show that this requires heavier
computations than with continuous outcomes, calling
on numerical integration using quadrature methods.
The computational burden is directly related to the
number of random effects (i.e., the number of co-
efficients π for which the variance of r is not fixed
at zero).

19.5. Categorical Outcomes:
Growth Mixture Modeling

The conventional growth modeling for categorical
outcomes given in (11) and (12) can be extended to
growth mixture modeling with latent trajectory classes.
This is a new technique introduced in Asparouhov
and Muthén (2003b), using maximum likelihood esti-
mation based on an EM algorithm with numerical
integration. In line with the latent variable approach to

11The Mplus input and output for these analyses are given in Example 5
at www.statmodal.com/mplus/examples/penn.html.
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growth modeling with continuous outcomes discussed
in Section 19.2, the Asparouhov-Muthén approach
allows a1ti in (11) to be handled as data or as param-
eters to be estimated. Furthermore, the π2ti slopes can
be random for the time-varying covariates a2ti.12 The
Hedeker-Gibbons model is obtained as a special case
with a single latent class.

As in (3), the covariate effect on class membership
is a multinomial logistic regression,

P(ci = k|xi) = eγ0k+γ1kxi

∑K
s=1 eγ0s+γ1s xi

. (13)

The growth mixture extension of (10) is

P(uti = 1|a1ti, a2ti, xi, ci = k)

= 1

1 + eτ−logit(utik)
, (14)

where the added conditioning on c and the subscript k

emphasize that the growth model for u, as expressed
by the logits, varies across classes. In line with the
extension for continuous outcomes, the different latent
classes have different growth models (11) and (12),
with key differences typically found in the β coef-
ficients but also in the (co)variances of the Level 2
residuals r. Typically, the thresholds τ would be time
and class invariant to represent measurement invari-
ance, although class invariance is not necessary.
Generalizations to including distal outcomes ud, as in
(15), is of interest also here:

P(udi = 1|ci = k, xi) = 1

1 + eτk−κkxi
, (15)

with coefficients varying across classes k.

Model building and testing strategies for categorical
outcomes are in line with those discussed earlier for
continuous outcomes.

19.5.1. Categorical Outcomes:
Latent Class Growth Analysis

Latent class growth analysis (LCGA) for categorical
outcomes considers the model in (11) through (13) with
the restriction of zero variances and covariances for the
residuals r. Background references for LCGA include
Nagin (1999), Nagin and Land (1993), and Nagin and
Tremblay (2001).

12Threshold parameters are useful with ordered polytomous outcomes, in
which case β00 can be fixed at zero, or, alternatively, the first threshold
is fixed at zero.

It is instructive to relate LCGA to latent class
analysis (LCA). As in LCGA, LCA considers mul-
tiple u variables seen as indicators of c and assumed
conditionally independent given c. As in LCGA, there
are no continuous latent variables to explain fur-
ther within-class correlation among the u variables.
Typically, all outcomes are categorical. Continuous
outcomes are, however, possible, giving rise to latent
profile analysis. In LCA, the multiple indicators are
cross-sectional measures, not longitudinal. When the
multiple indicators correspond to repeated measures
over time, latent classes may correspond to different
trends, and trend structures can be imposed across
the indicators’ probabilities. To clarify this, consider
again (14):

P(uti = 1|a1ti, a2ti, xi, ci = k) = 1

1 + eτ−logit(utik)
.

(16)

This means that with, for example, linear growth
over T time points, the probabilities of the T

u variables are structured according to a logit-linear
trend, where the intercept and slope factors have dif-
ferent means across the classes. Note here that τ is held
equal across time points. In contrast, LCA considers

P(uti = 1|xi, ci = k) = 1

1 + eτtk
, (17)

where the τtk thresholds vary in an unrestricted fashion
across the u variables and across the classes. In this
way, LCGA gives a more parsimonious description of
longitudinal data than LCA.

Models with more than one latent class variable are
also of interest. Examples of LCGA with multiple-
class variables are given in Muthén and Muthén (2000),
Muthén (2001a), and Nagin and Tremblay (2001). In
this connection, it is useful to consider another impor-
tant class of growth models, latent transition analysis
(LTA). LTA uses time-specific latent class variables
measured by multiple indicators at each time point to
study class membership change over time.

Both LCA and LTA can be generalized to include
random effects as in growth mixture modeling
(Asparouhov & Muthén, 2003b). All of these model
variations can be captured in a general latent variable
modeling framework and are included in Mplus.

19.5.2. Categorical Outcomes: Comparing
LCGA and GMM on Delinquency Data

Nagin and Land (1993), Nagin (1999), Roeder
et al. (1999), and Jones et al. (2001) used PROC TRAJ
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Figure 19.8 Frequency Distributions for Cambridge Data
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LCGA to study the development of delinquency over
ages 10 to 32 in a sample of 411 boys in a working-class
section of London (Farrington & West, 1990). These
“Cambridge data” were studied from the substantive
perspective of the Moffitt (1993) theory of adolescent-
limited versus life course–persistent antisocial behav-
ior. This theory suggests two major trajectory classes.
Using different ways to aggregate and model the out-
comes, Nagin and Land found four classes, Nagin
three classes, Roeder et al. four classes, and Jones et al.
three classes. The Nagin (1999) approach of consider-
ing 2-year intervals and excluding the 8 boys who died
during the study will be used here, resulting in 11 time
points and n = 403. The frequency distributions are
shown in Figure 19.8. Only ages 11 to 21 will be
used here.

Given that few individuals have more than two con-
victions in the 2-year interval, data will be coded as
0, 1, and 2 for zero, one, or more convictions in the last
2 years; 65% have 0 value at all 11 time points. A logis-
tic ordered polytomous response model will be used,
and three types of analyses will be illustrated: latent

class growth analysis, conventional growth modeling,
and growth mixture modeling. The analyses draw on
Muthén, Kreuter, and Asparouhov (2003).

19.5.2.1. Latent Class Growth
Analysis of the Cambridge Data

Latent class growth analysis was performed with
two, three, and four classes applying a quadratic
growth curve for all classes. The corresponding BIC
values were 2,230.014, 2,215.251, and 2,227.976.
This points to the three-class model as being the best.
This model has a log-likelihood value of −1,071.632,
12 parameters, and an entropy of 0.821. The estimated
class percentages are 3%, 21%, and 75%, arranging the
curves from high to low. The LMR LRT also points to
three classes in that the test of the two-class model
against the three-class model has a p-value of .0030,
suggesting rejection, whereas the three-class model
tested against the four-class model has a p-value of
.1554. The estimated three-class growth curves for the



362 • SECTION V/MODELS FOR LATENT VARIABLES

Figure 19.9 Three-Class LCGA for Cambridge Data
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probability of having at least one conviction are shown
in Figure 19.9.13

19.5.2.2. Growth and Growth Mixture
Analysis of the Cambridge Data

Conventional one-class growth modeling of the
ordered polytomous outcome used a centering of the
time scale at age 17 and let the intercept and linear
slope growth factors be random, and the quadratic
slope factor variance was fixed at zero. The inter-
cept and linear slope were allowed to correlate. This
one-class growth model resulted in a log-likelihood
value of −1,072.396 with seven parameters and a BIC
value of 2,186.785.14 The linear slope variance is not
significant and will, for simplicity, be set to zero in
subsequent analyses. In the growth mixture analyses

13The Mplus input and output for these analyses are given in Example 6
at www.statmodel.com/mplus/examples/penn.html.

14The Mplus input and output for these analyses are given in Example 7
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.

to follow, this intercept variance was allowed to vary
across the classes.

The two-class growth mixture modeling resulted
in a log-likelihood value of −1,070.898, a BIC of
2,201.785, 10 parameters, and an entropy of 0.414.
The estimated class percentages are 46% and 54%,
arranging the classes from high to low. The intercept
variance is significant in both classes and lower in the
low class. The LMR LRT p-value for one class tested
against two classes is .0362, pointing to the need for
at least two classes.

A specific three-class growth mixture model was
considered next, in which one class was specified
to have zero probability of conviction throughout the
time period. This zero class corresponds to the notion
that some individuals do not get involved in delin-
quency activities at all. In the other two classes, the
intercept variance was allowed to be free to be esti-
mated and different across those classes. This model
resulted in a log-likelihood value of −1,066.767, a
BIC of 2,199.523, 11 parameters, and an entropy
of 0.535. The estimated class percentages are 3%,
50%, and 47%, arranging the classes from high to
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Figure 19.10 Three-Class LCGA for Cambridge Data
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low. The intercept variance is nonsignificant for the
highest class but significant for the middle class.15 An
interesting finding is that this three-class GMM, which
allows within-class variation, has 1 parameter less than
the three-class LCGA but a better fit in terms of
log-likelihood and BIC values. The zero class is
smaller in the GMM than in the LCGA, 47% ver-
sus 75%. The fact that 64% of the individuals have
observed values at zero throughout, whereas the GMM
zero class has only 47% prevalence, is due to the fact
that the individuals who are most likely to be in the
low class according to the posterior probabilities have
a sizable probability of being in the middle class. The
estimated three-class growth curves for the probabil-
ity of having at least one conviction are shown in
Figure 19.10. These curves are clearly different from
the LCGA curves in Figure 19.9, with Class 1 and Class
2 peaking at different ages for GMM but not for LCGA.

15The Mplus input and output for these analyses are given in Example 8
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.

This may lead to different substantive interpretations
in the context of Moffitt’s (1993) theory.

19.5.3. Categorical Outcomes:
Discrete-Time Survival Analysis

Discrete-time survival analysis (DTSA) uses the
categorical variables u to represent events modeled by
a logistic hazard function (cf. Muthén & Masyn, in
press). For an overview of conventional DTSA, see,
for example, Singer and Willet (1993). Consider a
set of binary 0/1 variables uj , j = 1, 2, . . . , r, where
uij = 1 if individual i experiences the nonrepeatable
event in time period j, and define ji as the last time
period in which data were collected for individual i.

The hazard is the probability of experiencing the event
in time period j given that it was not experienced prior
to j. The hazard is written as

hij = 1

1 + e−(−τj +κj xi )
, (18)
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where a proportional-odds assumption is obtained by
dropping the j subscript for κj . Discrete-time survival
analysis is fitted into the general mixture model above
by noting that the likelihood is the same as for u related
to c and x in a single-class model.

The fact that individual i does not have observations
on u after time period ji is handled as missing data. For
example, with five time periods (r = 5), an individual
who experiences the event in Period 4 has the data
vector u′

i

(0 0 0 1 999),

with 999 representing missing data. An individual
who is censored in Period 5 has the data vector u′

i

(0 0 0 0 0),

whereas an individual who is censored in Period 4 has
the data vector u′

i

(0 0 0 999 999).

Muthén and Masyn (in press) also propose general
discrete-time survival mixture analysis (DTSMA)
models, in which different latent classes have different
hazard and survival functions. For example, a growth
mixture model for y can be combined with a survival
model for u.

19.6. Combination of
Categorical and Continuous
Outcomes: Modeling With Zeros

In the previous section, it was seen that the u variables
need not represent conventional categorical outcomes
but can be used as indicators of events. In this section,
this idea is taken further by using the u variables as
indicators of zero values on a continuous and on a count
outcome variable.

Growth mixture modeling is useful for describing
growth in outcomes that can be seen as continuous
but nonnormally distributed. A type of nonnormality
that cannot be well captured by mixtures of normal
distributions arises in studies in which a significant
number of individuals are at the lowest value of an out-
come, for example, representing absence of a behavior.
Applications include alcohol, drug, and tobacco use
among adolescents. Censored-normal models are often
used for outcomes of this kind, including classic Tobit
regression analysis (Amemiya, 1985; Tobin, 1958) and
LCGA in the PROC TRAJ program (Jones et al., 2001).

A recent article by Olsen and Schafer (2001) gives an
excellent overview of several related modeling efforts.
Censored-normal models have been criticized (see,
e.g., Duan, Manning, Morris, & Newhouse, 1983)
because of the limitation of assuming that the same
set of covariates influences both the decision to engage
in the behavior and the amount observed. A two-part
modeling approach proposed in Olsen and Schafer
avoids this limitation.

To simplify the discussion, the lowest value will be
taken to be zero. It is useful to distinguish between
two kinds of zero outcomes. First, individuals may
have zero values at a given time point because their
behavioral activity is low and is zero during certain
periods (“random zeros”). Second, individuals may not
engage in the activity at all and therefore have zeros
throughout all time points of the study (“structural
zeros”). Olsen and Schafer (2001) proposed a two-part
model for the case of random zeros, whereas Carlin,
Wolfe, Brown, and Gelman (2001) considered the case
of structural zeros. In both articles, a random-effects
logistic regression was used to express the probabilities
of nonzeros versus zeros.

Olsen and Schafer (2001) studied alcohol use in
Grades 7 through 11. To capture the changing zero
status across time, they expressed the logistic regres-
sions for each time point as a random-effects growth
model. The term two-part model refers to having both a
logistic model part to model the probability of nonzero
versus zero outcomes (Part 1) and a continuous-normal
or lognormal model part for the values of the nonzero
outcomes (Part 2). In Olsen and Schafer, the two
parts have correlated random effects. The two parts
are also allowed to have different covariates, avoiding
the limitation of censored-normal modeling.

Carlin et al. (2001) studied cigarette smoking among
adolescents. A two-class model was used with a
“zero class” (structural zeros) representing individuals
not susceptible to regular smoking (also referred to
as “immunes”). As pointed out in Carlin et al., an
individual with zeros throughout the study does not
necessarily belong to the zero class but may show zeros
by chance. In their analysis, the estimated proportion
of immunes was 69%, whereas the empirical propor-
tion with all zeros was 77%. Because of this, an ad hoc
analysis based on deleting individuals with all zeros
may lead to distorted results.

Inspired by Olsen and Schafer (2001) and Carlin
et al. (2001), Muthén (2001b) proposed a generali-
zation of growth mixture modeling to handle both
random and structural zeros in a two-part model.
Multiple latent classes are used to represent the growth
in the probability of nonzero values in Part 1 as well as
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the growth in the nonzero outcomes in Part 2. For the
Part 1 modeling of the probability of nonzero values,
Muthén considered a latent class growth alternative
to the random-effects modeling of Olsen and Schafer
(2001) and Carlin et al. (2001)—that is, a model in
line with Nagin (1999). The use of latent classes for
the Part 1 modeling of the probability of nonzero val-
ues may be seen as a semi-parametric alternative to a
random-effects model in line with Aitkin (1999). In
addition to accounting for random zeros as in Olsen
and Schafer, Muthén’s Part 1 approach incorporates
Carlin et al.’s concept of a zero class that has zero
probability of nonzero values throughout the study.
A further advantage of the proposed approach is that
covariates are allowed to have a different influence
in different classes. For the Part 2 modeling of the
nonzero outcomes, the proposed modeling extends
the Olsen-Schafer growth model to a growth mixture
model. The Olsen-Schafer model, the mixture version
of Olsen-Schafer, the Carlin et al. model, and the
Muthén two-part growth mixture model can all be fitted
into the general latent variable modeling framework
of Mplus.

The question of the proper treatment of zeros also
arises with count variables. Roeder et al. (1999)
considered zero-inflated Poisson modeling (ZIP)
(Lambert, 1992) in the context of LCGA. When a count
outcome is modeled by ZIP, it is assumed that a zero
value can be observed for two reasons. The ZIP model
is a two-class mixture model, similar in spirit to that
of Carlin et al. (2001). First, if an individual is in the
zero class, a zero count has probability 1. Second, if an
individual is in the nonzero class, the probability of a
zero count is expressed by the Poisson distribution. The
probability of being in the zero class can be modeled
by covariates that are different from those that predict
the counts for the nonzero class. In longitudinal data,
this probability can be modeled to vary across time.
The model by Roeder et al. considered an LCGA for
the nonzero part.

19.7. Multilevel Growth
Mixture Modeling

This final section returns to the analysis of the LSAY
math achievement example. Longitudinal data are
often collected through cluster sampling. This was
the case in the LSAY study, in which students were
observed within randomly sampled schools. This gives
rise to three-level data with variation across time on
Level 1, variation across individuals on Level 2, and

variation across clusters on Level 3. This section
discusses three-level growth modeling and its new
extension to three-level growth mixture modeling. Due
to lack of space, details of the modeling will not be
discussed here, but an analysis of the LSAY example
will instead be discussed in general terms. The reader
is referred to Asparouhov and Muthén (2003b) for
technical details.

The model diagram of Figure 19.11 is useful for
understanding the general ideas of the multilevel
growth mixture modeling. This is the LSAY math
achievement example discussed in Section 19.3.5. In
Figure 19.11, the observed math variable rectangles
at the top of the figure represent the Level 1 variation
across time. The latent variable circles, labeled i and
s, represent the Level 2 variation in the intercept and
slope growth factors across students. The ib, cb, sb,
and hb latent variable circles represent the Level 3 vari-
ation across schools. Here, b refers to between-school
variation. One aim of three-level growth modeling
is the decomposition of the intercept variance into i

and ib variation and the decomposition of the slope
variance into s and sb variation. Furthermore, it is of
interest to describe part of this variation by school-level
covariates, as shown at the bottom of the diagram.

Figure 19.11 also includes a distal outcome of high
school dropout and considers across-school variation
in its intercept hb (there may also be across-school
variation in some of the slopes). The intercept varia-
tion is again described by school-level covariates. This
model part is analogous to two-level logistic regression
(see, e.g., Hedeker & Gibbons, 1994). In Figure 19.11,
a new feature is that the two-level logistic regression
has as one of its predictors a latent categorical variable
c, the latent trajectory class variable.

A key new feature in Figure 19.11 is the across-
school variation cb in the individual-level latent class
variable c. This part of the model makes it possible
to study the influence of school-level variables on the
class member probability for the students. This corre-
sponds to multinomial logistic regression with random
effects, except that the dependent variable is latent.

The model in Figure 19.11 was analyzed using
maximum likelihood estimation in Mplus.16 A key
school-level variable used in the modeling was a school
poverty index, measured as the percentage of the
student body receiving full school lunch support. It
was found that this school poverty index did not have
a significant effect on the probability of dropping out

16The Mplus input and output for these analyses are given in Example 9
at www.statmodel.com/mplus/examples/penn.html. This analysis was
carried out by Mplus Version 3.
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Figure 19.11 Multilevel GGMM for LSAY Data
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of high school. It did, however, have a significant influ-
ence on c in the sense that a high index value resulted
in a higher probability of being a member of the class
with a poor math achievement trajectory in Grades
7 through 10. The growth mixture analyses reported
on earlier showed that membership in the failing class
gave a very high risk of dropping out of high school.
In this way, the multilevel growth mixture modeling
implies that school poverty does not influence dropout
directly but indirectly, in that it influences achieve-
ment trajectory class, which in turn influences dropout.
This is an interesting new type of mediational process,
whereby the mediator is not only categorical but also
latent.

The general latent variable modeling framework
considered here allows multilevel modeling, such as
three-level growth modeling, not only for continuous
outcomes but also for categorical outcomes. In this
way, multilevel modeling is available in Mplus for
GGMM, LCGA, LCA, LTA, and DTSMA.

19.8. Conclusions

This chapter has shown how modeling, using a combi-
nation of continuous and categorical latent variables,
provides an extremely flexible analysis framework.
Different traditions such as growth modeling, latent
class analysis, and survival analysis are brought
together using the unifying theme of latent variable

modeling. New developments in these areas have been
presented. Not only does this create more interesting
analysis options in each area, but the combination
of model parts that is possible leads to even fur-
ther opportunities for investigating data. Several such
combinations were not discussed but include the fol-
lowing (see also Muthén, 2001a, 2002; Muthén &
Asparouhov, 2003a, 2003b):

• Multiple-process growth mixture modeling
Parallel (dual) processes: studying relations
between concurrent outcomes
Sequential processes: predicting later growth
from earlier growth

• Multiple-group growth mixture modeling: study-
ing similarities and differences across known
groups

• Multiple indicator growth mixture modeling:
studying growth in a latent variable construct

• Embedded growth mixture modeling: combining
the growth model with LCA, factor analysis, path
analysis, and SEM components

• Combined growth mixture and discrete-time sur-
vival modeling: predicting survival from trajec-
tory classes and vice versa

Mplus covers these models for outcomes that are
continuous, binary, ordered polytomous, two-part,
zero-inflated Poisson, or combinations thereof, allow-
ing both missing data and cluster data.
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