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Abstract

This paper reviews the common methods for measuring strength of contingency between
two behaviors in a behavioral sequence, the binomial z-score and the adjusted cell residual,
and points out a number of limitations with these approaches. It presents a new approach
using log odds ratios and employing empirical Bayes estimation in the context of hierarchical
modeling, an approach not constrained by these limitations. A series of hierarchical models
is presented to test the stationarity of behavioral sequences, the homogeneity of sequences
across a sample of episodes, and whether covariates can account for variation in sequences
across the sample. These models are applied to observational data taken from a study of the

behavioral interactions of 254 couples, to illustrate their use.
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Introduction

Behavior is inherently sequential. It unfolds over time, one action following another in
a constant stream. When two or more people are together, their individual streams of be-
havior can intertwine, forming broad rivers of interaction. For several decades behavioral
researchers have struggled to characterize these streams of individual behavior or group in-
teraction, developing observational methods for parsing this flow into meaningful units, and
constructing quantitative indicators to capture and compare patterns within this stream.
These techniques are now used to study questions such as how parent-infant interaction
affects attachment security (Kiser, Bates, Maslin, & Bayles, 1986), how parent-child in-
teraction shapes the development of aggressive behavior (Patterson, 1979), how peer-peer
interaction influences risky behavior (Bank, Patterson, & Reid, 1996), and how husband-wife
interaction influences satisfaction with the relationship (Gottman, 1979).

In this paper we are concerned with quantitative methods used to describe recurrent
regularities in microcoded observational data. In microcoding, the stream of behavior or
interaction is first parsed into discrete behaviors, and then each behavior is assigned to one
of a set of exhaustive categories.

We begin this paper by describing quantitative methods that have been developed to
characterize patterns within such data sets. We then discuss important limitations of these
methods, including their over-sensitivity to the length of the behavioral stream and their lack
of attention to the multilevel nature of the data set and underlying phenomena. We then
introduce a new set of quantitative methods not constrained by these limits that provide
a means of accounting for heterogeneity and structure in behavioral data. These methods
include the use of the log odds ratio as an indicator of interaction pattern, random effects
models as a way of specifying these multilevel relationships, and empirical Bayesian estima-

tion methods for calculating and testing parameters within these models.
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Methods Currently in Use

We first introduce some terminology. We will refer to the individual or group under
study as the basic sampling unit. We will use the terms “unit” and “basic sampling unit”
interchangeably throughout this paper. A basic sampling unit may be observed on several
occasions, each involving a separate stream of behavior with a defined beginning and end.
We refer to each such occasion as an episode. Eckerman (1993), for example, observed the
same 14 pairs of toddlers interacting in free-play settings five times over a 16-month period.
In our terms, each toddler pair is a basic sampling unit, and each of the five behavioral
streams observed for each toddler pair is an episode, resulting in a data set with 70 separate
episodes. In Eckerman’s study, each episode was limited to 16 minutes of observation, and
contains a sequence of behaviors, each behavior assigned to its own category. Finally, each
episode may be later broken up into two or more sub-episodes by the investigator, based on
empirical or theoretical reasons. Gottman (1979), for example, observed single episodes of
interaction in each of 28 couples, then broke each episode into three sub-episodes of equal
length to study whether interaction patterns changed over the course of the episode.

Behavior during the episode may be shaped by things that happened earlier in the
episode. Many theories hypothesize such effects, including behavioral reinforcement theories
(Patterson, 1979) and theories of conflict escalation (Snyder, Edwards, McGraw, & Kilgore,
1994). To study such processes, most behavioral researchers have concentrated on the re-
lationship between immediately antecedent behavior (A) and the immediately consequent
action (C). We use the terms antecedent and consequent here simply to reflect temporal con-
tiguity; not to imply any necessary causal relationship. Two methods have been advanced
as ways of quantifying the relative strength of this relationship within a particular episode.
The first involves the conditional probability, or probability across the entire episode that,
when behavior A occurs, behavior C will follow. Note that this conditional probability is

calculated at the level of the episode.
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While some researchers have used the conditional probability as a direct measure of
episode-level structure (Eckerman, 1993, for example, compares mean conditional probabil-
ities averaged across episodes and dyads for two separate groups of toddlers), others have
suggested that this is not appropriate. Bakeman and Gottman (1986, p. 149) pointed out
that conditional probabilities can be strongly influenced by the simple probability of occur-
rence of the consequent behavior, and recommended using the binomial z score developed by
Sackett (1979), with modifications recommended by Alison and Liker (1982) and Gottman
(1980). The z score is a measure of the extent to which a particular observed conditional
probability deviates from its expected value as based on the simple unconditional probability
of the consequent behavior. Bakeman and Gottman (1986, p. 157) recommend calculating
a z score for each episode, and using them as scores in standard parametric techniques such
as multiple regression. (In the recent second edition, Bakeman & Gottman (1997) have now
withdrawn this suggestion, based on reasons similar to those we discuss below).

More recently, Bakeman and Quera (1995) demonstrated that these statistics are quite
similar to an adjusted cell residual from a two-way contingency table testing the relationship
between each behavioral categories and its immediate consequent. Tables 1(a) and 1(b)
present such data for one observed episode for one couple from a study of the observed
interactions of 254 adult couples (Howe, 1995). Data in Table 1(a) are from the initial codes
used, which unitized behavior in such a way that a particular type of behavior could be
repeated more than once by an actor. In this study behaviors were also defined as states; a
new behavior began when the state changed, either within an actor or as the other partner
began to speak. The resulting frequencies in Table 1(b) summarize all such state transitions,
either within or between partners. Since by definition a state cannot follow itself in these
data, cells on the diagonal take zero values.

Following Bakeman and Quera’s (1995) guidelines for analyzing data where codes cannot

repeat, an adjusted cell residual can be calculated for each of the remaining 12 cells in
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this table, reflecting the fact that with an observational system involving four categories of
behavior (in this case, two for the male partner: male negative and male positive, two for
the female partner: female negative and female positive) we are able to identify 12 possible
immediate antecedent-consequent relationships, since any behavior can be followed by one
of three other behaviors. Note that each of these adjusted cell residuals is calculated at the
level of the episode (or in this case, at the level of the couple or basic sampling unit, since
each couple was observed on only one occasion).!

Investigators have used the adjusted cell residual (or its analogue, the z-score) as an
episode-level variable interpreted as scaling the relative strength of contingency between two
behaviors in a particular episode (e.g., Davis, Hops, Alport, & Sheeber, 1998). However,
these statistics have important limitations that restrict their utility when they are applied
to data from more than one episode.

Instability With Low Cell Counts

First, the adjusted cell residual or z-score can become quite unstable when there are
few instances of a particular antecedent-consequent sequence. Figure 1 illustrates this for
an adjusted cell residual based on sequences of Male Partner Negative followed by Female
Partner Negative for each of the 254 couples mentioned above. The range of adjusted cell
residuals is quite large for couples having the fewest instances of this sequence, and becomes
much more restricted as the number of sequences increases. The effects of this property
can be reduced in two ways. Investigators can drop all cases with low cell frequencies from
their analyses. As an alternative, investigators could pool data across episodes or across
basic sampling units into one larger contingency table to increase cell counts. Both of
these options can introduce problems, however. The former may restrict the analyses to a
biased subsample of cases, while the latter ignores potentially important information about
between-episode or between-unit variation in antecedent-consequent patterns. In addition,

as Wickens (1993) has pointed out, pooling can seriously distort findings, and can even lead
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to cases where associations in the pooled data are opposite to those found in each individual
table.

Adjusted cell residuals or z-scores are unstable because their values are influenced by
the relative frequency of the antecedent behavior. Episodes with fewer occurrences of the
antecedent will be associated with greater measurement error and greater instability in the
adjusted cell residual. When adjusted cell residuals or z-scores are calculated and used as
predictors in parametric analyses such as regressions, it is assumed that these indicators are
measured without error, an assumption that is most likely untrue. In addition, the measures
from all episodes are given equal weight regardless of their accuracy. In the next section we
will present a method that allows us to model and take into account this measurement error,
and to give more weight to episodes with less error.

Influence of Length Of Episodes

Second, because of the way it is defined, the magnitude of the adjusted cell residual or
z-score can be directly influenced by the overall length of an episode, independent of the
actual relationship between an antecedent and a consequent behavior. To illustrate this,
consider the simulated data where the pattern of counts is similar to that of Table 1(b),
but in which each cell count is multiplied by 10, reflecting a situation where we observe an
episode following the same pattern for a much longer period of time. Table 1(d) reports
the adjusted cell residuals for these simulated data. In each case, the adjusted residuals are
several times greater than those in Table 1(c) (in fact, they are an exact multiple of v/10).
This may not be a problem when data are based on episodes with equal numbers of total
behaviors, but can introduce significant extraneous variability when episodes differ in length.
In the couples data set we have been using as an example, each couple was observed for 15

minutes, but this resulted in episodes that ranged from 12 to 300 total behaviors.
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Interpretation of Individual Cells

Third, adjusted cell residuals or z-scores can be misleading when individual cells, re-
flecting a particular antecedent-consequent relationship, are singled out for analysis and
interpretation. These statistics use information from the entire table in computing values,
and so the value for each cell is definitionally “confounded” with values from all other cells.
The information on contingency in any table contains many fewer degrees of freedom than
the number of cells making up the table. For example, Table 1(b) contains 16 cells but only
5 degrees of freedom. If we focus only on the subtable involving state transitions from male
partner to female partner, the upper right quadrant in Table 1(a), there are four cells but
only one degree of freedom. Interpretation of individual cells without taking into account
the patterns in other cells can be problematic because of this.

For example, marital researchers have used the term negative reciprocity to describe
the likelihood that one partner will respond negatively to a negative behavior by the other
(Gottman, 1979), and the term negative reactivity to describe the likelihood that positive
behavior will be suppressed following negative behavior by the other (Margolin & Wampold,
1981). It is not often noted that these two patterns are likely to be dependent, and in fact
when cells from the four-cell state transition subtable are used to assess these processes,
they are completely confounded, since that subtable has only one degree of freedom. This
lack of independence is not just a statistical oddity, but is in fact inherent in any sequential
observational data that categorizes behavior into a limited set of categories. In our example,
the female partner has only two choices of response. The more she responds negatively in the
face of a negative behavior from her partner, the less she responds positively. As negative
reciprocity increases, so must positive responding (negative reactivity) be suppressed.

Lack of Attention to Hierarchical Structures
Finally, as we noted earlier, antecedent-consequent patterns are embedded within sub-

episodes, sub-episodes are embedded within episodes, and episodes may be embedded within
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individuals or groups. Current methods for studying antecedent-consequent patterns may
be limited in their ability to unpack and make sense of this multilevel structure. Pooling
data across episodes or basic sampling units eliminates information about variation between
episodes or units, and this is often the variation in which we are most interested. On the
other hand, using z scores or adjusted cell residuals calculated for each episode assumes these
scores are measured without error or with constant error variance, an assumption that is
likely erroneous.

We now introduce a different method, empirical Bayesian random effects modeling (EBREM),
for studying antecedent-consequent relationships in sequential behavioral data. We apply
EBREM to the log odds ratio as an indicator of contingency, which avoids some of the pit-
falls of using indicators based on single cells. As we will demonstrate, EBREM not only
incorporates multilevel structure explicitly in its models, but also avoids the problems of
unrealistic estimates that may occur when some episodes have relatively few instances of a
sequence of interest. Our work builds on and extends recent discussions of Markov models
for studying variation in individual behavior chains (Gardner, 1990), and work on adjusting

for between-subjects variability in contingency tables (Wickens, 1993).
Random Effects Modeling of Log Odds Ratios

We begin with some notation. Table 2 summarizes all possible two-step sequences that
could reflect antecedent-consequent relationships for a set of behavior categories used to
describe one complete behavioral sequence for a single episode m within the [th sampling
unit. Each episode will have an I x J contingency table where the cells are filled by frequency
counts for sequences beginning with one of the I codes (antecedent) and ending with one
of the J behaviors (consequent). Let n;;m be a frequency count for the sequence beginning
with behavior ¢ and ending with behavior j for the mth episode and [th sampling unit, where
1=1,---.1, j3=1,---,J,m=1,---,K,and [ = 1,---, L where K is the total number

of episodes per sampling unit and L is the total number of sampling units in the study. In
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many cases I = J, since the same set of behavioral categories will be considered as both
antecedents and consequents.
Use of the Log Odds Ratio

Upton (1982) identified 22 measures of association that have been developed for summa-
rizing data in contingency tables. The adjusted cell residual that we have been discussing has
two virtues as a measure of association between antecedent and consequent: it is not affected
by rates of the antecedent behavior, and it defines strength of association in terms of how
much the cell frequency reflecting a particular antecedent-consequent association deviates
from the expected or “chance” value. We would like to retain these characteristics, but also
have an indicator that is not sensitive to the total number of behaviors in the sequence, and
is tractable when involved in more complex models.

We begin with the odds for a particular cell, defined as the conditional probability for
the consequent given the antecedent, divided by the conditional probability for all other
consequents given that antecedent. Using our notation, the formula for the odds of cell
ij for the mth episode and Ith sampling unit is given by: P,,;(jli)/(1 — Pu(jli)), where
Pi(jli) is the probability of occurrence of event j as consequent behavior given that event
1 happened as antecedent behavior.

The odds meets two of our criteria: it is not affected by either the antecedent marginal
frequency or the total table frequency. However, the simple odds can be affected by the
marginal frequency of the consequent. To remedy this, we move to an odds ratio, which
compares the odds that a particular consequent will follow the antecedent to the odds that
the consequent will follow all other relevant antecedents.

What do we mean by relevant antecedents? We use this term because antecedent-
consequent, relationships in any study can be of different logical forms, and the appropriate

set of antecedents to be used here will depend on the substantive questions to be studied.
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The example data in Table 1(a) include three different forms of antecedent-consequent re-
lationships involving (1) stability within actor, (2) state change within actor, and (3) state
change between actors. Suppose we are interested in the pattern of state changes from male
partner to female partner, and we wish to determine the pattern and strength of this asso-
ciation using the odds ratio, with particular reference to the cell reflecting Male Negative
followed by Female Negative. We could base this ratio on the entire 4 x 4 table, defining
Female Positive, Male Negative, and Male Positive all as relevant antecedents. The resultant
odds ratio would tell us how strongly this sequence occurred in comparison to those follow-
ing all other antecedents, including the Male Negative followed by Male Negative sequence.
The data in Table 1(a) however strongly suggest that the pattern of self-stability reflected
in the Male Negative to Male Negative sequence is very strong, and it probably reflects a
very different process than the cross-actor association in which we are interested. If this is
the case, then including Male Negative as a relevant antecedent would greatly reduce the
odds ratio, inappropriately comparing the cross-actor sequence of interest to a within-actor
sequence that is influenced by a fundamentally different process.

A second option would be to transform our dataset to one that includes only state
changes. In this case, no behavior may follow itself, and cell frequencies reflect only those
points of transition from one state to another. Data in Table 1(b) are based on the same
observations as those in Table 1(a), but include only state transitions. While we might use
the entire table to calculate our odds ratio, the pattern of frequencies in the within-actor
blocks appears very different from those in the between-actor blocks, with very few instances
of within-actor transitions occurring once we have eliminated those involving state stability.
Again, including the within-actor transitions would seem to be inappropriate.

A third option, and one that we would advocate for this particular example, would
define as relevant antecedents only those antecedents involved in cross-actor transitions.

For these data, the odds ratio of interest would involve only one other antecedent, Male
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Positive, and would be based on the four cells in the upper right quadrant of Table 1(b).

The observed odds ratio would be calculated as (30/27)/(16/42) = 2.92 and the log odds
ratio as log(2.92) = 1.07.2  Note that the log odds ratio uses information from all four cells
in the subtable in its calculation.

Table 3 provides the observed log odds ratios for the subtable of interest. The four log
odds ratios are clearly not independent of one another, and in fact are either equivalent or
exact inverses of one another. This reflects that fact that any 2 x 2 table has available only
one degree of freedom for testing level of association. For this particular couple, the log odds
ratio reflects a combined pattern of higher negative reciprocity and positive reciprocity as
well as higher negative and positive reactivity (suppression of positive following negative, or
negative following positive).

These odds ratios are based on data from a single couple, and in this data set may be
estimated for each of the L = 254 episodes, or couples (since there is only one episode
per couple). The distribution of a particular odds ratio across the population of episodes
is positively skewed and nonnormal. Figure 2(a) depicts the histogram across couples for
the odds ratio of the transition from Male Partner Negative to Female Partner Negative,
illustrating this positive skewness. Taking the natural logarithm of the odds ratio makes
the distribution symmetric, as is evident in Figure 2(b). The distributional advantages of
improved symmetry and approximate normality lead us to prefer using the log odds ratio
as an indicator of a strength of a particular antecedent-consequent relationship over other
candidates, such as the simple conditional probability.

The log odds ratio has other advantages over the use of the conditional probability. Log
odds ratios can range anywhere from plus to minus infinity so, unlike probabilities which
range between zero and one, log odds ratio models do not lead to any range restrictions. This
means that mathematical models using the log odds ratio are simpler and more tractable (al-

though there have been some attempts to develop models for conditional probability indexes



Hierarchical Modeling 13

in other cases involving data with multilevel structure: e.g., Dersimonian & Laird, 1986;
Wickens, 1993). Modeling on the log odds ratio scale has the advantage that most effects
can enter as additive terms. For example, a test of whether two conditional probabilities are
equal can be reexpressed in terms of the two associated log odds being equal to one another.
An equivalent way of expressing this is that the log odds ratio, or the difference in the two
log odds, is equal to zero. The value of zero is a natural center point for modeling log odds
ratios. A log odds ratio of zero is equivalent to the independence or absence of association

between antecedent and consequent.

Modeling and Estimation of the Log Odds Ratio

In the remainder of this paper, we advance a general modeling framework for using
log odds ratios as indicators of contingency in behavioral data. This modeling framework
is composed of two distinct but integrated components: the estimation of true log odds
ratios from the contingency table, and the estimation of these true log odds ratios based on
multilevel models.

Here we discuss two ways that log odds ratios can be estimated: direct calculation,
and empirical Bayesian modeling. First, log odds ratios for each episode can be calculated
directly from the data for that episode. We term this the observed log odds ratio. To reduce
the complexity of our notation, let the total number of episodes in our data set be M, where
M = KL (episodes per sampling unit times number of sampling units). When only one
episode is observed per sampling unit, M = L. Let a,, be a frequency count for a particular
behavior followed by another behavior of interest (e.g., Male Partner Negative followed by
Female Partner Negative) from the mth episode and let b, be the frequency count for the
male partner negative followed by female partner positive, ¢, be a frequency count for the
male partner positive followed by female partner negative and d,, be a frequency count for
male partner followed by female positive. Thus, the observed log odds ratio can be calculated

as 10g(amdmm/(bmcm))- This expression works well when a, b, ¢ and d are large, but in small
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samples there is measurable bias in the estimate of the log odds ratio. To reduce bias one

often uses a slightly modified estimate of the log odds ratio as

Yio = 10g((am + 1/2)(dn + 1/2)/[(brs + 1/2)(cn + 1/2)]) (1)

which works especially well even if cell counts a, b, ¢ or d are zero. So-called exact methods
are also available (e.g., MIXOR: Hedeker & Gibbons, 1994), but in our examples the results
obtained from special programs such as MIXOR are not likely to have much effect on our
estimates. We have chosen to model the log odds ratio directly, but the same model could
be expressed in terms of the logit. Log odds ratio and logit (logistic) modeling are directly
related as the log odds ratio is the difterence between the logits of conditional probabilities of
one partner responding negatively given that the other partner initiated with either negative

or positive behavior. We may also calculate the variance of Y,,, S2 using the formula
S2 = 1/(am +1/2) + 1/(by, +1/2) + 1/(Cm +1/2) + 1/(dp, + 1/2). (2)

Note that in our example each observed log odds ratio appearing in Table 3 has a sep-
arate variance. This variance reflects the fact that the precision of the observed log odds
ratio as an estimate of the true log odds ratio increases as the number of behaviors in an
episode increases. Observed log odds ratios based on shorter sequences of interaction will
typically have larger variances than observed log odds ratios based on longer sequences. This
characteristic of observed log odds ratios highlights an important limitation. If we have a
sample of episodes that vary in overall length, then there will be substantial variation in how
well the observed log odds ratio reflects the true log odds ratio in each episode. However, if
we include these observed log odds ratios as independent or dependent variables in standard
statistical analyses, measurement error is assumed to be equal across all observed episodes,
an assumption which does not in fact hold. This situation may occur when episodes vary in
length, but it can also occur when our sample of episodes shows no variation in overall length,

but great variation in various types of transitions. For example, we could find substantial
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variation in the number of Husband-to-Wife state transitions that occur in each episode,
even though overall episode length is fairly similar.
Empirical Bayesian Formulation for the Log Odds Ratio

Empirical Bayesian techniques, a second method of estimation, have the advantage of
explicitly including information about variations in precision of estimation in the modeling
of true log odds ratios. They do so in part by placing the log odds ratio in a multilevel
framework. The multilevel model is becoming increasingly well-known in the social sciences
(Bryk & Raudenbush, 1992; Hedeker & Gibbons, 1994), and is useful for the analysis of data
with hierarchical structure, as is the case here.

First, we specify the random variation in log odds ratios across episodes. Let us begin
by focusing on one log odds ratio from a set of log odds ratios that might be used to
characterize an entire contingency table. Let Y,, be the observed log odds ratio for the mth
episode. Under the simplest random effects model, it is assumed that the observed log odds

ratio is modeled as the sum of the true log odds ratio and within episode error,

where the within episode error variable, F,,, is generated from a normal distribution with
mean zero and variance ¢2,. The normal probability density for this distribution is given by
f(Yin|Om, 02) = (2102 V2eaxp{—1/2(Y,m — 0)?/02,}, and 6, is the true log odds ratio for
the mth episode. We use the term “true” log odds ratio to refer to the unobserved log odds
ratio, ,,. This usage is similar to that in factor analysis and other measurement models
using latent variables. As we shall see later, it does not mean that FE,, accounts for all
measurement error in the observed log odds ratios.

In this specification, the true log odds ratios are themselves random variables generated
from a superpopulation that has mean p and variance 72. By incorporating p and 72 in the
random effects model, we can then study variables that may be sources of variation in log

odds ratios across episodes.
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We specify the second level of this model by allowing the true log odds ratio for each

episode to be modeled as the sum of the common log odds ratio, 4, and the between episode
variability,

O, = 1+ Vi, (4)

where the variation among episodes, V,,, has a normal distribution with mean zero and
variance 72. That is, the conditional density for the parameter 0,, is given by f(0,,|u, 7%) =
(2r72)~2exp{—1/2(0,, — 11)?/72}. When 72 is zero, the model collapses to a simple fixed
effect model, and the log odds ratio is constant for all episodes.

By combining equations (3) and (4) via Bayes Theorem (Carlin & Louis, 2000), the

conditional density of the true log odds ratio is given by

SO Yoo 1, 7%, 02,) = const f(YonlOm, 00) f (O, 7°)

— const (tom) texp{—1/2[(Y — 0m)? /02, + (00, — 1) /7%]}, (5)

where const is a proportionality constant. Algebraic recombination on (5) shows that the
true log odds ratios, 0,,, have normal distributions with means, 6%, = (1 — )Y + amps,
where a,,, = 02, /(02 +72). These means are weighted combinations of the observed log odds
ratios Y, and the overall mean of log odds ratios . The variances of the true log odds ratios
(6,,) are also obtained as o2 (1 — ay,).

From the above results it can be seen that 67, is a weighted average of p and Y, (the ob-
served log odds ratio). The weights, a,,, depend on the relative sizes of the variance between
episodes (72) and the within-episode variance o2,. As 72/02 becomes smaller (meaning less
variability between episodes), more weight is given to p. This acts to improve the precision
in estimation of each true log odds ratio by borrowing information from all episodes (since
observations from all episodes are used to estimate p and 72). In particular this helps stabi-
lize estimates for cases with relatively small cell counts, which have greater within-episode

variance.
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Empirical Bayesian Estimation and Inference

Provided that u, o2

m?

and 72 are known, 0%, is the Bayes estimate of 0,, (the true log-
odds) since it is the mean of the conditional posterior distribution for the 6,,. But, in most
situations, these parameters are unknown. They have to be estimated from the data. When
they are replaced by their estimates, 0, is referred to as the empirical Bayes estimate of
0. The calculation of maximum likelihood estimates of 1 and 72 can be performed using

iterative procedures on the following formulae.

=) WY/ 3w, (6)

77 =3 (Wl (Yo — )" = S}/ D wn, (7)
where w,, = 1/(S% + 72) which is the weight that incorporates random effects variance
estimate 72; Y, is the observed log odds ratio, and the summation is over the L episodes.
When the quantity on the right side of equation (7) is negative 72 is set to zero since variances
must be nonnegative. The within episode variance o2, is estimated by S2, (defined earlier).
Because all the observed data Y are used to find estimates of x and 72, the estimates are
improved by borrowing strength from the other observations to make inferences about a
particular 6.

A generic Splus algorithm to compute the above estimates is available in Appendix A.
We note that some of the models (see equations 8 and 11) we examined in this paper are
similar but not identical to ones available in standard software packages such as HLM and
SAS Proc Mixed. Even though HLM readily handles known variances at level-1 (Bryk &
Raudenbush, 1992, p. 172), it does not readily allow for special structures involving the
means and variances. SAS Proc Mixed has somewhat more flexible variance structures but
still cannot currently fit all of our models. We note that both of these programs could be

modified to fit all the models we describe, if they incorporated Lagrange multiplier techniques
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that are routine in structural equation modeling (Sérbom, 1989).

Hierarchical FExtensions of Random Effects Models

In this section we turn more fully to the issue of hierarchical structure in behavioral data.
Many of the questions posed by observational researchers reflect this inherent hierarchical
structure. If one action prompts a specific response during part of an episode, does its
effect vary across other parts of the episode (is there within-episode variation)? If one ob-
serves episodes of interaction both before and after family therapy, do contingencies between
behaviors change across these episodes (is there cross-episode variation within unit)?

Here we extend our application of empirical Bayesian estimation to more complex hier-
archical models that can shed light on such questions. The basic random effects model we
have developed here can serve as the foundation for a series of more complicated models used
to study various types of structure in antecedent-consequent relationships. First, investiga-
tors may wish to determine whether the strength of the antecedent-consequent association
remains constant throughout individual episodes, a condition called stationarity. Next, in-
vestigators are usually interested in whether this association varies systematically across a
sample of episodes, or whether the same antecedent-consequent association obtains for all
episodes, a condition termed homogeneity. If episodes show heterogeneity, the source of
this heterogeneity may involve within-unit variation, as when multiple episodes are collected
for each sampling unit, and antecedent-consequent relationships vary across those episodes
within each sampling unit. Finally, investigators are usually interested not only in deter-
mining whether there is variation in antecedent-consequent associations, but also in what
factors might account for or result from such variation. In the following sections we present
models for studying each of these types of structure: stationarity, homogeneity, within-unit

variation, and covariation with other factors.
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Testing for Significant Variation Within FEpisodes

The strength of contingency between two behaviors may be constant throughout an
episode. For example, we might hypothesize that couples vary in how reactive each partner is
to negative statements made by the other, and that this reactivity has a consistent and stable
effect for each couple throughout the episode of interaction. However, it may also be the case
that reactivity itself changes across the course of the episode, and is stronger in earlier sub-
episodes than in later ones. Couples might habituate to each other’s negative comments, or
become even more sensitive to them as the discussion continues. Most investigators assume
the contingencies they study are stationary within episode, although a few have hypothesized
and studied systematic variation within episodes (Gottman, 1979).

The random-effects model allows us to test for the presence of such variation, or nonsta-
tionarity. There are three approaches to specifying a model to provide such a test. First, the
investigator can arbitrarily break each sequence into halves or thirds, and test for significant
variation across these sub-episodes. This method has been recommended in the case where
the investigator considers nonstationarity as a nuisance factor that must be ruled out in
order for the assumptions of other analyses to hold (Gottman & Roy, 1990).

As an alternative, an investigator may have theoretical reasons to believe that contingen-
cies will vary for certain portions of an episode as compared to others. This would be the
case when experimental designs are used that introduce contextual changes in the midst of
an episode. Minuchin, Rosman, and Baker (1978), for example, observed couples discussing
an area of disagreement when their child was not present, and then asked the parents to
continue discussing the topic when the child was brought into the room. With this experi-
mental design each couple’s interaction could be broken into two subepisodes, one prior to
and one following the entrance of the child.

Finally, it is possible to model continuous variation in contingencies across the course

of an episode, without requiring the investigator to identify points of qualitative change.
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Such models could reflect for example, an escalation, de-escalation, or nonlinear pattern of
a contingent response over the course of the episode. We know of no observational studies
that have as yet attempted to test for such patterns of change, however.

Here we provide an example to illustrate the first approach. In this case, each episode will
be broken into two subepisodes having equal numbers of behaviors. We begin by respecifying
the random effects model in the following way.

Level 1:

Yoo, = Opy +E,,, and

Ym2 - 0m2+Em27 (8)

where Y,,,, and Y,,, are the observed log odds ratios for the first and second subepisodes, 0,,,
and 0,,, are the true log odds ratios for these subepisodes, and F,,, and I, are distributed
normally with mean zero and variances o2, and o2, .

If these data are stationary, then the true log odds ratio in the first subepisode should
equal the true log odds ratio in the second subepisode. More formally, if we assume station-
arity within episodes, but allow the log odds ratios to vary across episodes, we have

Level 2:

0m1 - Hmz' (9)

We can systematically examine deviations from stationarity by considering level 2 models
which incorporate these constraints. A general level 2 model® that allows us to test for such
deviations is specified as

Level 2:

Hml — Ml + 6m + Vm17
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In these equations 9,, is a random variable that carries information about the portion of
the log odds ratio that is the same for both subepisodes, and has mean zero and variance
¢?. The parameters 1 and po carry information concerning how the mean values of the
log odds ratios may vary across the two subepisodes. V,,, and V,,, are independent normal
errors with mean zero and variances 7% and 72, respectively. 72 and 74 carry information
about “subepisode-level” variation in log odds ratios. Based on equations (8) and (10), the

joint distribution of Y,,, and Y,,, becomes bivariate normal with means p; and po, and

variance-covariance matrix given as

oy + 9 471 U
U Oy + 0?75
It follows from the above matrix that marginally Y;,, and Y, have variances 7 + ¢ + .52,

2

m?

and 72 + ¢* + S2

ma?

and covariance ¢)2. The error variance, 2, changes from episode to
episode.

Note that the overall test of stationarity requires py = po and ¥ = 72 = 0. The true
log odds ratios for the two subepisodes will be equal only if all these conditions hold. These
equations also specify different aspects of deviation from stationarity, and these can be tested
separately. To test where there is a “drift” in the mean log odds ratio from time period 1
to time period 2 for the entire sample, we can test Hy : p11 = po. To test whether the extra
variation in log odds ratios within episodes is the same at the two points in time we can

test Hy : 72 = 2. Finally a test of Hy : 72 = 72 = 0 examines whether there is any extra

variation in log odds ratios beyond a factor common to the entire episode.

To illustrate, we tested for departures in stationarity for the contingency data involving
transitions from Male Partner to Female Partner, based on the two-by-two subtable used
as an example earlier. For this analysis, each episode for each couple was divided into two

subepisodes having equal numbers of behaviors, randomly assigning the middle behavior
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to one subepisode in cases where the sequence involved an odd number of behaviors. The
analysis was conducted using the log odds ratio reflecting Male Partner Negativity followed
by Female Partner Negativity. Identical conclusions would have been obtained using any of
the other three cells.

We used iterative maximum likelihood methods to compute the parameter estimates
of the proposed models using a developmental version of the Mplus program (Muthén &
Muthén, 1998). Copies of the input used for the analyses in this paper can be obtained
from the first author and will be available on the Mplus website (www.StatModel.com) when
the new version (2.03) is released. As stated earlier, currently the HLM and SAS statistical
software packages lack flexibility in incorporating special covariance structures such as ours.

In all models heterogeneity was allowed (i.e., 9 is unrestricted). That is, log odds ratios
were allowed to vary across episodes. We discuss tests of heterogeneity in the next section.
The results are given in Table 4.

Model 1 in Table 4(a) is labeled as unrestricted, meaning that no stationarity is assumed.
Model 2 represents the most restricted form of stationarity, including all three requirements
for stationarity to hold. Since these models are hierarchically nested, minus twice the differ-
ence in their log likelihoods, symbolized as G2, is approximately distributed as chi-squared
with degrees of freedom equal to the difference between the numbers of parameters specified
under the restricted model and the unrestricted model. We can therefore test whether the
model restrictions imposed in Model 2 lead to a significantly poorer fit than that of the
unrestricted model. In this case the change in log likelihood is significant (G?(3) = 12.97,
p < 0.005), and we must reject the hypothesis that these data are stationary.

Models 3 and 4 allow for separate tests of the two different components of stationarity.
Model 3 restricts the mean log odds ratio for the two subepisodes to be equal, but allows
their variances to differ, while model 4 allows the mean log odds ratio for the two subepisodes

to differ, but restricts their variances to zero. Model 3 does not fit as well as the unrestricted
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model, suggesting that the mean log odds ratios do differ for the two subepisodes. The

constraints in Model 4 lead to a tendency toward poorer fit, but only weakly.

Table 5 reports point estimates and 95% confidence intervals for parameters in the un-
restricted model. Both estimates of mean log odds ratios differ significantly from zero,
indicating that the association between Male Partner and Female Partner behavior is sig-
nificantly strong. From model 3, we have evidence that there is a significant increase in the
mean log odds ratio from the first to the second subepisodes. This suggests that, on overage,
female partners become more likely to “mirror” the behavior of their male partner (negative
following negative, positive following positive), and less likely to change the valence of the
interaction (reduced rates of negative following positive, or positive following negative), over

the course of the interaction.

How are we to interpret the variance parameters, 7# and 74?7 Such variation could

have two sources. It might reflect systematic changes in the log odds ratio across the two
subepisodes, such that the strength of those changes differed for different episodes. This
variation could also include measurement error. As we noted earlier, while the first level
component of this model accounts for sources of measurement error related to the length
of a sequence, it does not model measurement error from other sources, such as less-than-
perfect reliability in the behavioral coding system. While we cannot partition variation due
to systematic nonstationarity from that due to measurement error in this model, we can use
the model as a basis for identifying potential sources of systematic nonstationarity, as we
describe later.

In these data, there appears to be surprisingly little variation at this level. The overall
test of Model 4 does not reach significance, and the confidence interval for 7 overlaps with
zero. This suggests that much of the error of measurement was accounted for by variations
in sequence length that influence E,,, which is taken into account in the Level 1 model. It

also suggests that systematic nonstationarity at this level is likely to be weak or nonexistent.
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Testing for Significant Variation Across Episodes

Since the random effects model allows us to partition the variation in the estimated log
odds ratios into that due to within-episode factors and that due to between-episode factors,
we can now use the log odds ratio estimator to test whether there is significant variation in
the strength of a particular pattern of transitions across the entire sample; that is, whether all
episodes have essentially the same sequential structure. In other words, we can test whether
there is significant heterogeneity among episodes. Specifically, Hy : 01 =0y = --- = 0.

When data meet the criteria for stationarity, it is reasonable to recombine subepisodes
into single long episodes, and use a simpler method for testing whether the episode-level log
odds ratios vary across the sample of episodes. Here we can use the most popular test for
heterogeneity used in meta-analysis (Hedges & Olkin, 1985; Takkouche, Cadarso-Sudrez, &
Spiegelman, 1999). To employ this test, each log odds ratio is assigned a weight (W,,,) based
on the inverse of its variance (W,, = 1/52,). For each episode, the weight is multiplied by
the natural log of odds (Y;,) to give a summary measure (W,,Y,,). A pooled summary is
calculated by dividing the sum of the summary measures over all L episodes by the sum of
the weights (Y = X W,,.Y;./ > W,,.). Now, heterogeneity among episodes can be assessed by
using the chi-square statistic (x2 = S (W, (Y, — Y)?) with L —1 degrees of freedom, where L
is the total number of episodes. Large values of the test statistic provide evidence for rejecting
the homogeneity hypothesis. For our example of log odds ratios for Male Partner Negativity
followed by Female Partner Negativity, the value of the chi-square statistic is 475.20 with
253 degrees of freedom and p-value less than .001. Thus, there is strong evidence that there
is heterogeneity among episodes.

If data do not meet the criteria for stationarity however, as is the case in our example,
this simpler test of homogeneity may provide misleading results. In this case, we can return
to a full two-level modeling approach that incorporates parameters for testing heterogeneity

at both the subepisode and episode levels. In the two-level model specified in equations (8)
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and (10), 6,, is an indicator of the episode-level log odds ratio, and its variance 1* measures
how much variation there is in episode-level log odds ratios across the sample of episodes.
In addition, 7¥ and 72 reflect, the presence of variation in the log odds ratios for the first and
the second subepisodes above and beyond that found at the episode level. An overall test of
homogeneity in the presence of nonstationarity would involve setting these three parameters
equal to zero, and testing whether this model fits the data as well as the unrestricted model
(Model 1 versus Model 5 in Table 4(b)).

Table 4(b) reports results for our example. Model 5, which incorporates these restrictions,
significantly reduces fit in comparison to the unrestricted model, providing strong evidence
for heterogeneity in the presence of nonstationarity. Model 6 suggests that there is significant
episode-level heterogeneity to be explained (G%(1) = 5.77,p < .016) in the presence of
nonstationarity.

In addition to this episode-level heterogeneity, the point estimate and confidence intervals
for 72 reported in Table 5 suggest that there is significant subepisode-level heterogeneity for
both subepisodes, and this may include systematic variation that could also be explained,
although Model 3 results indicate this variation is small.

Testing for Variation Between Fpisodes Within Sampling Units

If we find evidence for significant heterogeneity in the estimated log odds ratios across the
sample of episodes, we can then develop and test models that account for this heterogeneity.
If we have collected data on only one episode per sampling unit, we can proceed directly to
such models. If we have collected data for more than one episode per basic sampling unit
however, then it is possible that some of this heterogeneity is due to variation within each
basic sampling unit. The meaning of such variation will of course depend on how the episodes
were sampled. For example, we might wish to study whether certain antecedent-consequent

relationships are altered after some form of intervention. For example, Revenstorf, Hahlweg,
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Schindler, and Vogel (1984) observed and coded couples behavior before and after partici-

pation in marital therapy. They reported conditional probabilities suggesting that problem
escalation, reflecting high rates of responding negatively to problem descriptions by the
other, were lower after therapy than before. While they reported results based on simple
inspection of conditional probabilities from these two sets of episodes for each sampling unit,
a random-effects model could be used to test whether there was in fact significant variation
across episodes that might reflect the salutary effects of their intervention.

The model for specifying cross-episode variation when episodes are nested within basic
sampling unit is, in fact, conceptually identical to the model we specified earlier for studying
stationarity by breaking episodes into sub-episodes, and testing variation across sub-episodes
as they are nested within overall episode. The model can be specified as follows for a study

with three episodes (k = 1...3) for each sampling unit:

Level 1:
Yu = Ou+ Ey
Yu = 0Oy + Ey
Yoo = O3+ By (11)
Level 2:

Ou = i +o+Vy
Ou = po+ o+ Vy

O = ps+ o+ Vy (12)

where, Yy, is observed log odds ratio for the kth episode within the [th sampling unit (k =
1,2,3) and Fy; is the error term distributed as normal with mean zero and variance o3;, Oy
is the true log odds ratio and V; is the random effect associated with the kth episode within

the Ith unit and is distributed as normal with mean zero and variance 77. Here 1, 2, and
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u3 carry information about the mean log odds ratio for each episode across the set of basic
sampling units, and ¢; carries information about the log odds ratio for each unit as a whole.
Thus, the joint marginal distribution of Y7;, Yo, and Y3 is multivariate normal with means

11, o, and pa, respectively, and variance-covariance matrix

ot + 9 + i P? P?
¢? of + 4+ 73 ¢?
U U oty

Note that this model allows for correlations among episodes within each unit, by including
in the level 2 model the common random-effects parameter ¢; whose variance is 2.

The data we are using for illustration do not include multiple episodes of observation for
each sampling unit, so we are unable to present an example of these tests. However, the
estimation procedures and logic of interpretation are strictly analogous to those used in the
tests of stationarity and homogeneity presented earlier. For example, equation sets 11 and
12 are simply trivariate extensions of the bivariate model described earlier in equation sets
8 and 10. This hierarchical approach would also allow for specification and testing of more
complex models that test stationarity within each of several episodes nested in turn within
basic sampling units.

Introducing Covariates Into the Model

Assuming we find evidence for significant heterogeneity in log odds ratios, the random
effects model allows us to introduce covariates measured at various levels into the model, to
determine how they might be related to the strength of a particular antecedent-consequent
relationship.* In the Revenstorf et al. study described earlier, participation in the inter-
vention could serve as a covariate measured at the level of episode, distinguishing episodes
prior to intervention from those following. An analysis of covariance approach, where pre-

intervention contingent response is treated as a predictor of post-intervention response, allows
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one to assess changes in contingent response over time. Covariates could also be introduced
at the level of the basic sampling unit, which was the couple in the Revenstorf et al. study.
There are other situations where interactions, say between sampling unit characteristics and
intervention status, could be used to examine variation in intervention impact (Brown &
Liao, 1999).

First we consider the simpler case where earlier tests provide evidence for heterogeneity
in the presence of stationarity. To incorporate episode-specific covariates in equation (4) so
that heterogeneity among units can be accounted for, we model the log odds ratio as

Level 1:

Yo = O + Erm, (13)

Level 2:

O = 16+ BXpm + Vi, (14)

where X, is a covariate for the mth episode and 3 is a fixed effect coefficient. F,, and V,,
have the same definitions and distributional properties of those given in equations (3) and
(4).

To illustrate, we now introduce an episode-level covariate to test its relationship with the
estimated log odds ratio index of the strength of association between antecedent Male Part-
ner and consequent Female Partner behavior. We chose an index of perceived relationship
adjustment, based on an average score combining both partners’ self-report ratings on the
Dyadic Adjustment Scale (Spanier, 1976), a commonly used measure that includes questions
concerning perceptions of conflict, satisfaction, support, and relationship stability. The para-
meter (5) estimating the relationship between this episode-level variable and the behavioral
contingency of interest was estimated as .174 with standard error 0.062. There is thus a

significant relationship between the log odds ratio and the index of perceived relationship
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adjustment. This suggests that the higher the perceived relationship adjustment, the more

the Female Partner “mirrors” the Male Partner, and the less she switches to the opposite
valence. (Again, we interpret all four cells in the relevant subtable together, since their log
odds ratios are completely redundant.) The scatter plot of the empirical Bayes estimates of
the true log odds ratios and the index of perceived relationship adjustment is depicted in
Figure 3.

When preliminary models indicate heterogeneity in the presence of nonstationarity, as
is the case in our example, a more complex model is required. In this case, to incorporate
episode-specific covariates in the random effects model we model the log odds ratio as

Level 1:

le - Hml + Em1

Yie = Omy + By (15)

Level 2:

Hml = 1 + Blle + 6m + le

Hmz — M2 + 512Xm + 6m + Vm27 (16)

where X, is a covariate for the mth episode and (17 and (B are fixed-effect coefficients
representing separate effects for the covariate on the log odds ratios for the two different
subepisodes. E,,,, Eig, O, Vi, and V,,,, have the same definitions and distributional prop-
erties of those given in equations (8) and (10).

Table 6 presents results for two models: the unrestricted model, which allows the effects
of the covariate to differ for the two subepisodes, and a model that restricts the effects
of the covariate to be equal across the two subepisodes. Chi-square indexes of model fit

are almost equal, suggesting that the covariate is having identical effects in the first and
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second subepisodes. Given this result, it is not surprising that parameter estimates for the
covariates are almost identical to those produced by the models presented earlier that assume

stationarity.

Discussion

In this paper we have reviewed common methods for measuring strength of contingency
between two behaviors in a behavioral sequence, and have pointed out a number of limita-
tions with these approaches. We then presented a new approach employing empirical Bayes
estimation in the context of hierarchical or multilevel modeling, an approach not constrained
by these limitations. Here we take up three general issues concerning this new approach:
how to organize a set of analyses by following a general strategy; what some of the limits are
of this new approach; and what further developments in quantitative method would prove
useful.

Our examples in this paper followed a stepwise strategy based on two traditions: Markov
modeling (Gottman & Roy, 1990) and hierarchical modeling (Bryk & Raudenbush, 1992).
From the Markov modeling tradition we took the concept of stationarity, the idea that
we need to understand whether the process that leads to contingencies among behaviors
in a sequence is constant across the course of an episode, or varies over the episode. We
recommend testing stationarity as a first step in any hierarchical analysis of contingency.
The investigator can divide episodes into subepisodes based on theoretical, empirical, or
experimental design considerations, or can simply split the episode in two or more to provide
a test of strong nonstationarity, as in our example.

The presence or absence of nonstationarity will dictate how to proceed. If there is no
evidence of nonstationarity, the investigator can proceed with simpler tests of homogene-
ity based on entire episodes (after pooling data across sub-episodes); otherwise, multilevel

models allow for studying homogeneity in the presence of nonstationarity.
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We recommend that tests of homogeneity proceed in stages, moving up to higher levels
one at a time. First, test for homogeneity across all episodes. If homogeneity is found, some
have suggested the analysis be considered complete, since the data fit a fixed effect model,
where there is no evidence that strength of contingency varies across episodes. In this case
the fixed effects model will provide a point estimate and confidence interval for the strength
of contingency across all episodes. However, it is possible that, while the null hypothesis of no
heterogeneity cannot be rejected based on these tests, further analyses can find significant
relationships between covariates and the latent log odds ratios. M. Stoolmiller (personal
communication, October 2, 2000) has suggested that such findings may be taken as evidence
against the null hypothesis of homogeneity. In such cases, the amount of variation in the
latent log odds ratios may be small, but still of theoretical interest.

If the data are found to be heterogeneous, the next step involves identifying at what levels
that heterogeneity occurs. If the design included observation of multiple episodes for each
basic sampling unit (such as a couple or a family), we can test whether there is significant
heterogeneity both within and between sampling units. If there is no evidence of heterogene-
ity across episodes within sampling units, the investigator is justified in pooling data from
within-unit episodes into a single contingency table for each sampling unit. If however there
is evidence of heterogeneity between episodes within sampling unit, more complex models
will be needed that incorporate this source of variation, even if the investigator may have no
substantive interest in studying within-unit variation.’

Most investigators will be interested in identifying and studying between-unit variation
in contingency. If prior analyses show no evidence of nonstationarity or within-unit hetero-
geneity, subepisodes can be recombined into episodes, within-unit episodes can be pooled
together, and covariates can be used in a simple two level model to study sources of between-
unit heterogeneity. A major strength of EBREM lies in its capacity to provide evidence that

these simplifying assumptions are appropriate, and to provide methods for studying variation
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in contingency even when they are not. Even when the investigator has no substantive inter-
est in nonstationarity or within-unit heterogeneity, incorporating both sources of variation
into the model will not only provide for a more accurate assessment of unit-level variation,
but will allow for more precise estimates of parameters.

The EBREM approach presented here also has several limitations. The models devel-
oped here focus on only one log odds ratio at a time. Observational systems with more than
two categories of antecedent or consequent behavior will lead to contingency tables with
more than one degree of freedom, and will reflect several possible antecedent-consequent
patterns, which may or may not be independent of one another. EBREM approaches need
to be extended to such situations, with particular attention to patterns of relationship among
different antecedent-consequent associations. This will most likely require multivariate ap-
proaches that model more than one contingency simultaneously, to allow for correlation
among log odds ratios.

In this paper we have only focused on consequents that immediately follow antecedents,
reflecting first-order Markov processes. Sequential data may also be structured by higher-
order processes, reflecting multi-lag effects that are not carried through first-order associ-
ations. The extension of EBREM to study higher-order processes remains to be worked
out.

There is only limited information at this point on the data demands of this approach.
Since power depends in a complex way on the number of episodes and observations per
episode, number of observational codes, and other model-specific factors, currently there
are no simple ways to determine power and sample size for these models. The example we
have used here involves an unusually large number of episodes or couples, when compared
to other recent reports of sequential data. Rather than provide extensive power analyses
at this point, instead we tested whether a study involving only half the number of couples

would find significant effects as well. We analysed the model of stationarity in the presence
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of heterogeneity on a randomly selected 50% of couples. This half sample test reached

0.021 significance while the full sample reached 0.005 significance, suggesting that the effects
are strong enough to be detected with a substantially smaller sample. More work on the
statistical power of these methods is in order to help investigators understand the necessary
sample sizes and episode lengths required to detect patterns of interest.

A final limitation of the empirical Bayes estimation approach is that it does not take into
account the uncertainty in parameter estimates of the covariance components. Fully Bayesian
approaches can take into account such uncertainties in variance components estimation.
Recent advances in computation, such as that employed by BUGS software (Spiegelhalter,
Thomas, Best, & Gilks, 1995), may make this approach practical, since these programs are
flexible enough to incorporate the forms of hierarchical structure discussed here. It still
needs to be determined whether and under what conditions this source of variation could

compromise interpretation of findings based on the empirical estimation approach.
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Appendix A

Splus program for computing iteratively the maximum likelihood estimates of mu and

tau.sq based on Equations (6) and (7).

#Data:
# odds —— > contains the log odds ratios
# odds.var —— > contains variances of log odds ratios

# L. —— > the number of units in the study (e.g., couple)

# Initial values

iter < — 0
del < — 2
mu < — 1
tau.sq < — 0

while(abs(del) > 1.0e — 10 && (iter < —iter + 1) < 100) {

del < —mu

wlam < —1/(odds.var + tau.sq)

mu < —sum(wlam * odds) /sum(wlam)

del < —mu — del

tau.sq < —sum(wlamxwlamx ((odds—zmu)*(odds—xzmu) —odds.var)) / sum(wlam*wlam)

}

write( mu, tau.sq)
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Appendix B

Alternative Specification for Nonstationarity

We propose an alternative specification of a random effects model for testing stationarity
between two time periods for each episode.

Level 1:

le - Hml + Em1

sz - 9m2+Em2

Level 2:

97711 = pt Vm1

Omy = a+v0, + Vi,

where, V;,, ~ N(0,7}), Vin, ~ N(0,73) and V;,,, and V,,, are uncorrelated but the covariance
between 0,,, and 0,,, is y72 indicating that the covariance is proportional to the variability

in period 1.



Hierarchical Modeling 40
Author’s Note

Getachew A. Dagne is Assistant Professor, Department of Epidemiology and Biostatistics,
University of South Florida, Tampa. George W. Howe is Professor, Department of Psychiatry
and Behavioral Sciences, The George Washington University, C. Hendricks Brown is Pro-
fessor, Department of Epidemiology and Biostatistics, University of South Florida, Tampa,
Bengt O. Muthén is Professor, Graduate School of Education & Information Studies, Uni-
versity of California, Los Angeles. The authors thank the Editor, Associate Editor, and
four anonymous reviewers for their careful reading and detailed comments that have greatly
enhanced this article. We would also like to thank our methodological colleagues at the Pre-
vention Science and Methodology Group (PSMG) who have provided many insights. Special
acknowledgement is made to our colleague Mike Stoolmiller at the Oregon Social Learning
Center for helpful comments and suggestions. Work on this paper was supported by the
NIMH Prevention, Early Intervention and Epidemiology Research Branch, the Child and
Adolescent Treatment and Preventive Intervention Research Branch, and the Adult Geri-
atric Treatment and Preventive Interventions Research Branch under Grants No. MH40859,
“Designs and Analyses for Mental Health Preventive Trials,” No. MH01259, “Methodologic
Advances in Mental Illness Prevention,” No. MH38725, “Epidemiologic Center for Early
Risk Behaviors,” and No. MH42968, “Periodic Outcome of Two Preventive Trials.” This
article is also based on research supported in part by funding from the Prevention Research
Branch of the National Institute of Mental Health (RO1-MH47292).

Correspondence can be sent to Getachew Dagne, Department of Epidemiology and Biosta-
tistics, University of South Florida, 13201 Bruce B. Downs, MDC 56, Tampa, FL 33612.

Electronic mail may be sent to: gdagne@hsc.usf.edu.



Hierarchical Modeling 41

Footnotes

1 We use this 4 x 4 table here only to illustrate some properties of adjusted cell residuals.
As we note below, analyses of residuals based on the full table are usually not valid, since
this combines different types of transitions, which are usually analyzed separately in smaller
sub-tables, such as those used in the remainder of this paper.

2 Many coding systems will include more than one coding category for relevant an-
tecedents. For example, Margolin and Wampold (1981) included categories for positive,
negative, and neutral behavior, forming 3 x 3 subtables for male to female transitions. One
possible generalization to these situations would involve collapsing all relevant antecedent
categories other than the antecedent of interest into one “other antecedents” category. We
plan to address the complexities of studying larger contingency tables in future work.

3 The level 2 model we advance here follows the logic of confirmatory factor analysis, and
will be applicable in most cases where changes in stationarity are not extreme. However, it
would lead to incorrect specifications in extreme cases such as when the contingency actually
reverses sign over the course of the episode. We have developed an alternative specification
where the covariance between the random effects is proportional to the variability in period
1, which may be useful in these situations. A brief account of this model can be found in
Appendix B.

4 Gardner (1990) has presented a method for studying covariate effects on entire contin-
gency tables based on sequential data, but without checking for the presence of heterogeneity.

> An anonymous reviewer pointed out, quite rightly, that extra parameters may lead to
instability in estimates, and that a simpler model ignoring nonstationarity, while containing
some misspecification, may provide more stable estimates. Investigators can test whether
ignoring nonstationarity has substantive effects on model parameters, or whether specifying
the model without these parameters has minimal effect on other parameters while increasing

the precision with which they are estimated.
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Table 1

Raw Frequencies and Adjusted Residuals for a Single Observed Couple, and Compared to

a Simulated Couple.

Table 1(a): Raw Frequency of Sequences for a Single Couple

Consequent

Antecedent Male neg Male pos Female neg Female pos

Male neg 49 7 30 27
Male pos 1 33 16 42
Female neg 27 12 21 8

Female pos 35 39 1 41
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Table 1(b): Raw Frequency of Sequences for a Single Couple

when Codes Cannot Repeat

Consequent

Antecedent Male neg Male pos Female neg Female pos

Male neg 0 7 30 27
Male pos 1 0 16 42
Female neg 27 12 0 8

Female pos 35 39 1 0
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Table 1(c): Adjusted Residuals for a Single Couple

Consequent

Antecedent Male neg Male pos Female neg Female pos

Male neg 0 -4.29 5.74 -1.08
Male pos -6.39 0 1.18 5.12
Female neg 4.70 -0.27 0 -4.23

Female pos 1.89 4.41 -6.62 0
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Table 1(d): Adjusted Residuals for a Simulated Couple

Consequent

Antecedent Male neg Male pos Female neg Female pos

Male neg 0 -13.57 17.08 3.41
Male pos -20.21 0 3.73 16.19
Female neg 14.86 0.85 0 -13.38

Female pos 5.98 13.94 -20.93 0
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Table 2

Frequency of Two-step Sequences for mth Episodes and lth Unit

Consequent (7)

Antecedent () 1 2 . J
1 Miml  T12ml  *°°  MlJmi
2 Nolml  M22ml  **°  N2Jmi

I Nrimt Mremt  * Nigml
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Table 3

Log Odds Ratio (Variance) for a 2 x 2 for a Single Couple

Consequent,

Antecedent Female Neg Female Pos

Male Neg  1.07 (.16)  -1.07 (.16)

Male Pos -1.07 (.16)  1.07 (.16)
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Table 4

Model Fit Summary for Test of Stationarity and Heterogeneity

Table 4(a): Test of Stationarity in the Presence of Heterogeneity

Model* —2LL G? ADF p-value
(1) unrestricted 740.58

(2) g1 = po, T2 =72 =0 75345 1297 3 .005
(3) p1 = o 74719 662 1 .010
(4)r2=12=0 74560 502 2 .08

Table 4(b): Test of Heterogeneity in the Presence of Nonstationarity

Model —2LL G? ADF p-value

(5) Y2 =0,72=0,72=0 780.03 39.45 3  <.001

(6) 2 =0 746.35 5.77 1 016

* All estimates of parameters subject to the specified restrictions.
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Table 5

Estimates of Parameters from Unrestricted Model

Parameter Value (95% CI)

[ 1.32 (1.18-1.47)
2 1.58 (1.43-1.72)
72 18 (.00 - .45)
72 15 (.00 - .40)

h? 18 (.02 - .34)




Table 6

Summary of Model Fitting

Unrestricted B11 = P2

Parameter Estimate SE  Estimate SE
1 .35 A74 .30 342
On .01 .004 .01 .003
Lho 51 ATT BT .345
12 .01 .004 .01 .003
72 18 148 .19 148
72 A7 132 17 132
? 13 .079 13 .079
—2LL 695.64 696.41
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Figure Captions

Figure 1. Plot of adjusted residuals and observed counts
Figure 2. Histograms of odds ratios and log odds ratios for male Neg Vs female Neg

Figure 3. Scatter plot of estimated log odds ratios and index of perceived relation

51



Adjusted Residual

10

-2

200

150

100

50

50

100 150
Odds Ratio

200

250

80
Cell Count

80

60

40

20

4 2 0 2 4 6

100 120 140

Log(odds ratio)

Hierarchical Modeling 52



Empirical Bayes estimate

1.0

3.0

2.5

2.0

1.5

0.5

0.0

e
'c.:"l o,
[ KD .'. ) " o ¢
) ":' . o0
U ST
. 00 .n'..“o.' olge
. o P T
* [ o.' ’..‘: .‘:'0 Lol
“ e ¢ .t.l.o. :.: ~c ‘%
.t c‘. ‘;‘o‘o': ‘:. '.c :.
‘o. ey Tee

60 80 100 120 140
Index of perceived relationship
Period 1

Empirical Bayes estimate

1.0

3.0

2.5

2.0

1.5

0.5

0.0

Hierarchical Modeling 53

.
.
.
.
LN}
.
;..-- o.n:
%
« % )
: . .lzi‘::,.%....
. ’ o.o“'. '.:
. o % R :3’.’::.}:’..0
. L o
* . e o ..‘ :c'.?.‘o:o'
..,o o."?. o'.' ) o s
. o0 : o °
e K LT
. ¢ *
® e . A}
.
. .
.
.

60 80 100 120
Index of perceived relationship
Period 2

140



