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Abstract 

In this study, we contrast two competing approaches, not previously compared, that balance the rigor of 

CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an 

optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs) 

replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-

loadings (CL), residual covariances (RC) or CLs and RCs (CLRC). In Study 1, using three simulation studies, 

results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more 

accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; (4) different 

specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model 

estimation. The real data analysis (Study 2) showed that the differences in estimation between different models 

were largely consistent with those in Study1 but somewhat smaller. 

 Key words: factor analysis, Bayesian statistics, exploratory structural equation modeling, informative 

priors.  
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Factor analysis is a mainstream statistical technique for multivariate data analysis. Typically, confirmatory 

factor analysis (CFA) models are used to formalize measurement hypotheses and develop measurement 

instruments. However, in CFA, unnecessarily strict constraints with inappropriate exact zero cross-loadings and 

residual covariances can result in poor model fit; substantial parameter biases in estimation of factor loadings and 

correlations; and a series of model modifications capitalizing on chance features of the data (Cole, Ciesla, & 

Steiger, 2007; MacCallum, Roznowski, & Necowitz, 1992; Marsh et al., 2009; 2017). In recent years, competing 

approaches to structural equation modeling (SEM) have been developed which aim to balance CFA/SEM rigor 

with the flexibility to fit realistically complex data. These include various specifications for Bayesian Structural 

Equation Modeling (BSEM; Muthén & Asparouhov, 2012; see Van de Schoot, Winter, Ryan, Zondervan-

Zwijnenburg, & Depaoli, 2017 for a review) and Exploratory Structural Equation Modeling (ESEM) with a 

reliance on target rotation (Asparouhov & Muthén, 2009, Marsh et al., 2009; Marsh, Morin, Parker, & Kaur, 2014). 

Although ESEM and BSEM approaches are based on different methodological frameworks (Maximum Likelihood 

[ML] and Bayesian respectively), both allow researchers to freely estimate inappropriate exact zero cross-loadings 

or residual covariances and still have a priori control on the expected factor structure, thus better representing 

substantive theory. However, few studies to our knowledge have directly compared the two approaches in 

estimation of factor structure. In particular, the great modeling flexibility of BSEM allows researchers to assess and 

estimate measurement models in the various ways (e.g., using informative cross-loading priors or/and residual 

covariance priors, see below for more discussion). Nevertheless, the performance of BSEM models incorporating 

different subsets of priors has not been systematically examined. To fill this gap, this study is among the first to 

provide a comprehensive comparison of CFA, ESEM, and alternative BSEM approaches based on both real and 

simulated data. 

Factor Analysis: EFA vs. CFA 

In the SEM framework, factor analysis is a dimensional reduction procedure that extracts information from 

high-dimensional observed indicators to an underlying set of latent variables of lower dimensionality through the 

following equations: 

        (1) yi = µ + Ληi + ε i
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        (2) 

where ! = 1,	…, N; N is the sample size;  is a  vector of intercepts; &' is a vector of observed 

indicators; (' is a  vector of latent variables; )' is a vector of measurement errors;  is a  loading 

matrix, reflecting the relations between observed indicators and latent factors;  is a factor covariance matrix; and 

 is a residual covariance matrix. Standard assumptions of this model are that (' and )' are normally distributed 

and independent. 

Historically, exploratory factor analysis (EFA; Jennrich & Sampson, 1966) and confirmatory factor analysis 

(CFA; Jöreskog, 1969) are the two key variants of factor analysis, each following different approaches and 

assumptions to estimate . EFA and CFA have certain advantages and disadvantages. EFA is an important 

precursor of CFA that is used to identify and distinguish between key psychological constructs (Cudeck & 

MacCallum, 2007). EFA first optimizes a target function for the parameters based on a minimally identified 

version of the model in Equation 1 to generate preliminary estimates. These preliminary estimates are then applied 

with rotation to produce a parsimonious  that optimizes a specific simplicity function. Analytic rotation of the 

factor pattern matrix involves the postmultiplication of the pattern matrix by the inverse of an optimal 

transformation matrix: 

   (3) 

where is an optimal transformation matrix, determined by minimizing a continuous complexity function, 

, of the elements in the pattern matrix. Various rotation procedures define  differently and yield 

different rotated matrices  with a simple pattern of loadings. A mechanical rotation criterion (e.g., geomin1) is 

thought to be relatively easy to implement. However, in the mechanical approach “the factors are extracted from 

the data without specifying the number and pattern of loadings between the observed variables and the latent factor 

                                                

1 The rotation function for the Geomin rotation criterion is   

Where  is a small positive constant added by Browne (2001) to reduce the problem of indeterminacy. Geomin has performed relatively 
well when numbers of non-zero cross-loadings for each latent variables are greater than 1 in both simulation and empirical examples, 

when compared with other mechanical rotation criteria (Marsh et al., 2009��McDonald, 2005). 
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variables” (Bollen, 2002, p. 615), thus providing little to no opportunity to incorporate a priori factor structure into 

the . In contrast, CFA starts with stronger theoretical assumptions by specifying numbers, associations, and 

the pattern of free parameters in Λ (Jöreskog, 1969). The basic independent cluster model of CFA (ICM-CFA) 

posits each observed indicator is only allowed to load on one latent factor (McDonald, 1985). In this regard, all 

cross-loadings that are freely estimated in EFA are constrained to be zero in ICM-CFA. These constraints mean 

that many psychological measures with well-defined EFA factor structures are not supported in ICM-CFA (Marsh 

et al., 2009, 2014). Marsh and his colleagues (Marsh et al., 2009, 2013, 2014; also see Asparouhov, Muthén, and 

Morin, 2015) argue that ICM-CFA is too restrictive for psychological and applied research, because most 

psychological items have multiple determinants and small cross-loadings which are logically justifiable in terms of 

substantive theory or item content (e.g., method effects). The inappropriate imposition of zero factor loadings 

usually results in systematically inflated factor correlations associated with poor discriminant validity, poor model 

fit to item-level factor structures, and biased structural parameter estimates in SEMs (Marsh et al., 2009, 2013, 

2014). Furthermore, the strategies often used to compensate for ICM-CFA model’s inadequacies (e.g., a stepwise 

relaxation of parameters in relation to cross-loadings and residual covariances using model modification indices) 

can be misleading (Asparouhov et al., 2015; Marsh et al., 2014, 2017; Muthén & Asparouhov, 2012).  

Conceptually, EFA with target rotation (Browne, 2001) can be assumed to lie in-between the mechanical 

approach of EFA rotation (weak a priori factor structure) and ICM-CFA model specification (strong a priori factor 

structure; Asparouhov & Muthén, 2009; Marsh et al., 2014). The target rotation criterion is designed to find a 

rotated solution  that is closest to a targeted pattern matrix. In the early versions of target rotation in EFA, a 

fully specified target matrix was indirectly used (Horst, 1941; Tucker, 1944), whereas its later versions were direct 

and could be based on only a partially specified target matrix (Browne, 1972a, 1972b; Gruvaeus, 1970). For 

identification purposes at least entries must be specified in each column for oblique rotation and  

entries must be specified in each column for orthogonal rotation. The rotation function is: 

   (4) 

f (Λ)
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where if is a target and 0 if is not a target, and  is the targeted value. Note that the user must 

provide  and , to define . Supposed a structure of the loading matrix ( ) with population 

values , which includes main loadings (.8), major cross-loadings (.2) and minor cross-loadings (.01) (see Figure 

1). Two matrices were provided in EFA with target rotation: a matrix  that designates whether each pattern 

coefficient was (1) or was not (0) a target, and a matrix  that provides values that targeted elements will be 

rotated toward and denotes nontargeted elements with a ? sign. As shown in Figure 1, 0 was chosen for target 

values  in , which is the most common specification in practice (see Marsh et al., 2014 for a review). In such 

cases, the cross-loadings of the rotated factor pattern matrix are only made as close to the specified zeros as 

possible (Browne, 2001), whereas in CFA cross-loadings are constrained to be the specified values of zero. Thus, 

target rotation allows researchers to have more a priori control on the expected factor structure and have 

approximately fixed-to-zero cross-loadings estimates.  

Recently researchers examined how the number of targets and target error (i.e., ) influence the 

accuracy and stability in relation to a rotated pattern matrix in EFA with target rotation (e.g., Myers, Ahn, & Jin, 

2013, Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015). Myers et al. (2013, 2015) found that the effects of target error 

on both accuracy (bias) and stability (variability) in relation to the rotated pattern matrix were negligible, but a 

small positive effect of (increasing) the number of targets specified was evident. In comparison with an easier-to-

use mechanical rotation criterion (i.e., geomin rotation), target rotation has been shown to perform better in terms 

of accuracy, particularly when factor structures were more complex, whereas geomin rotation produced more 

stable factor solutions (Asparouhov & Muthén, 2009; Myers et al., 2015).  

In the EFA framework, however, the new and evolving methodologies associated with CFA and SEM 

cannot be appropriately evaluated and applied. For example, in EFA it is not feasible to test measurement 

invariance (relating to groups, time, and covariates) and evaluate relations between latent variables with other 

constructs (Marsh et al., 2009, 2014, see below). Recently, in order to resolve these dilemmas between CFA and 

EFA, researchers have developed ESEM and BSEM approaches that allow researchers to define more 
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appropriately the underlying factor structure and still apply the advanced statistical methods relating to CFAs and 

SEMs (Marsh et al., 2014; Muthén & Asparouhov, 2012).  

The most basic ESEM model is equivalent to EFA. Nevertheless, ESEM offers greater flexibility as it can 

accommodate residual covariances, covariates, and measurement invariance test in an EFA model (Asparouhov & 

Muthén, 2009; Marsh et al., 2009). In ESEM, multiple sets of CFA and/or ESEM factors can be included in the 

loading matrix Λ. Specifically, the CFA factors are identified as in traditional SEM in which each factor is 

associated with a different set of indicators. ESEM factors can be divided into blocks of factors so that different 

sets of indicators can be used to estimate ESEM factors within different blocks. However, each indicator can be 

assigned to more than one set of CFA and/or ESEM factors (see Asparouhov & Muthén, 2009; Marsh et al., 2014 

for more details). Assignments of items to CFA and/or ESEM factors should rely on a priori theoretical and 

practical considerations and preliminary tests conducted with the data (Marsh et al., 2009, 2014). 

Given that the basic ICM-CFA model is nested under the corresponding ESEM, conventional approaches to 

model comparison can be used to compare the fit of the two models. CFA models typically do not provide an 

adequate fit to the data and tend to be misspecified due to the restrictive assumption that each indicator is allowed 

to load on only one factor. Such independent cluster models appear to be rare in populations of interest. Typically, 

when true positive cross-loadings are constrained to be zero in ICM-CFA models, the factor correlations are likely 

to be positively biased, which might undermine the discriminant and predictive validity of the factors that form 

instruments (Marsh et al., 2014). Indeed, based on simulated data, the ESEM solution consistently provided 

improved model fit and more accurate factor correlation estimates than ICM-CFA solution (Marsh et al., 2010).  

Bayesian Structural Equation Modeling (BSEM) 

Bayesian analysis is a broad topic and has been well established in mainstream statistics (Kaplan, 2014; 

Van de Schoot et al., 2017). In the Bayesian approach, a prior distribution  is specified for each of the CFA 

model parameters, i.e., q = (µ, L, Y, Q); this prior distribution reflects previous knowledge about the parameters 

(see Kaplan, 2014, for an introduction). Based on the observed data  a posterior distribution

is then determined, which is proportional to the likelihood function of the data given the model parameters 

multiplied by the prior distribution: . 

p(θ )

Y = ( y1,..., yn )
T p(θ Y )

p(θ Y )

p(θ Y ) = p(Y θ )p(θ ) / p(Y )∝ p(Y θ )p(θ )
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The likelihood for model (1) is  

 . (5) 

Various prior distributions of  may be used. In the SEM framework, it is conceptually convenient to 

specify the prior distributions of the model parameters as sets of common conjugate distributions (see Kaplan & 

Depaoli, 2012). For the CFA model, let  be the set of free model parameters which prior distributions 

are assumed to follow a normal distribution: 

       (6) 

where are the mean and variances hyperparameters of the normal prior, respectively. Different choices of  and 

will yield different degrees of informativeness for the prior distributions. For example, the variance of 0.01 for a 

cross-loading yields a prior where 95% of the loading variation is between -0.2 and 0.2 (see below for more 

discussion). 

The prior distribution that is typically used for the covariance matrix of multivariate normally distributed 

variables, such as  and , is known as the inverse-Wishart distribution (Barnard, McCulloch, & Meng, 2000; 

Gelman et al., 2013; Kaplan, 2014). The inverse-Wishart distribution is a conjugate prior for multivariate normally 

distributed variables implying that when combining with the likelihood function, it will result in a posterior 

distribution that belongs to the same distributional family. Another important advantage of the inverse-Wishart 

distribution is that it ensures positive definiteness of the covariance matrix. Let  be the set of free 

model parameters that are assumed to follow an inverse-Wishart distribution: 

      (7) 

where  is a positive definite scale matrix and df is the number of degrees of freedom with , where p is 

the number of observed variables. The larger the , the higher the certainty about the information in , and the 

more informative the distribution is (Gelman et al., 2013; see below for detailed discussion). 

An important benefit of the BSEM approach is the flexible specification of models that would be 

unidentified in a likelihood-based approach (e.g., in CFA where all cross-loadings are given small-variance priors 
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or where all residual covariances are specified; Bollen, 1989; also see Scheines, Hoijtink, & Boomsma, 1999). By 

replacing fixed-zero parameters relating to cross-loadings and residual covariances in ICM-CFA with small 

variance priors, the BSEM approach provides a more realistic model specification (see below for more discussion).  

For Bayesian estimation, the most common algorithm is based on Markov chain Monte Carlo (MCMC) 

sampling (Kaplan, 2014). The general idea of MCMC is to draw specially constructed samples from the posterior 

distribution  of the model parameters rather than attempting to analytically solve for the moments and 

quantiles of the posterior distribution. In the present study we use the Gibbs sampler (Geman & Geman, 1984) as 

implemented in Mplus (Muthén & Muthén, 2018). The Gibbs sampler begins with an initial set of starting values 

for the CFA model parameters: . The Gibbs sampler then produces  from as follows: 

1. Sample from      (8) 

2. Sample from      (9) 

where  are the Monte Carlo iterations. The computational details can be found in (Asparouhov 

& Muthén, 2010). Using Gibbs sampling, the empirical distribution of the  MCMC samples after N0 burn-in 

iterations2, denoted as , approximates the posterior distribution on 

which Bayesian estimates and inference are based. For example, the mean or mode of is often used as the 

Bayesian point estimate, and the percentiles of are used to form credible intervals.  

BSEM with Informative Cross-Loadings Priors [BSEM-CL]. As mentioned above, the ICM-CFA 

model is based on the highly restrictive assumption that all cross-loadings are fixed to zero in . In practice, most 

indicators present both a certain level of random noise as well as construct-relevant association with other 

constructs (see Asparouhov et al., 2015). In BSEM-CL, the cross-loadings are allowed to be estimated by 

determining cross-loadings priors. The proposed approach operates as follows:  is the element in the jth row 

and kth column of independent Gaussian prior distributions  are assigned to as 

                                                
2 Once the Markov chain has stabilized, the iterations prior to the stabilization (referred to as the “burn-in” phase) 
are discarded.  

p(θ Y )
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    (10) 

where and are hyperparameter assumed to be known from prior knowledge, and  and are matrices 

containing all and . The s are further divided into two groups. The first group consists of main 

(hypothesized) loadings generally implemented in standard CFA as supported by substantive knowledge. The main 

loadings are given diffuse (non-informative) priors (i.e., with large ) to allow  to take on values that 

deviate substantially from zero. The second group comprises the remaining elements of s that are fixed to zero 

in the ICM-CFA model. In the original BSEM-CL model proposed by Muthén and Asparouhov (2012), these strict 

constraints were replaced by “soft” constraints characterized by prior distribution of with small variance  

(i.e., = 0.01) and , which reflect the prior beliefs that these  have large prior probability near 0. This 

informative prior structure concentrates the posterior distributions for  around zero. However, if prior 

knowledge indicates that a large number of cross-loadings are positive, it may be more appropriate to use  

(e.g., ) with small variance . 

Hence, in terms of the parameter specification, BSEM-CL is similar to ESEM with target rotation, which 

allows researchers to have more a priori control on the expected factor structure. However, BSEM-CL enables 

researchers to specify a prior distribution for cross-loadings by varying the prior mean and variance and thus make 

stronger assumptions about the strength of the cross-loadings. Such specification is not readily available in an 

ESEM approach even with target rotation. To some extent, target rotation can be adjusted by specifying the target 

value according to a researcher’s judgement, normally using zero target value for cross-loadings. Target rotation, 

however, does not allow user-specified stringency of closeness to zero. Therefore, BSEM-CL can be viewed to lie 

on a continuum between CFA and ESEM with target rotation (Muthén & Asparouhov, 2012). Using a combination 

of real and simulated data, Muthén and Asparouhov (2012) demonstrated that BSEM-CL is superior to ICM-CFA 

in terms of model fit and the coverage of parameters; although the changes in prior variance for cross-loadings may 
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affect factor correlations (but not main loadings), the influence was small and of little substantive importance. No 

study to our knowledge, however, has systematically compared BSEM-CL to ESEM.  

BSEM with Informative Residual Covariances Priors [BSEM-RC]. Another important feature of BSEM 

is that all residual covariances among observed indicators can be freely estimated using informative priors. Zyphur 

and Oswald (2013) claimed that it is impossible to assume exactly zero covariance among residuals because the 

content between items could covary to some small extent beyond the trait being measured, even in a 

unidimensional scale. Basically, BSEM-CL and BSEM-RC follow the same idea, which is to explicitly model 

some otherwise unmodeled source of influence on the indicators in a measurement model (Asparouhov et al., 

2015). While cross-loadings model the relationships between indicators and nontarget factors, residual covariances 

model shared sources of influence on the indicators that are unrelated to the factors, such as method effects (e.g., 

negatively worded or parallel worded items). The failure to include a priori correlated uniquenesses (CUs; the 

specific residual covariance between two observed indicators) can result in inflated factor correlations, biased 

parameter estimates, and even improper solutions such as a nonpositive definite Ψ (Marsh et al., 2010, 2013).  

Given that freeing all residuals covariances  would lead to an unidentified model (Bollen, 1989), it is 

difficult to discern which residuals should covary in the likelihood-based framework. BSEM-RC provides a 

possible approach to this problem by applying an informative inverse-Wishart prior on . The means 

and covariance matrix of the inverse-Wishart distribution are a function of the elements  on row  and column 

 from (e.g.,  scale matrix), with degrees of freedom  and number of variables p. The density of the 

inverse-Wishart distribution is  

     (11) 

where  and are the multivariate Gamma function and the trace function, respectively. The mean of the 

inverse-Wishart distribution is  

       (12) 

and the variance of each element of the inverse-Wishart distribution is  

Θ
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     (13) 

where the elements  are on row  and column  from  and  are on row  and column  from . 

The variances for the diagonal elements of the inverse-Wishart distribution simplify to  

     (14) 

Equation (13) indicates that when  increases, the denominator will increase more rapidly than the 

numerator, and thus the variance will become smaller. It implies that the larger the value of , the more 

informative the prior is. Equation (13) also indicates the size of variance is partially determined by :the smaller 

the elements of , the smaller the variance, and thus the more informative the prior is. Nevertheless, setting the 

scale to large values also impacts the position of the inverse-Wishart distribution in parameter space (see Equation 

12). Hence, specifying an inverse-Wishart distribution requests balance the  and the size of . In practice, a 

typically used informative inverse-Wishart prior is an identity matrix with varying . Note that to obtain a 

proper posterior where the marginal mean and variance are defined, should be greater than . For example, 

following the specification strategy recommended by Muthén and Asparouhov (2012), an identity matrix , = - 

and  for ./0 gives prior means of zero and variance of roughly 0.01 for residual covariances (see p. 335 

in Muthén & Asparouhov, 2012 for a detailed description). Note that the specification of the priors in BSEM 

depends on the scale of the observed variables and that the guidelines by Muthén and Asparouhov assume that the 

variables have a SD close to one (see Muthén & Asparouhov, 2012, p. 316, for a discussion). 

Using an inverse-Wishart prior specification was shown to outperform other prior specification approaches 

for residual covariances in terms of good convergence and coverage for main loadings and correlations in the 

simulation study (see Asparouhov & Muthén, 2010, Muthén & Asparouhov, 2012 for more discussion). However, 

it is not feasible to specify priors to the specific residual covariance elements (e.g., freely estimated single 

correlated uniqueness) using an inverse-Wishart prior because the inverse-Wishart distribution assumes a prior for 

the whole covariance matrix and does not allow to modify single entries of the matrix. Specifically, the parameter 

 in the inverse-Wishart distribution (see Equations 7, 11-14) is equal for all parameters in the same inverse 
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2 + (df − p −1)rmmrnn
(df − p)(df − p −1)2(df − p − 3)

rmm m m R rnn n n R

Var[xmm]=
2rmm

2

(df − p −1)2(df − p − 3)

df

df

R

R

df R

R = I df

df p + 3

df = p + 6

df



Comparison between ESEM and BSEM 12 
Wishart prior block. 

The present study uses the inverse-Wishart prior method to apply informative priors to residual 

covariances. While both BSEM-CL and BSEM-RC involve adding to the model a set of potentially misspecified 

parameters with small priors, BSEM-RC requires heavier computations because of larger numbers of estimated 

parameters and slow MCMC convergence (Muthén and Asparouhov, 2012; Muthén et al., 2015). Although very 

few studies have directly compared these two approaches, it is expected that BSEM-RC provides a better model fit 

given more free parameters (see below for more discussion). However, the bias and coverage of estimated 

parameters (e.g., main loadings, factor correlations) between these two approaches needs further study. 

BSEM with Informative Cross-loadings and Residual Covariances Priors [BSEM-CLRC]. The BSEM 

technique also allows for simultaneous inclusion of informative, normal priors for all cross-loadings and inverse-

Wishart priors for residual covariances (i.e., BSEM-CLRC; Muthén & Asparouhov, 2012). It takes into account the 

presence of trivial cross-loadings in the CFA model and many minor residual covariances among the observed 

indicators. Recent empirical studies have shown that, compared to BSEM-CL, BSEM-CLRC provides a better 

model fit given that large numbers of fixed parameters are converted to free parameters (e.g., Fong & Ho, 2013; 

Stromeyer et al., 2015). Again, little is known about which approach leads to more accurate parameter estimates in 

relation main loadings, cross-loadings, and factor correlations.  

Despite improved model fit in BSEM-RC and BSEM-CLRC, the complexity in model specifications has 

received growing concerns. For example, Stromeyer et al. (2015) argued that the relaxing of restrictions on all 

residual covariances might result in perfect model fit even in the presence of fundamental model misspecifications. 

MacCallum et al. (2012) also expressed similar concerns in that the complexity of BSEM models with freely 

estimated residual covariances results in an increase in estimation error, which in turn might diminish stability and 

generalizability of the solution. In other words, improved fit is obtained at the expense of modeling idiosyncratic 

sample characteristics that are unlikely to generalize in subsequent samples (Myung, 2000; Zucchini, 2000). These 

concerns emphasize the importance of cross-validation in evaluating BSEM-RC and BESM-CLRC models. In a 

recent empirical study, Asparouhov et al., (2015) cross-validated the BSEM-CLRC solution between two 

independent samples and found strong support for measurement invariance where all parameters are held equal 

across samples. However, the measurement model was employed in Asparouhov et al.’s (2015) study is relatively 



Comparison between ESEM and BSEM 13 
simple, containing only 17 observed indicators and 5 latent factors. In the present study, we expand this approach 

and compare and cross-validate different BSEM models (i.e., BSEM-CL, BSEM-RC, BSEM-CLRC) using a more 

complex factor structure (60 observed indicators and 5 latent factors) with longitudinal and k-fold cross-validation 

approaches using empirical data. 

Applications of ESEM and BSEM Studies in the Literature 

In the last decade, ESEM has been increasingly used in clinical and applied psychological research (see 

Marsh et al., 2014 for a review). It has been extended to evaluate longitudinal and multi-group measurement 

invariance tests, differential item functioning, and relations between latent variables with other constructs (Marsh 

et al., 2009, 2010, 2013, 2014). However, BSEM (Muthén & Asparouhov, 2012) has also recently garnered interest 

in psychological research (Van de Schoot et al., 2017). Nevertheless, researchers have used this technique in many 

alternative, potentially inconsistent ways because of the great flexibility in model specifications in BSEM. We 

reviewed recent studies utilizing BESM approaches for factor analyses (Table 1) based on different approaches to 

setting informative priors. However, only two of these are simulation studies in which BSEM estimates can be 

compared with known population values. Unfortunately, neither of them has directly compared BSEM models with 

different subsets of informative priors, based on which it is difficult to give practical guidelines for researchers to 

apply different BSEM optimal strategies and estimation procedures when developing a measurement model. Given 

that ESEM and BSEM (particularly BSEM-CL) adhere to similar logic (see above), the main purpose in this article 

is to systematically evaluate and compare ESEM and BSEM models with different subsets of informative priors 

based on simulated and real data and derive constructive and practical guidelines for applied researchers. 

The Present Investigation 

The purpose of the present investigation is to evaluate and compare ESEM and BSEM approaches designed 

to resolve the dilemmas between EFA and CFA. To achieve this goal, we conducted two studies: 1) in a simulation 

study, we evaluated the appropriateness of ESEM and BSEM (BSEM-CL, BSEM-RC, BSEM-CLRC) models in 

relation to known population parameters under a variety of different conditions including varying specifications of 

target rotations in ESEM and of informative priors in BSEM; 2) in an empirical study with real data, we compared 

and cross-validated different models based on the most widely used Big-Five personality instrument (12 items for 

each factor; Costa & McCrae, 1992).  
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Based on a limited amount of BSEM research, we test the following a priori hypotheses across two studies: 

Hypothesis 1(H1): Model fit: We hypothesize that BSEM-RC and BSEM-CLRC fit the data better (e.g., 

having low model rejection rate) than BSEM-CL and ESEM given a large additional number of freely estimated 

parameters.  

Hypothesis 2(H2): Close performance between ESEM and BSEM-CL. We anticipate that ESEM will 

perform more closely to BSEM-CL than BSEM-RC and BSEM-CLRC in terms of model fit, bias, coverage, and 

power in estimation of major loadings and factor correlations as they function on a similar logic. 

 Research question 1(Q1): Comparison between ESEM and different BSEM models. We leave as a 

research question which model (ESEM vs. different BSEM models) is superior in accurately estimating 

parameters, particularly when the model specifications were substantially manipulated, such as varying the 

number, location, and size of the targeted values in ESEM and the distribution of informative priors in different 

BESM models. 

 Research question 2(Q2): comparison between simulation and real data results. Given that factor 

structure is usually more complex in reality than that in simulation, we leave open the question as to the 

consistency of results between simulation and real data. 

Study 1: Stimulation Study 

In this simulation study, two factor loading structures were used. In order to enhance comparability, the 

first loading structure, based on the simulation design that Muthén and Asparouhov (2012) used to introduce 

BSEM, addresses several critical issues left unanswered by the Muthén and Asparouhov demonstration. Compared 

to the first loading structure, the second and the third were more complex (with multiple major cross-loadings for 

each factor instead of just one). Thus, the three simulation designs allow us to closely compare CFA, ESEM, and 

different BSEMs with different subsets of priors, and evaluate results in relation to a priori hypotheses. 

Method 

Data generation. On the basis of the Muthén and Asparouhov (2012) simulation, we generated data using 

three latent factor models with five indicator variables for each factor. The first structure of the loading pattern 

(Design 1) in Table 2 is considered where A denotes a main loading, B denotes major cross-loadings, and C 

denotes minor cross-loadings. In Design 1, one major cross-loading and nine minor cross-loadings were 
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incorporated for each factor—a total of three major cross-loadings and 27 minor cross-loading across the three 

factors. The simulation design factors manipulated for the first loading structure included: (a) the sizes of the three 

major cross-loadings (0.1, 0.2, and 0.3) that are considered to be of little importance, some importance, and 

importance respectively (Cudeck & O’Dell, 1994); (b) sample size (N = 200, 500, and 1000); and (c) approaches 

(CFA, ESEM, BSEM-RC, BSEM-RC, and BSEM-CLRC). In total, Design 1 resulted in 45 conditions. The other 

parameters were set such that: the main loadings were all 0.8, the minor cross-loadings were all 0.01, the 

correlations among the three factors were all 0.5, and the residual variances of indicator variables were all 0.5. The 

factor metric is determined by fixing the variances of each factor at 1. 

In Design 2, four major cross-loadings (0.1, 0.2, 0.3, and 0.4) and six minor cross-loadings (i.e., 0.01) were 

incorporated for each factor (see Table 2)—a total of 12 major cross-loadings across the three factors. Note that all 

cross-loadings were positive (i.e., the sum/average of the sizes of the cross-loadings for each factor = 1.06/0.106), 

which results in an unbalanced (positively oriented) factor structure. A balanced factor structure (i.e., Design 3) 

was then investigated where four major cross-loadings for each factor were set to -0.1, 0.2, 0.3, -0.4, respectively 

and six minor cross-loadings were set to a combination of 0.01 and -0.01 (see Table 2). Hence, Design 3 led to a 

completely balanced factor structure (i.e., the sum of the sizes of the cross-loadings for each factor = 0). In Designs 

2 and 3, the model specifications were substantially manipulated for both ESEM and BSEM models, resulting in 

14 model designs (see below for more details) coupled with three sample sizes (N = 200, 500, and 1000). In total, 

42 conditions were tested for each design (2 and 3). The other parameters were defined as same as those in Design 

1. A total of 500 replications were used in both simulation designs. 

ESEM specification. The ESEM models were estimated based on oblique target rotation (Asparouhov & 

Muthén, 2009; Browne, 2001). According to the most common specification of target rotation, all cross-loadings 

were “targeted” to be close to zero by setting the target value to be 0, while all of the main loadings were freely 

estimated in standard ESEM models used in simulation and real data studies. In Designs 2 and 3 of the simulation 

study, the specification of target rotation was varied in terms of the number and location of targets as well as the 

size of the targeted values in relation to matrices  and  in Figure 1. Specifically, the number of targets were 

manipulated by freely estimating 2 major or 2 minor cross-loadings; the location of targets were manipulated by 

only targeting on minor cross-loadings (i.e., freely estimating 4 major cross-loadings); and the size of target values 

Α Β
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were manipulated by specifying to 0.1 (rather than zero; see Appendix 1 for the specified targeted pattern matrix). 

In addition, ESEM with a mechanical rotation criterion (i.e., geomin3) was added and compared with target 

rotation. In total, six ESEM models were symmetrically evaluated in Designs 2 and 3. 

It should be noted that in ESEM “the order of the latent factors is interchangeable and each factor is 

interchangeable with its negative” (p. 436, Asparouhov & Muthén, 2009); these indeterminacies (i.e., the order and 

sign pattern) are particularly important in simulation studies (Asparouhov & Muthén, 2009). Without evaluating 

and correcting the order and sign pattern for each replication, the results would be biased in relation to parameter 

bias, mean square error, and coverage in simulation studies (Myers, Ahn, Lu, Celimli, & Zopluoglu, 2017). As 

such, we carefully reviewed all ESEM solutions and corrected (i.e., reordered or re-signed) parameter estimates for 

each replication so that all replications uniformly aligned with the pattern defined by the population values.  

Choice of Priors in BSEM. The posterior distribution of Bayesian estimation was approximated by using 

an MCMC algorithm with the Gibbs sampler method. Note that choices of the prior variance are associated with 

the scale of the observed variables. For example, a prior variance of 0.01 corresponds to a small loading for an 

observed variable with unit variance, but it corresponds to an even smaller loading for an observed variable with 

variance larger than one (Muthén and Asparouhov, 2012). For convenience, observed variables were standardized 

to establish a common scale. In BSEM-CL normal priors with mean zero and variance 0.01 were used for the 

cross-loadings’ priors; and standard non-informative prior distributions were used for other parameters: main 

loadings ~N(0, infinity), residual variances ~ Inverse Gramma Γ23(-1,0), and intercepts ~N(0, infinity). We used 

Mplus default improper prior IW(0, −5 − 1) for the latent factor covariance matrix (where 5 is the number of latent 

factors). This is a widely used diffuse prior and allows the variance parameters to be any nonnegative value from 0 

to infinity and the covariance parameters to be any value from –infinity to +infinity (Depaoli & van de Schoot, 

2017). It should also be noted that the informative priors are applied not only to the major cross-loadings used to 

generate the data, but to all minor cross-loadings in the analysis model to reflect a real-data analysis situation. In 

relation to residual covariance priors in BSEM-RC and BSEM-CLRC, the inverse-Wishart prior IW(R, df) with R 

                                                
3 In geomin rotation, the constant  was set to .05 which has been widely used in empirical studies (Marsh et al., 2009; 2010, 2014). A 
recent simulation study (Celimli, Myers, & Ahn, 2018) found that the geomin rotation with = .05 provided more stable but less accurate 
factor solutions than the default geomin rotation (where = .001 in Mplus) with very small effect size; the accuracy of factor solutions in 
geomin rotation with  = .05 increased when the factors are more correlated.  

ε
ε

ε
ε
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= I and df = p + 6 (p = number of indictor variables) was used, corresponding to prior mean and variance for 

residual covariances of zero and 0.01 respectively (Gucciardi & Zyphur, 2016; MacKinnon, 2008; Muthén and 

Asparouhov, 2012). Table 3 lists the specific priors used in each BSEM approach (also see Supplemental 

Materials, Appendix 7 for the annotated Mplus syntax). 

Variation of prior specification. In the simulation designs 2 and 3, we have further considered various 

informative priors for factor loadings and residual covariances, in addition to the standard priors setup (M = 0, Var 

= 0.01). First, the variance of cross-loadings priors in BSEM-CL and of residual covariances priors in BSEM-RC 

were varied to 0.02 and 0.005. Second, informative priors with mean 0.1(rather than zero) for cross-loadings were 

implemented in BSEM-CL to reflect in situations where researchers have a priori information (based on theory or 

prior research) indicating that the cross-loadings are likely to be positive. In total, eight ESEM models were 

symmetrically evaluated in designs 2 and 3. 

Model fit in BSEM. Convergence of BSEM models is evaluated by the potential scale reduction (PSR; 

Asparouhov & Muthén, 2010). PSR is the ratio of total variance across chains and pooled variance within a chain. 

A PSR value of 1.00 represents perfect convergence (Muthén & Muthén, 1998–2015; Kaplan & Depaoli, 2012). 

With a large number of parameters, a PSR < 1.10 for each parameter indicates that the convergence of the MCMC 

sequence is obtained (Muthén & Muthén, 1998-2015; Gelman, Carlin, Stern, & Rubin, 2004). In this study, we 

used PSR < 1.05 as an appropriate convergence criterion (Zyphur & Oswald, 2013). For each replication, BSEM 

models were estimated with 10,000 MCMC iterations with two Markov Chains in Mplus (Muthén & Muthén, 

1998-2017), on which PSRs were assured to be < 1.05 (see Tables 4&5). We report the model rejection rate that is 

computed as the proportion of replications (in each condition of the simulation design) with a Bayesian posterior 

predictive p (PP p) value for BSEM models (or maximum likelihood [ML] p value for CFA and ESEM) of smaller 

than 0.05. Small PP p values (i.e., <.05) indicate poor model fit because this means that the observed data rarely fit 

better than generated data (e.g., < 5% of the time). We also reported another two indices for comparing Bayesian 

models: deviance information criterion (DIC) and Bayesian information criteria (BIC; Muthén, 2010). Smaller BIC 

and DIC values indicate better models, and models can be compared using the DIC even when they are not nested 

(Zyphur & Oswald, 2013). DIC is preferable to BIC when sample sizes are large, coupled with a large number of 

observed indicators (Asparouhov et al., 2015). 
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To provide a comprehensive evaluation of different ML and Bayesian approaches, we considered a variety 

of measures of accuracy and precision. We reported the mean and SD of relative bias (difference between the 

estimated and the true value divided by the true value) for main loadings and factor correlations across the 500 

replicates. Generally, a relative bias less than 5% could be considered negligible, and less than 10% could be 

acceptable. In addition, we reported the 95% coverage that refers to the proportion of the replications for which the 

95% Bayesian credibility interval covers the true parameter values used to generate data in BSEM models. We also 

reported the corresponding 95% coverage for ESEM models using a ML bootstrap confidence interval. 

Specifically, we drew 500 bootstrap samples from each replication to estimate a confidence interval. It is also 

interesting to study what corresponds to power in a frequentist setting for a Bayes setting, particularly with respect 

to major cross-loadings. For Bayes, power is computed as the proportion of the replications for which the 95% 

Bayesian credibility interval (or the ML bootstrap confidence interval) does not cover zero (see Power in Tables 6, 

8, and 9, also see Appendices 2&3 in Supplemental Materials for the summary of cross-loadings). 

Results: Design 1 

The ML 5% rejection rate for ESEM was appropriately small (5%-9%), whereas the nominal 5% rejection 

rate of the Bayes PP p value was close to zero (BSEM-CL, < 1%), or actually zero (BSEM-RC and BSEM-CLRC). 

Tables 6 reports the average relative bias of parameters (main loadings and factor correlations) across 45 

conditions. To provide a comprehensive evaluation of the impact of different conditions on simulation results (i.e., 

models, sample sizes, sizes of major cross-loading), an ANOVA with the conditions of the simulation design as 

factors was employed (see Table 7). Results showed that the variances of relative bias across conditions for main 

loadings were largely explained by different models (R-square 89.1%) rather than sizes of major cross-loadings (R-

square 5%) and sample sizes (R-square 1%). The sizes of relative bias in relation to main loadings across different 

models were all acceptable (0.6% to 10.5%). Even though ESEM resulted in the smallest relative bias of main 

loadings followed by BSEM-CL, all models have similar and small SDs of relative bias. 

For factor correlations, the sizes of bias varied for the different models (R-square 54.7%) and size of major 

cross-loadings (R-square 37.5%) but not sample sizes (R-square 0.4%). When sizes of major cross-loadings were 

small and moderate (i.e., 0.1 and 0.2), BSEM-RC and BSEM-CLRC showed slightly smaller relative bias than 
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ESEM and BSEM-CL. These differences disappeared when the major cross-loading was 0.3. Note that overall the 

differences in the SD of relative bias among different models were relatively small (< 0.8%).  

Of particular relevance to the present investigation, we compared coverage and power results across 

different conditions (see Table 5). The differences in 95% coverage for main loadings and factor correlations were 

largely explained by different models (R-square 78.6% and 65.1%, respectively). ESEM, BSEM-CL, and BSEM-

CLRC had similar and good coverage (> .900), whereas BSEM-RC resulted in relatively low coverage when major 

cross-loadings and sample sizes were large. In addition, all models showed excellent power to detect main loadings 

and factor correlations across different sample sizes.  

Results: Design 2  

In Design 2, a more complex and unbalanced (positively oriented) factor structure was utilized, in which 

multiple positive major cross-loadings instead of one were incorporated for each factor. We started with the 

standard comparison among the models (ESEM, BSEM-CL, BSEM-RC, and BSEM-CLRC) evaluated in Design 1, 

and then compared different variation of model specification in relation to BSEM and ESEM. In total, 14 models 

(6 ESEM models and 8 BSEM models) with three different sample sizes were evaluated in Design 2. 

Similar to Design 1, BSEM-CL showed slightly lower rejection rate than ESEM4 (.022 to .064 for BSEM-

CL and .056 to.100 for ESEM). BSEM-RC and BSEM-CLRC showed a zero rejection rate in terms of Bayesian p 

(PP p) value. The relative bias and its SD and coverage for main loadings and factor correlations across conditions 

were largely explained by different models (R-square 58.8% to 99.0%, see Table 7). As seen in Tables 8 and 9, 

ESEM consistently showed the smaller relative bias in estimation of main loadings (4.3% to 5.7%) and factor 

correlations (19.3% to 22.9%), and better coverage than different BSEM models. Even though similar sizes of 

relative biases for main loadings (12.1% to 18.4%) were found across different BSEM models, BSEM-RC showed 

slightly larger SD of bias (15.7% to 17.4%) and lower coverage (.445 to .548) in main loadings than other BSEM 

models. Relative bias and coverage for factor correlations were substantially large across different BSEM models 

                                                
4 We also compared BIC between ESEM and BSEM-CL and found that ESEM had consistently smaller BIC than BSEM-CL to a 
small extent (diff= 53 to 64 to across different sample sizes). In addition, given that the DIC was developed as the Bayesian 
counterpart of AIC in frequentist analysis, we compared AIC in ESEM with DIC in BSEM-CL and found that the differences were 
tiny (diff= 7 to 12 to across different sample sizes). Even though these fit indices are fairly good approximations for model 
comparisons between ML and Bayesian estimation, there is no full simulation studies that have confirmed that. Hence, the small 
differences in these fit indices should be treated as inconclusive (see http://www.statmodel.com/cgi-bin/discus/show.cgi?9/6256 for 
further discussion in Mplus discussion forum). Also see below for model fit comparison among different BSEM models (Table 5). 
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(36.4% to 40.6% and .000 to .275, respectively), although all models showed 100% power to detect factor 

correlations. 

 ESEM with different specifications. Note that changing the number and location of targets, sizes of target 

values, and the rotation method in ESEM resulted in identical model fit. As seen in Tables 8 and 9, ESEM with 

geomin rotation showed small and negative relative bias in estimation of main loadings (-3.2% to -2.8%) and factor 

correlations (-16.7% to -17.9%) with small SD and good coverage and power. Overall, the size of these measures 

in geomin rotation were quite similar with that in target rotation. When the number of targets were manipulated, 

freely estimating minor cross-loadings resulted in larger relative bias and lower coverage, with the reverse being 

true for freely estimating major cross-loadings (see Figure 2). Particularly, when all major cross-loadings were 

freely estimated (i.e., only minor cross-loadings were targeted), ESEM showed the smallest relative bias and 

coverage. Finally, when the targeted values were changed to .1, the ESEM model resulted in substantively smaller 

relative bias (-.6% to 8.2%) than the typical ESEM model where targeted values were set to zero.  

BSEM with different specifications of priors. To better evaluate the influence of prior specifications on 

BSEM model solutions, we also included BIC and DIC in addition to rejection rate for model fit comparisons (see 

Table 5). Whereas BSEM-RC and BSEM-CLRC had smaller (zero) rejection rate than BSEM-CL, BSEM-CL 

provided smaller BIC and DIC than BSEM-RC (∆≈350 and ∆≈50, respectively) and BSEM-CLRC (∆≈650 and 

∆≈50, respectively). When the variances of cross-loadings priors in BSEM-CL and residual covariances priors in 

BSEM-RC were set to 0.05 and 0.02 (instead of 0.01), the BSEM models remained highly similar model fit and 

estimation solutions (see Tables 8&9 and Figure 3). However, when the mean of cross-loadings priors in BSEM-

CL was set to 0.1, the BSEM solution improved substantially and resulted in very small relative bias and excellent 

coverage and power in estimation of main loadings and factor correlations, even though the model fit remained 

similar. 

Results: Design 3 

In simulation designs considered thus far, we have only considered positive cross-loadings, which resulted 

in an unbalanced and positive-oriented factor structure. In Design 3, we evaluated a balanced factor structure by 

incorporating both positive and negative cross-loadings (e.g., -0.1, 0.2, 0.3, -0.4, for major loadings). Again, we 

started with the standard comparison among the models (ESEM, BSEM-CL, BSEM-RC, and BSEM-CLRC), and 
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then compare different variation of model specifications in relation to BSEM and ESEM. In total,14 models (6 

ESEM models and 8 BSEM models) with three different sample sizes were evaluated in Design 3. 

Similar to Designs 2, BSEM-RC and BSEM-CLRC showed a zero rejection rate, followed by BSEM-CL 

(.006 to .010) and ESEM (.054 to .082). The relative bias and its SD and coverage for main loadings and factor 

correlations across conditions were largely explained by different models (R-square 64.5% to 98.7%, Table 7). As 

seen in Tables 8 and 9, small sizes of relative biases for main loadings were found across the ESEM (-2.9% to -

2.3%) and BSEM-CL (1.9% to 2.2%) and BSEM-CLRC (1.8% to 3.2%), whereas the bias of factor correlations in 

ESEM (-18.6% to -16.2%) was much larger than BSEM-CL (3.9% to 4.0%) and BSEM-CLRC (2.6% to 4.7%). 

ESEM, BSEM-CL, and BSEM-RC showed excellent coverage and power for main loadings and factor 

correlations. Although most of BSEM-RC resulted in acceptable size of relative bias for main loadings (-4.5% to -

6.6%) and factor correlations (-4.7% to 19.1%), particularly when sample sizes were small, the SD of relative bias 

for main loading (25.7% to 28.0%) and factor correlations (12.0% to 44.4%) in BSEM-RC was much larger than 

that in other models. It is also evident that BSEM-RC resulted in lower coverage and power in detecting main 

loadings and factor correlations.  

 ESEM with different specifications. ESEM with geomin rotation showed smaller relative bias (-6.4% to -

6.0%) but lower coverage (.623 to .883) in estimation of main loadings than that with target rotation to a small 

extent. However, geomin rotation resulted in much larger relative bias for factor correlations (-47.7% to -47.0%) 

with smaller SD and lower coverage than target rotation (see Figure 2). Again, freely estimating minor cross-

loadings resulted in larger relative bias and lower coverage, with the reverse being true for freely estimating major 

cross-loadings. When the targeted values were changed to .1, the ESEM model resulted in much larger relative bias 

-63.7% to -56.6%) than the typical ESEM model where targeted values were set to zero.  

BSEM with different specifications of priors. Similar to Design 2, BSEM-CL provided smaller BIC and 

DIC than BSEM-RC (∆≈400 and ∆≈50, respectively) and BSEM-CLRC (∆≈600 and ∆≈50, respectively), although 

BSEM-RC and BSEM-CLRC showed a smaller rejection rate than BSEM-CL. Again, changing variances of 

informative priors on cross-loadings in BSEM-CL and residual covariances in BSEM-RC led to similar model fit 

and estimation solutions (See Tables 8&9 and Figure 3). However, when the mean of cross-loadings priors in 
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BSEM-CL was changed to 0.1, the relative biases for main loadings and factor correlations substantially increased 

(-47% to -46.6%) with larger SD and lower coverage and power, even though the model fit remained similar. 

Summary of the Three Stimulation Designs.  

Given that in factor analyses applied researchers usually start with CFA that are likely to be misspecified in 

reality, we also evaluated CFA in Design 1. Results revealed that CFA was ill fitting and resulted in the worst 

model fit and the largest bias in estimating factor correlations (see Appendix 2).  

In relation to model fit, BSEM-RC and BSEM-CLRC consistently showed lower rejection rates than 

BSEM-CL given an enormous increase in the number of free parameters, whereas BSEM-CL showed lower DIC to 

a very small extent. Although the differences in BIC favored by BSEM-CL (low value is preferred) were much 

larger than those in DIC, this finding should be interpreted cautiously because BIC unnecessarily penalizes the 

BSEM model by counting small-variance prior parameters as actual parameters and thereby overshadows 

information provided by BSEM (Asparouhov et al, 2015). Overall, relaxing the restrictions on either cross-loadings 

or residual covariances (or both) in BSEM did not lead to large differences in model fit. Compared to BSEM 

models, ESEM resulted in lower rejection rate but is somewhat closer to BSEM-CL (also see more discussion in 

the footnote 4). 

For the estimation of main loadings and factor correlations, the pattern of results was substantially varied 

by the factor structures. ESEM resulted in more accurate parameter estimates in main loadings and factor 

correlations than different BSEM models in most of cases in designs 1 and 2 where only positive cross-loadings 

were implemented. This advantage was stronger particularly when the stimulated factor structure was complex 

(Design 2) and the sample size was small. When both positive and negative cross-loading were introduced in a 

balanced factor structure (Design 3), the BSEM-CL and BSEM-CLRC provided more accurate estimation in factor 

correlations than ESEM, whereas these three models resulted in small bias, and its SD as well as good coverage 

and power for main loadings. In terms of the direction of bias, BSEM-CL and BSEM-CLRC tend to result in more 

positive bias in estimating main loadings and factor correlations than ESEM, particularly when the factor structure 

was unbalanced. BSEM-CL provided unstable estimation solutions in terms of larger SD bias, lower coverage, and 

less power than other models, although sometimes the sizes of relative bias in BSEM-CL were acceptable. 
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In relation to different model specification, specifying mean of cross-loadings to 0.1 in BSEM-CL and 

target value to 0.1 in ESEM performed much better than the ESEM and BSEM models (where mean and target 

values were zero, respectively) in the unbalanced factor structure, with the reverse being true in the balanced factor 

structure (see Figure 2). However, change variances of cross-loadings and residual covariances in BSEMs led to 

similar results. Target rotation was, superior to geomin rotation in estimating factor correlations when the factor 

structure was balanced; however, Geomin rotation produced more stable factor solutions. For ESEM with target 

rotation, changing the number of targets by freely estimating major cross-loadings improved the model solutions. 

In contrast, freely estimating minor cross-loadings led to more biased results. In a typical case, when only minor 

cross-loadings were targeted, ESEM provided almost accurate estimates parameters. This pattern of results 

consistently showed in both designs 2 and 3. 

Study 2: Real data - NEO-FFI Big-Five Personality Example 

An empirical example used data from a large German study (Transformation of the Secondary School 

System and Academic Careers [TOSCA]; Trautwein, Neumann, Nagy, Lüdtke, & Maaz, 2010; Marsh et al., 2010). 

The Big-Five personality factors (Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness) 

were measured by using the German version of the NEO-FFI (Borkenau & Ostendorf, 1993), where 12 items were 

used to measure each of the five factors. Using these data, Marsh et al. (2010) applied ESEM to demonstrate that 

the a priori scales showed a well-defined five-factor solution and that ESEM resulted in substantially more 

differentiated (less correlated) factors than did CFA. They also defined an a priori set of correlated uniquenesses 

(CUs, correlated errors between indicators) inherent to the design of the NEO-FFI (see below). Their results 

provided apparently the first acceptable fit to the Big-Five factor structure based on the 60 NEO-FFI items, and 

was used to counter suggestions that factor analysis might not be an appropriate tool in personality research. Their 

study was also one of the strongest demonstrations of the usefulness of ESEM in applied research. Hence, these 

data provide an ideal setting for comparing CFA, ESEM, and BSEM with different (cross-loadings or residual 

covariances) informative priors.  

Method 

Data. The 60-item NEO-FFI (Costa & McCrae, 1992) provides a short measure of the Big-Five personality 

factors. For each factor, 12 items from the 180 items of the longer NEO-PI (and the full 240-item NEO-PI-R; 
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McCrae & Costa, 1989) were selected. The NEO-FFI responses by late-adolescent Germans showed high 

reliability, validity, and comparability with responses of the original English-language version (Borkenau & 

Ostendorf, 1993; Trautwein et al., 2010). Two waves of data were used in this study. At Wave 1 , the students (N = 

3,390; 45% men, 55% women) were in their final year of upper secondary schooling; T2 was assessed (N = 1,570, 

39% men, 61% women) 2 years after graduation from high school. Marsh et al. (2010) revealed that sample 

attrition effects were statistically significant in some domains, but the effect sizes were small and indicative of only 

small selectivity effects. Coefficient alpha reliabilities of the five factors at Wave 1 and Wave 2 were acceptable 

(.72 - .87, also see Marsh et al., 2010).  

A priori CUs. In the full NEO-PI-R (with 240 items), each of the Big-Five factors is represented by six 

facets, and each facet is represented by multiple items (see McCrae & Costa, 2004). However, in the 60-item NEO-

FFI, all items were selected to best represent each of the Big-Five factors without reference to the facets. Marsh et 

al. (2010) posited that the correlations between items that came from the same facet of a specific Big-Five factor 

would be higher than those between items that came from different facets of the same Big-Five factor—beyond 

correlations that could be explained in terms of the common Big-Five factor that they represented. They found that 

test–retest factor correlations were substantially inflated and might result in improper solutions due to the failure to 

include CUs relating each pair of items from the same facet. In total, an a priori set of 57 CUs were included in this 

study. 

Priors Choice. In line with the simulation study, normal priors with mean zero and variance 0.01 were used 

for cross-loadings priors. In BSEM-CL, the a priori CUs were freely estimated by using noninformative (diffuse) 

normal priors with mean zero and variance 1000 (hereafter BSEM-CL+CUs). In BSEM-RC and BSEM-CLRC, the 

inverse-Wishart prior IW(R, df) with R = I and df = 66 (60[number of indictor variables] + 6) was used for residual 

covariances, corresponding to mean zero and SD roughly 0.1, respectively (Muthén & Asparouhov, 2012). Due to 

high auto-correlation among the MCMC iterations, only every 10th iteration was used with a total of 100,000 

iterations to describe the posterior distribution (Muthén & Asparouhov, 2012).  

Goodness of fit. We evaluated a number of traditional indices (Marsh, Hau, & Grayson, 2005): the 

comparative fit index (CFI), the root- mean-square error of approximation (RMSEA), and the Tucker- Lewis Index 

(TLI). Values greater than .95 and .90 for CFI and TLI typically indicate excellent and acceptable levels of fit to 
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the data. RMSEA values of less than .06 and .08 are considered to reflect good and acceptable levels of fit to the 

data. Apart from posterior predictive p values and ML likelihood-ratio chi-square values, we also reported another 

two indices for comparing Bayesian models: deviance information criterion (DIC) and Bayesian information 

criteria (BIC; Muthén, 2010). Smaller BIC and DIC values indicate better models, and models can be compared 

using the DIC even when they are not nested (Zyphur & Oswald, 2013). DIC is preferable to BIC when sample 

sizes are large, coupled with a large number of observed indicators (Asparouhov et al, 2015).  

Cross-validation and External validity. The cross-validation is important for BSEM approaches, 

particularly for BSEM with residual covariance priors (BSEM-RC and BSEM-CLRC) because a large number of 

freely estimated parameters can lead to over-fitting. We compared model fit and parameter estimates (factor 

loadings, CUs, and factor correlations) across different approaches based on Wave 1 data and then cross-validated 

the parameter estimates using Wave 2 data. More specifically, we sampled the Wave 2 data with replacement 

10,000 times and then computed Root Mean Square Residual (RMSR) by comparing the variance-covariance 

matrix of indicator variables at Wave 2 and the estimated (implied) variance-covariance matrix based on different 

models at Wave 1. In addition, we calculated RMSEA by employing all parameter estimates from the Wave 1 

solution as fixed parameters to estimate the same model based on Wave 2 data. Based on the same logic, we also 

cross-validated the Wave 2 parameter estimates to Wave 1 data.  

Each model (e.g., CFA, ESEM) was estimated five times to different partitions of the data (80% of the data 

each time), the results (i.e., parameter estimates as fixed values) were applied to the remaining 20% of the sample 

(Grimm, Mazza, & Davoudzadeh, 2016). Also, we provide another set of cross-validation analysis by estimating 

each model five times to different partitions of the data (20% of the data each time) and applying the results to the 

remaining 80% of the sample. RMSEA was reported for five-fold cross-validation results. Finally, we tested the 

construct validity of the big-five factors in relation to external criteria (e.g., life-satisfaction, positive/negative 

affect) across different estimation procedures.  

Results 

Model fit. Consistent with previous studies (e.g., Marsh et al., 2010), the CFA solution did not provide an 

acceptable fit to the data (e.g., CFI = .684, see Table 10). The next CFA model incorporated a priori CUs; results 

were still inadequate, albeit improved (e.g., CFI = .750). The corresponding ESEM solution fit the data much 
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better. Although the fit of the ESEM without a priori CUs was still not acceptable (e.g., CFI = .850), the inclusion 

of a priori CUs fitted the data reasonably well (e.g., CFI = .912). Aligned with CFA and ESEM, the BSEM with 

cross-loadings priors with a priori CUs (BSEM-CL +CUs) resulted in much better fit to the data, compared to that 

with no a priori CUs (∆DIC = 3069; ∆BIC = 2720). However, the low PP p values (p < .05) indicated poor fit for 

both BSEM-CL models. When residual covariance priors were incorporated, the fit of the BSEM models (BSEM-

RC and BSEM-CLRC) improved substantially but had many more freely estimated parameters compared to 

BSEM-CL+CUs (∆ number of parameters = 1476). Although more parameters were freely estimated in BSEM-

CLRC than in BSEM-RC (∆parameters = 240), both models resulted in similar model fit. Given that the models 

with no a priori CUs provided relatively poor model fit, the subsequent analyses focused on the CFA, ESEM and 

BSEM models with the a priori CUs. 

Factor loadings. To enhance interpretability, the items measuring Neuroticism were reversed coded to 

represent a measure of Emotional Stability. For main loadings, different approaches resulted in similar and 

substantial sizes of loadings except for BSEM-RC where the size of factor loadings was slightly smaller (see 

Figure 4, also see Appendix 4 for the Mean, SD, and Range of loadings for the Big-Five factors across models). 

Next, we compared cross-loadings across ESEM+CUs, BSEM-CL+CUs, and BSEM-CLRC. While sizes of cross-

loadings were substantially smaller than those of main loadings in the three models, BSEM-CLRC resulted in 

slightly smaller cross-loadings than ESEM+CUs and BSEM-CL+CUs. 

CUs. Consistent with previous studies (e.g., Marsh et al. 2010), the a priori CUs were significant across 

different estimation procedures (M = from .087 to .168; see Appendix 5). In the model where the full set of CUs 

was considered (i.e., BSEM-RC and BSEM-CLRC), the sizes of the a priori CUs were substantially larger than 

those of other CUs (∆M =.116 and .087, respectively).  

Correlations. All factor correlations were statistically significant in CFA and ESEM solutions, but the 

coefficients in CFA+CUs (Mean[M] = .184, SD = .191) were systematically higher than those in ESEM+CUs (M 

= .095, SD = .114, Table 11). Although BSEM-CL+CUs and BSEM-CLRC had a similar pattern of correlations 

with ESEM+CUs, the correlations in BSEM-CL+CUs and BSEM-CLRC were slightly higher (M = .112, SD 

= .160; M = .137, SD = .168, respectively). BSEM-RC resulted in the much lower correlations, and most of these 

were close to zero and less than 0.1 in absolute value (M = .009, SD = .093). The correlations in BSEM-CL+CUs 
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showed low degree of uncertainty with a small posterior SD. However, the posterior SDs were considerably larger 

in BSEM-CL+CUs and BSEM-CLRC. Thus, a majority of correlation coefficients were insignificant in the sense 

of their 95% posterior distribution credibility intervals covering zero. 

Cross-validation. We cross-validated the findings across two waves of data and reported mean and 2.5% 

and 97.5% Quantiles of RMSR as well as RMSEA with 90% confidence interval (Table 12). Results showed that 

there was a stronger cross-validation support for the ESEM and BSEM models, compared to CFA. The support for 

ESEM+CUs and BSEM-CL+CUs was almost identical and slightly weaker than that for BSEM-RC and BSEM-

CLRC when cross-validating the results from Wave 1 (N = 3,390) to Wave 2 (N = 1,750) data. However, these four 

models had similar cross-validation support when cross-validating from Wave 2 to Wave 1 data. Five-fold cross-

validation analysis also showed that BSEM-RC and BSEM-CLRC cross-validated better than others when cross-

validating the results from 80% (N = 2,711) to 20% (N = 679) data at Wave 1, whereas ESEM+CUs cross-

validated best followed by BSEM-CL+CUs when cross-validating the results from 20% to 80% data (see Table 

13). These findings indicated that the cross-validation results vary by sample sizes. When the sample size (of the 

training data) was large, BSEM-RC and BSEM-CLRC provided slightly more predictive accuracy than 

ESEM+CUs and BSEM-CL+CUs; the reverse was true when the sample size was small.  

External validity. We evaluated the construct validity of the Big-Five constructs in relation to five external 

criteria (i.e., life-satisfaction, positive/negative affect, self-esteem, and Emotional Stability self-concept) across 

different estimation procedures (see Appendix 6). Specifically, consistent with prior research (e.g., Diener, Suh, 

Lucas, & Smith ,1999; McCrae & Costa, 1999), CFA+CUs, ESEM+CUs, BSEM-CL+CUs, and BSEM-CLRC 

showed that Emotional Stability was highly correlated with negative affect (rs = -.638, -.630, -.633, -.631, 

respectively) and Extraversion was substantially correlated with positive affect (rs = .570, .505, .524, .548, 

respectively). However, the sizes of corresponding correlations coefficients in BSEM-RC were significantly 

smaller (r = -.408 for Emotional Stability and negative affect, r =.296 for Extraversion and positive affect). 

Similarly, as expected (e.g., Asendorpf & vanAken, 2003; Marsh, Trautwein, Lüdtke, Köller, & Baumert, 2006), 

high correlations of Emotional Stability with self-esteem and Emotional Stability self-concept were evident across 

models except for BSEM-RC (rs = .350 and .453, respectively). In total, CFA+CUs, ESEM+CUs, BSEM-

CL+CUs, and BSEM-CLRC revealed similar and substantially higher correlation patterns between the Big-Five 
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factors and the five external criteria than BSEM-RC. This indicates that BSEM-RC results in much weaker support 

for the external validity of the big-five constructs than other models. 

Comparisons between simulation and real data results. The pattern of results revealed in the simulation 

study in Study 1 was largely consistent with the findings based on real data. Firstly, CFA, even including a priori 

CUs, consistently had a poorer fit to the data than ESEM. Again, BSEM-RC and BSEM-CLRC again provided 

similar and better model fit than BSEM-CL. Secondly, BSEM-CL and BSEM-CLRC had slightly higher main 

loadings and factor correlations across the Big-Five factors than ESEM (consistent with the finding that they 

tended to result in more inflated estimated parameters than ESEM in the simulation study). However, the 

differences in estimation of factor loadings among ESEM, BSEM-CL, and BSEM-CLRC were smaller than the 

simulation results. BSEM-RC resulted in the lowest main loadings and factor correlations among different 

estimation procedures, which is not consistent with the simulation results where it tends to have positively biased 

estimated parameters. Importantly, BSEM-RC also provided weak support for the convergent validity of the big-

five factors for external validity criteria.  

Overall Discussion 

This study evaluated CFA, ESEM and BSEM approaches based on two simulation designs and one real 

data example which covered different sample sizes and a variety of degrees of model misspecification (complexity) 

of the factor structure. Thus, the juxtaposition of simulation and real data studies provide insights into the 

performance of different estimation procedures. Table 14 summaries key findings of the present study and 

indicates whether these findings supported our expectations. The critical findings are discussed as follows. 

Comparison ESEM with BSEM-CL 

BSEM-CL and ESEM (with target rotation) work on a similar logic: taking into account unmodeled source 

of influence on the indicators through conversion from fixed-to-zero cross-loadings to approximately fixed-to-zero 

cross-loadings while having a priori control on the expected factor structure. In this regard, BSEM-CL performs 

more closely to ESEM than other BSEM models in terms of bias, SD of bias, coverage, and power, particularly in 

large sample sizes where the likelihood dominates the estimation of posteriors. Particularly, we found that 

changing targeted value to 0.1 in ESEM resulted in a similar pattern of results by changing mean of priors on 
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cross-loadings to 0.1 in BSEM-CL, indicating that targeted value in ESEM and mean of cross-loadings work in the 

similar way. 

However, BSEM-CL differs from ESEM in two major ways. Firstly, BSEM-CL provides researchers with 

more control on cross-loadings by specifying different degrees of small variance priors (additional to small mean 

priors) and thus acts in a more confirmatory nature than ESEM (see below for further discussion). Secondly, in 

ESEM, the optimal rotation is determined only on the basis of the unrotated loadings as in EFA (Muthén & 

Asparouhov, 2012). This means that the effects of residual covariances are not considered in the optimal rotation. 

By contrast, the optimal rotation in BSEM-CL is determined by all parts of the model (Muthén & Asparouhov, 

2012). In the empirical example, the inclusion of a priori CUs allows us to examine the influence of residual 

covariances on these two models. However, both models result in almost identical estimation of a priori CUs (most 

of them are statistically significant) and similar model solutions and cross-validation results. 

BSEM with Different Subsets of Informative Priors 

Muthén and Asparouhov (2012) proposed an alternative BSEM technique that designates subsets of 

parameters that are assigned informative priors. Small-variance priors can be assigned to different subsets (i.e., 

cross-loadings, residual covariances) or a combination of subsets of parameters in different models. One of the key 

aims of this article is to systematically evaluate BSEM models with different subsets of informative priors.  

In the simulation study, BSEM-CL is well-fitting and further inclusion of residual covariance priors (i.e., 

BSEM-CLRC) only results in slightly better model fit. These residual covariance priors, however, appear to have 

small and negative effects on estimation of factor loadings – main loadings become more positively biased and 

cross-loadings become more negatively biased (see Appendices 2&3). However, these differences are quite small. 

Again, in the real data example both BSEM-CL+CUs and BSEM-CLRC perform very similarly, even though 

further inclusion of residual covariance priors (i.e., BSEM-CLRC) achieves a large improvement in model fit. This 

indicates that the BSEM-CL+CUs misfit is likely due to small and unimportant residual correlations and the main 

parameter estimates tend to remain unchanged. 

BSEM-RC provide slightly more biased estimated parameters for main loadings and factor correlations 

than other BSEM models, the solution of BSEM-RC is much more unstable particularly when both positive and 

negative biases are included, evident by large SD of bias. Thus, it partially explains why the results in the 
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simulation study are substantially different from those in the real data example for BSEM-RC. Specifically, the 

factor loadings and correlations are considerably smaller in BSEM-RC than those in BSEM-CLRC (as well as in 

ESEM and BSEM-CL), which leads to weak support for the external validity. Another potential reason for these 

differences is that no residual covariances were proposed in the simulation study, whereas in the real data study 57 

pairs of the a priori CUs that came from the same facet of a specific Big-Five factor were included and shown to be 

important in terms of goodness of fit (Marsh, et al., 2010). In this case, the variances of observed indicators can be 

largely explained by residual covariances, which leads to attenuated main loadings and factor correlations in 

BSEM-RC. Additionally, a possibility is that this study applies small variance on inverse-Wishart priors for the 

residual covariances matrix (Muthén & Asparouhov, 2012), in which the a priori CUs cannot be specified with 

their own priors (i.e., noninformative prior) in BSEM-RC. Although this method was found to perform better than 

others in the relatively simple simulation design with only two large residual covariances (Muthén & Asparouhov, 

2012), further evaluation of influence of the underlying mechanism of residual covariances on factor structure is 

clearly warranted. 

Another issue of BSEM-RC and BSEM-CLRC is that the estimation of large numbers of additional 

parameters (associated with residual covariances) brings with it an enormous increase in the posterior SD when the 

factor structure is complex (e.g., many factors and observed indictors). Although imposing small variance 

(e.g., .01) on the priors for these new parameters rather than freely estimating them may alleviate the negative 

impact of the increased estimation error, the stability and generalizability of model solutions is still be affected. 

Study 2 examines this issue by cross-validating our findings using longitudinal and 5-fold cross-validation 

techniques, which are often ignored in the model comparisons in relation to BSEM (e.g., Lu et al., 2016). 

Consistent with previous research (MacCallum & Tucker, 1991; Cudeck & Browne, 1983), cross-validation results 

indicate that more complex models (i.e., BSEM-RC and BSEM-CLRC) have a smaller likelihood of cross-

validating than the simple model (i.e., BSEM-CL+CUs) when sample size is small, whereas the reverse is true 

when sample size is large. To further examine the impact of model specification with the choice of different priors 

on cross-validation, we used both more informative priors (SD = 0.05 and 0.01) and less informative priors (SD = 

0.3) for residual covariances. All BSEM-RC and BSEM-CLRC resulted in good convergence (PSR < 1.05) and 

model fit (PP p value = from .474 to .525), and led to similar cross-validation results. Our findings suggest that 
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BSEM-RC and BSEM-CLRC should be used cautiously when the factor structure is complex and the sample size 

is small, given that they may capture idiosyncratic sample characteristics. However, further investigation for this 

important issue is still needed. 

Model specification and factor structure 

This study is the first to provide a comprehensive evaluation of the relations between model specifications 

and different simulated factor structures by varying the number, location, and size of targeted values in ESEM and 

the distribution of informative priors in different BESM models. Results suggest that the performance of different 

model specification is highly associated with factor structures: changing mean of cross-loadings priors to 0.1 in 

BSEM-CL and targeted value to 0.1 in ESEM performed worse in a balanced factor structure (average of the sizes 

of the cross-loadings for each factor = 0) but much better in an positive-oriented unbalanced factor structure (where 

only positive major cross-loadings are included). Typically, in our simulation study, the average of the sizes of the 

cross-loadings for each factor was 0.106 in the unbalanced factor structure. As such, changing the targeted value 

and mean of cross-loadings priors to 0.1 produced almost perfect estimated parameters (relative bias < 1.2%). 

Alternatively, in ESEM freeing substantive cross-loadings in the target loading matrix can also improve model 

estimation, whereas freeing trivial cross-loadings will deteriorate model estimation. It is expected that the logic 

behind changing the number and location of targeted value in ESEM also works in BSEM-CL, where using non-

informative priors for substantive cross-loadings will improve model estimation, the reverse is true in using non-

informative priors for trivial cross-loadings. Certainly, ESEM and BSEM-CL would perform even better when 

targeted values and informative priors for specific cross-loadings are set close to the population values. 

Nevertheless, these non-zero targeted value and informative priors should be applied very cautiously and should 

not be based on ex-post facto adjustments to models following preliminary analyses with the same data. 

As mentioned above, a strength of BSEM-CL is the flexibility of specifying prior variance of cross-

loadings. As prior variance of cross-loadings increased (from 0.005 to 0.02), factor correlations became less biased 

but main loadings became more biased, however, these differences were small. Similarly, specifying different prior 

variances of residual covariances (from .005 to 0.02) in BSEM-CR did not change the pattern of results. Thus, our 

study confirms previous findings (Muthén & Asparouhov, 2012), indicating that the prior variance choice did not 

have an important impact on the results in terms of model fit and biases of factor loadings and factor correlations.  
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Implications 

The variance and flexibility in model specifications in BSEM make it challenging to guide researchers in 

deciding the most appropriate or optimal strategies and estimation procedures when developing a measurement 

model. However, based on our findings derived from both simulated and real data, we propose some constructive 

strategies for practices. Before providing these recommendations, however, we caution readers should not mistake 

these strategies as golden rules. Indeed, readers should be cautious of all golden rules presented in relation to SEM 

(Marsh, Hau, & Wen, 2004). Thus, we encourage readers to think about the unique situation of their own data and 

modelling needs; considering the strategies below as useful guides only.  

First, EFA with mechanical rotation should be used in early pilot studies of a measurement instrument. 

Researchers can move to ESEM or BSEM approaches once they gain knowledge about the factor indicators and 

the factors (see below for discussion about informative priors for main loadings). Researchers should start with 

ESEM where targeted values are set to 0 for cross-loadings and BSEM-CL where only weakly informative priors 

on variance (i.e., variance = 0.01 with Mean = 0) are incorporated for cross-loadings. These two models can be 

used as benchmarks against which choices of targeted value and other priors can be compared. And then more 

substantive (previous) knowledge can be incorporated into the estimation process (via targeted value and 

informative priors on mean). Given that model specification on targeted values and informative priors have a 

significant impact on model estimation, the elicitation of targeted values and informative priors should be based on 

evidence-based approach rather than personal opinion that in principle bias toward a specific outcome (Kaplan, 

2014). Specifically, the elicitation can be based on the results of a meta-analysis and previous publications. 

Compared to ESEM, an advantage of BSEM-CL is having more control on the variance of cross-loadings. In such 

cases, the informative priors can be chosen with smaller and smaller variances, reflecting a switch from an 

exploratory to confirmatory nature (also see Depaoli & van de Schoot, 2017).  

We recommend not using BSEM-CLRC when model fit for ESEM and BSEM-CL is reasonable and 

particularly when sample size is small. The reason is that BSEM-CLRC require heavy computational burden and 

do not provide more accurate parameters estimates. Particularly, handling a multivariate variance prior (e.g., the 

covariances matrix) has technical complexities where some severe issues can arise; it is quite difficult to encode 

prior knowledge into probability distributions and requires detailed consideration during implementation in 
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practice (Depaoli & van de Schoot, 2017). However, when ESEM and BSEM-CL result in ill fit and sample size is 

large, BSEM-CLRC may be preferred. In such cases, researchers should start with small df values (see Equation 7) 

of inverse Wishart prior on residual covariances (i.e., relatively large variance priors) and increase d values by 

checking the rate of convergence in the Bayesian iterations and PP p value. We recommend that BSEM-RC should 

be used cautiously given the instability of model estimation and poor cross-validation and external validity. 

Overall, we recommend that researchers experiment with a variety of priors, verify frequency coverage of 

key parameters estimates, assess sensitivity of results, and report all available findings (see Hamra, MacLehose, & 

Cole, 2013 for more discussion). More recently, Depaoli and van de Schoot (2017) developed a succinct checklist: 

the WAMBS-checklist (When to worry and how to Avoid the Misuse of Bayesian Statistics) which provides a 

guideline for Bayesian users to evaluate the influence of different priors and to interpret Bayesian results.  

Limitations and Directions for Further Research 

There are several limitations of the current study that motivate future research. First, an advantage of the 

BSEM technique proposed by Muthen & Asparouhov (2012) is that it produces posterior distributions for cross-

loadings and residual covariances that can be used in line with modification indices (MIs). Researchers can free 

parameters, where the credibility interval does not cover zero, using noninformative priors and re-estimate the 

model. This technique benefits researchers to examine the degree of deviation of all parameters from zero in a 

single step, rather than relying on one-at-a-time MIs under conventional ML-based SEM (MacCallum et al., 2012). 

The one-at-a-time nature is associated with an inflated risk of capitalizing on chance (MacCallum et al., 1992; 

Marsh et al., 2017). However, model modifications under BSEM depend on which subsets of parameters have been 

specified to have small-variance priors. Furthermore, the estimation of the residual covariances parameters are not 

independent. In other words, the BSEM model may show more than one statistically significant residual 

covariances to compensate the misfit, although only one covariance is misfitted in the CFA model (see Asparouhov 

et al., 2015 for more discussion). Thus, it is beneficial to further compare BSEM with MIs-like respecification to 

ESEM and other BSEM models. 

Second, like previous BSEM studies, all main loadings are specified by noninformative prior distribution (a 

diffuse prior) in the present study, which allows the data to dominate the estimation of posteriors through the 

likelihood (Zyphur & Oswald, 2013). However, in practice applied researchers might have ‘better available’ 
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information/knowledge about main loadings that can be incorporated into a prior distribution, compared to cross-

loadings. Very few studies have put informative priors on main loadings that are expected to be large according to 

evidence-based knowledge. For example, Rindskopf (2012) suggests one can have a normal prior with a mean of 

0.6/0.7 with a SD of .15 or have a normal prior with an unknown mean. In both cases, the SD should be large 

enough to allow reasonable variation in main loadings. Therefore, the specification of main loadings with 

informative priors needs further research. 

Another avenue for further investigation is to examine how different heterogeneous errors for the indicator 

variables (all were set to 0.5 in this study) influence the estimation, given that heterogeneity is not uncommon in 

real data sets and can cause problems. 
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Table 1. 
Overview of Previous Studies Using BSEM Approaches 

Studies Type BSEM approaches 
Muthén &Asparouhov (2012) Simulation and empirical BSEM-CL, BSEM-CLRC 
Golay, Reverte, Rossier, Favez, & Lecerf (2013) Empirical BSEM-CL 
Zyphur & Oswald (2013) Empirical BSEM-RC 
Fong & Ho (2013) Empirical BSEM-CL, BSEM-CLRC 
De Bondt, & Van Petegem (2015) Empirical BSEM-CL 
Stromeyer, Miller, Sriramachandramurthy, & 
DeMartino (2015) 

Empirical BSEM-CL, BSEM-CLRC 

Asparouhov, Muthén, & Morin (2015) Empirical BSEM-CL, BSEM-CLRC 
Lu, Chow, & Loken, 2016 Simulation and empirical BSEM-CL 
Gucciardi & Zyphur (2016) Empirical BSEM-CL 

Table 2. 
Simulation Designs 
 Design 1  Design 2  Design 3 
Variable Factor1 Factor2 Factor3  Factor1 Factor2 Factor3  Factor1 Factor2 Factor3 
y1 A C B  A C .4  A D -.4 
y2 A C C  A .3 C  A .3 C 
y3 A C C  A .2 C  A .2 C 
y4 A C C  A C C  A D C 
y5 A C C  A C .1  A D -.1 
y6 B A C  .4 A C  -.4 A D 
y7 C A C  C A .3  C A .3 
y8 C A C  C A .2  C A .2 
y9 C A C  C A C  C A D 
y10 C A C  .1 A C  -.1 A D 
y11 C B A  C .4 A  D -.4 A 
y12 C C A  .3 C A  .3 C A 
y13 C C A  C C A  D C A 
y14 C C A  C .1 A  D -.1 A 
y15 C C A  .2 C A  .2 C A 

Note. A (Major factor loadings) = 0.8; B (Major cross-loadings) = 0.1, 0.2, and 0.3(three conditions); C (Minor cross-loadings) = .01; D 
(Minor cross-loadings) = -.01; Factor correlations = 0.5 (see Appendix 7 for the Mplus syntax) 
 
Table 3. 
Choice of Priors in BSEM for Simulation Study 

BSEM approaches Informative priors Non-informative priors 
BSEM-CL Cross-loadings ~ N(0, .01) main loadings ~N(0, infinity),  

residual variances ~ Γ23(-1,0),  
latent factor covariances ~ IW(0, −5 − 1) 
intercepts ~N(0, infinity). 

BSEM-RC Residual covariance matrix Θ: 
diagonal elements: IW(1, 9 + 6	) 
off-diagonal elements: IW(0, 9 + 6) 

main loadings ~N(0, infinity),  
latent factor covariances ~ IW(0, −5 − 1) 
intercepts ~N(0, infinity) 

BSEM-CLRC Cross-loadings ~ N(0, .01) 
Residual covariance matrix Θ: 
diagonal elements ~ IW(I, 9 + 6) 
off-diagonal elements ~ IW(0, 9 + 6) 

main loadings ~N(0, infinity),  
latent factor covariances ~ IW(0, −5 − 1) 
intercepts ~N(0, infinity) 

Note. 9 is the number of observed variables; 5 is the number of latent variables; BSEM-CL = BSEM+cross-loading priors; BSEM-
RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors.Also see p. 775 in Mplus 
Uers’ Guide (8th) for detailed description.
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Table 4. 
Model Rejection Rate (5%) for ML and Bayesian Models in the Simulation Study. 
   Rejection rate (5%) 
   ML p  Bayes PP p (PSR) 
Sizes of Major  
cross-loading Sample size  ESEM  BSEM-CL BSEM-RC BSEM-CLRC  

Design 1 
.1 200  .086  .000(1.009) .000(1.005) .000(1.010) 
.1 500  .048  .000(1.004) .000(1.035) .000(1.025) 
.1 1000  .066  .006(1.015)� .000(1.042)� .000(1.044) 
.2 200  .088  .002(1.010) .000(1.006) .000(1.011) 
.2 500  .052  .000(1.005) .000(1.035) .000(1.023) 
.2 1000  .068  .006(1.015)� .000(1.040) .000(1.042) 
.3 200  .092  .006(1.010) .000(1.007) .000(1.012) 
.3 500  .054  .000(1.005) .000(1.034) .000(1.023) 
.3 1000  .068  .006(1.015) .000(1.039) .000(1.042)�

Design 2 
- 200  .100  .064(1.011) .000(1.018) .000(1.008) 
- 500  .056  .034(1.006) .000(1.024) .000(1.033) 
- 1000  .062  .022(1.003) .000(1.040) .000(1.040) 

Design 3 
- 200  .082  .008(1.008) .000(1.017) .000(1.013) 
- 500  .056  .010(1.006) .000(1.027) .000(1.034) 
- 1000  .054  .006(1.005) .000(1.036) .000(1.046) 
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Table 5. 
Model fit for BSEM models in Simulation Designs 2 & 3. 

Design 2 Model description Para 
meters PSR Rejection rate BIC DIC 

  - 200 500 1000 200 500 1000 200 500 1000 200 500 1000 
BSEM-CL Cross-loadings (M = 0, Var = .01) 78 1.011 1.006 1.003 .064 .034 .022 7940 19352 38319 7650 19002 37920 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 78 1.010 1.003 1.002 .412 .530 .288 7961 19380 38343 7663 19022 37939 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 78 1.011 1.011 1.005 .006 .004 .004 7925 19339 38311 7642 18993 37913 
BSEM-RC Residual covariances (M = 0, Var = .01) 153 1.018 1.024 1.040 .000 .000 .000 8250 19738 38763 7697 19051 37973 
BSEM-RC(Var=.005) Residual covariances (M = 0, Var = .005) 153 1.016 1.031 1.038 .000 .000 .000 8250 19738 38763 7698 19052 37973 
BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) 153 1.023 1.038 1.042 .000 .000 .000 8249 19738 38763 7696 19051 37973 

BSEM-CLRC Residual covariances+cross-loadings (M=0, 
Var=.01) 183 1.008 1.033 1.040 .000 .000 .000 8406 19924 38972 7697 19051 37971 

BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings 78 1.012 1.010 1.006 .016 .004 .008 7929 19342 38313 7644 18994 37914 
Design 3               
BSEM-CL Cross-loadings (M = 0, Var = .01) 78 1.008 1.006 1.005 .008 .010 .006 7938 19365 38359 7653 19017 37961 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 78 1.009 1.003 1.003 .196 .078 .028 7961 19382 38371 7668 19030 37969 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 78 1.007 1.010 1.010 .002 .008 .004 7927 19359 38356 7648 19014 37959 
BSEM-RC Residual covariances (M = 0, Var = .01) 153 1.017 1.027 1.036 .000 .000 .000 8265 19776 38822 7702 19063 38011 
BSEM-RC(Var=.005) Residual covariances (M = 0, Var = .005) 153 1.019 1.036 1.040 .000 .000 .000 8266 19777 38820 7703 19064 38013 
BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) 153 1.029 1.039 1.043 .000 .000 .000 8265 19776 38822 7700 19063 38010 

BSEM-CLRC Residual covariances+cross-loadings (M=0, 
Var=.01) 183 1.013 1.034 1.046 .000 .000 .000 8417 19949 39022 7706 19073 38015 

BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings 78 1.010 1.007 1.006 .008 .010 .004 7935 19363 38358 7653 19016 37960 
Note. PSR = the potential scale reduction  
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Table 6. 
Relative bias, Coverage, and Power across Models based on Simulation Design 1. 

Model MajorCL Size Relative Bias SD of Relative Bias 95% coverage Power 

   MFL FC MFL FC MFL FC MFL FC 

ESEM 0.1 200 0.6% 3.5% 10.5% 12.3% .959 .997 1.000 1.000 

BSEM-CL 0.1 200 4.7% 7.7% 10.0% 12.5% .944 .986 1.000 1.000 

BSEM-RC 0.1 200 8.9% -3.9% 9.3% 11.7% .887 .946 1.000 1.000 

BSEM-CLRC 0.1 200 8.8% -3.3% 9.3% 11.4% .976 .997 1.000 1.000 

ESEM 0.1 500 1.5% 6.5% 6.6% 7.7% .953 .993 1.000 1.000 

BSEM-CL 0.1 500 3.5% 8.3% 6.4% 7.8% .961 .999 1.000 1.000 

BSEM-RC 0.1 500 8.1% -4.8% 6.4% 7.1% .877 .913 1.000 1.000 

BSEM-CLRC 0.1 500 7.0% -2.8% 5.9% 7.0% .997 1.000 1.000 1.000 

ESEM 0.1 1000 1.8% 7.5% 4.7% 5.5% .947 .953 1.000 1.000 

BSEM-CL 0.1 1000 3.1% 8.6% 4.7% 5.5% .977 1.000 1.000 1.000 

BSEM-RC 0.1 1000 7.9% -5.0% 5.2% 5.0% .868 .853 1.000 1.000 

BSEM-CLRC 0.1 1000 6.4% -2.1% 4.4% 5.0% 1.000 1.000 1.000 1.000 

ESEM 0.2 200 1.2% 5.8% 10.6% 11.9% .959 .994 1.000 1.000 

BSEM-CL 0.2 200 5.8% 12.4% 10.2% 12.1% .932 .969 1.000 1.000 

BSEM-RC 0.2 200 9.3% 2.9% 11.4% 11.4% .839 .949 1.000 1.000 

BSEM-CLRC 0.2 200 9.8% 2.1% 9.9% 11.1% .965 .998 1.000 1.000 

ESEM 0.2 500 2.1% 8.8% 6.6% 7.5% .947 .984 1.000 1.000 

BSEM-CL 0.2 500 4.7% 12.8% 6.6% 7.5% .946 .989 1.000 1.000 

BSEM-RC 0.2 500 8.4% 2.2% 9.4% 7.0% .812 .957 1.000 1.000 

BSEM-CLRC 0.2 500 8.1% 2.5% 6.6% 6.8% .991 1.000 1.000 1.000 

ESEM 0.2 1000 2.5% 9.8% 4.7% 5.3% .937 .904 1.000 1.000 

BSEM-CL 0.2 1000 4.3% 13.1% 4.7% 5.3% .962 .997 1.000 1.000 

BSEM-RC 0.2 1000 8.2% 2.2% 8.7% 4.9% .800 .952 1.000 1.000 

BSEM-CLRC 0.2 1000 7.5% 3.2% 5.3% 4.8% .996 1.000 1.000 1.000 

ESEM 0.3 200 1.4% 6.7% 10.7% 11.6% .958 .995 1.000 1.000 

BSEM-CL 0.3 200 6.8% 17.0% 10.5% 11.8% .918 .921 1.000 1.000 

BSEM-RC 0.3 200 9.4% 11.1% 14.7% 11.1% .803 .840 1.000 1.000 

BSEM-CLRC 0.3 200 10.5% 8.0% 11.2% 10.8% .941 .990 1.000 1.000 

ESEM 0.3 500 2.4% 9.6% 6.7% 7.4% .944 .975 1.000 1.000 

BSEM-CL 0.3 500 5.7% 17.1% 6.7% 7.3% .929 .943 1.000 1.000 

BSEM-RC 0.3 500 8.4% 10.9% 13.3% 6.7% .797 .721 1.000 1.000 

BSEM-CLRC 0.3 500 9.0% 8.4% 8.1% 6.6% .967 1.000 1.000 1.000 

ESEM 0.3 1000 2.7% 10.6% 4.7% 5.2% .933 .877 1.000 1.000 

BSEM-CL 0.3 1000 5.4% 17.1% 4.8% 5.2% .940 .965 1.000 1.000 

BSEM-RC 0.3 1000 8.1% 11.1% 13.0% 4.7% .799 .531 1.000 1.000 

BSEM-CLRC 0.3 1000 8.5% 9.0% 6.9% 4.7% .974 1.000 1.000 1.000 
Note. MFL = Main factor loading; FC = Factor correlation; BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM+residual 
covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors. Power refers to proportion of 95% credibility 
interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting, 
respectively.
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Table 7. 
ANOVA Testing Variance Explained by Different Design Conditions 

 Relative Bias SD of Relative Bias 95% coverage Power 

 MFL FC MFL FC MFL FC MFL FC 

 Design 1 

Model 89.1% 54.7% 17.5% 1.5% 78.6% 65.1% - - 

Size of major cross-loading 5.0% 37.5% 17.5% 0.4% 8.9% 7.3% - - 

Sample sizes 1.0% 0.4% 46.5% 97.8% 0.6% 5.3% - - 

 Design 2 

Model 99.0% 99.5% 74.0% 37.6% 90.1% 88.8% - - 
Sample sizes 0.1% 0.1% 22.4% 58.8% 4.1% 4.5% - - 
 Design 3 
Model 98.7% 96.8% 93.7% 64.5% 81.9% 84.7% - - 
Sample sizes 0.3% 0.8% 4.0% 21.8% 6.6% 7.19% - - 

Note. MFL = Main factor loading; FC = Factor correlation; cov = 95% coverage; Power refers to proportion of 95% credibility 
interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting, 
respectively.
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Table 8. 
Relative bias, Coverage, and Power in relation to Main Loadings across Models based on Simulation Designs 2 & 3. 

Model Description Relative Bias SD of Relative Bias 95% coverage Power 

Design 2 (unbalanced factor structure) 200 500 1000 200 500 1000 200 500 1000 200 500 1000 

ESEM Target rotation 4.3% 5.3% 5.7% 11.4% 7.2% 5.2% .939 .905 .840 1 1 1 
ESEM(Geomin) Geomin rotation -3.2% -2.8% -2.6% 9.8% 6.1% 4.3% .947 .947 .925 1 1 1 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) 6.7% 8.0% 8.4% 12.0% 7.7% 5.6% .916 .840 .701 1 1 1 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, .4) 2.1% 2.9% 3.2% 11.3% 7.1% 5.1% .949 .939 .908 1 1 1 
ESEM(Free:4MajCL) Free 4 major cross-loadings (.1,.2,.3, .4) -0.1% 0.3% 0.6% 11.1% 6.9% 4.9% .949 .955 .956 1 1 1 
ESEM(~.1) Target value = .1 -0.7% 0.4% 1.1% 13.8% 11.7% 11.2% .895 .785 .566 1 1 1 
BSEM-CL Cross-loadings (M = 0, Var = .01) 14.5% 12.7% 12.1% 11.2% 7.3% 5.4% .804 .748 .675 1 1 1 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 14.9% 13.0% 12.3% 11.3% 7.1% 5.1% .732 .642 .504 1 1 1 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 14.3% 12.6% 12.1% 11.6% 7.6% 5.6% .859 .854 .850 1 1 1 
BSEM-RC Residual covariances (M = 0, Var = .01) 17.9% 16.7% 16.5% 17.4% 16.1% 15.7% .548 .484 .455 1 1 1 

BSEM-RC(Var=.005) Residual covariances (M = 0, Var 
= .005) 18.1% 16.8% 16.6% 17.4% 16.1% 15.7% .538 .473 .448 1 1 1 

BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) 17.8% 16.6% 16.4% 17.3% 16.1% 15.7% .559 .493 .465 1 1 1 

BSEM-CLRC Residual covariances+cross-loadings (M=0, 
Var=.01) 18.4% 16.9% 16.4% 13.5% 10.6% 9.7% .855 .893 .904 1 1 1 

BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings 1.1% 0.1% 0.0% 10.2% 6.4% 4.6% .956 .977 .991 1 1 1 
Design 3 (balanced factor structure)             

ESEM Target rotation -2.9% -2.4% -2.3% 9.9% 6.4% 4.8% .949 .919 .887 1 1 1 
ESEM(Geomin) Geomin rotation -6.4% -6.1% -6.0% 9.7% 6.7% 5.3% .883 .774 .623 1 1 1 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) -2.6% -2.2% -2.1% 10.2% 6.7% 5.1% .938 .912 .873 1 1 1 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, -.4) 0.1% 0.9% 1.1% 10.4% 6.5% 4.7% .955 .952 .949 1 1 1 
ESEM(Free:4MajCL) Free 4 major cross-loadings (-.1,.2,.3, -.4) -1.4% -0.6% -0.4% 10.6% 6.6% 4.7% .947 .947 .949 1 1 1 
ESEM(~.1) Targeted value = .1 -6.5% -6.5% -6.5% 10.7% 7.7% 6.3% .872 .691 .527 1 1 1 
BSEM-CL Cross-loadings (M = 0, Var = .01) 1.9% 1.9% 2.2% 11.1% 6.8% 5.0% .932 .961 .974 1 1 1 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 0.8% 0.9% 1.4% 12.5% 7.3% 5.1% .878 .927 .949 1 1 1 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 3.3% 2.8% 2.8% 10.6% 6.8% 5.0% .954 .980 .992 1 1 1 
BSEM-RC Residual covariances (M = 0, Var = .01) -5.6% -6.2% -4.7% 26.2% 26.0% 27.8% .701 .576 .450 .992 1 .999 
BSEM-RC(Var=.005) Residual covariances (M = 0, Var = .005) -5.0% -5.8% -4.5% 26.5% 26.2% 28.0% .676 .556 .416 .993 .999 .999 
BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) -6.1% -6.6% -5.0% 25.8% 25.7% 27.6% .737 .601 .479 .991 .999 .998 

BSEM-CLRC Residual covariances+cross-loadings (M=0, 
Var=.01) 3.2% 2.3% 1.8% 17.3% 15.1% 14.7% .936 .964 .976 1 1 1 
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BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings -5.9% -5.9% -5.7% 11.1% 7.4% 5.8% .853 .784 .697 1 1 1 

Note. Note. Power refers to proportion of 95% credibility interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting, 
respectively. 
 
Table 9. 
Relative bias, Coverage, and Power in relation to Factor Correlations across Models based on Simulation Designs 2 & 3. 

Model Description Relative Bias SD of Relative Bias 95% coverage % sig coeff 

Design 2 (unbalanced factor structure) 200 500 1000 200 500 1000 200 500 1000 200 500 1000 

ESEM Target rotation 19.3% 22.0% 23.0% 10.0% 6.3% 4.7% .923 .531 .129 1 1 1 
ESEM(Geomin) Geomin rotation -17.9% -17.0% -16.7% 7.9% 5.0% 3.5% .998 .971 .777 1 1 1 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) 26.4% 29.3% 30.2% 9.8% 6.1% 4.4% .737 .106 .001 1 1 1 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, .4) 11.7% 14.2% 15.1% 11.6% 7.3% 5.3% .981 .895 .593 1 1 1 
ESEM(Free:4MajCL) Free 4 major cross-loadings (.1,.2,.3, .4) 0.1% 2.5% 3.3% 14.7% 9.3% 6.7% .991 .991 .985 1 1 1 
ESEM(~.1) Target value = .1 -0.6% 5.1% 8.2% 16.2% 11.5% 7.3% .987 .972 .919 1 1 1 
BSEM-CL Cross-loadings (M = 0, Var = .01) 40.6% 39.1% 38.1% 9.5% 5.9% 4.2% .200 .035 .003 1 1 1 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 42.4% 40.9% 39.5% 9.5% 5.9% 4.2% .084 .003 .000 1 1 1 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 38.7% 37.5% 36.9% 9.5% 5.9% 4.3% .491 .339 .225 1 1 1 
BSEM-RC Residual covariances (M = 0, Var = .01) 40.4% 40.2% 40.2% 8.1% 5.0% 3.4% .025 .000 .000 1 1 1 
BSEM-RC(Var=.005) Residual covariances (M = 0, Var = .005) 40.4% 40.2% 40.2% 8.1% 4.9% 3.4% .022 .000 .000 1 1 1 
BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) 40.3% 40.1% 40.2% 8.2% 5.0% 3.4% .027 .000 .000 1 1 1 

BSEM-CLRC Residual covariances+cross-loadings (M=0, 
Var=.01) 36.4% 36.7% 37.0% 8.5% 5.2% 3.7% .275 .071 .009 1 1 1 

BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings 1.1% -0.5% -1.2% 14.5% 8.9% 6.2% .989 .999 1 .999 1 1 
Design 3 (balanced factor structure)             

ESEM Target rotation -18.6% -16.7% -16.2% 11.9% 7.6% 5.3% .981 .908 .708 1 1 1 
ESEM(Geomin) Geomin rotation -47.7% -47.1% -47.0% 8.6% 5.5% 3.8% .541 .003 .000 1 1 1 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) -16.1% -14.4% -14.1% 12.6% 8.1% 5.7% .985 .947 .799 1 1 1 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, -.4) -1.8% 0.9% 1.8% 12.5% 8.1% 5.8% .999 .998 .995 1 1 1 
ESEM(Free:4MajCL) Free 4 major cross-loadings (-.1,.2,.3, -.4) -3.9% -1.0% -0.1% 14.4% 9.3% 6.8% .991 .993 .989 1 1 1 
ESEM(~.1) Target value = .1 -56.6% -61.2% -63.7% 20.1% 14.8% 10.0% .356 .058 .005 .796 .981 1 
BSEM-CL Cross-loadings (M = 0, Var = .01) 4.3% 3.9% 4.0% 13.4% 8.2% 5.7% .989 1 1 1 1 1 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) 6.1% 4.8% 4.4% 13.7% 8.3% 5.8% .959 .991 .998 1 1 1 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) 3.1% 3.1% 3.6% 13.0% 8.1% 5.8% .999 1 1 1 1 1 
BSEM-RC Residual covariances (M = 0, Var = .01) -2.5% 4.9% 18.5% 43.3% 34.0% 13.0% .767 .497 .221 .670 .700 .893 
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BSEM-RC(Var=.005) Residual covariances (M = 0, Var = .005) 0.4% 7.0% 19.1% 40.9% 31.4% 12.0% .743 .466 .173 .704 .719 .917 
BSEM-RC(Var=.02) Residual covariances (M = 0, Var = .02) -4.7% 2.8% 17.7% 44.4% 35.9% 14.7% .795 .539 .277 .624 .682 .873 

BSEM-CLRC R4esidual covariances+cross-loadings (M=0, 
Var=.01) 2.6% 3.9% 4.7% 13.0% 8.0% 6.0% .998 1 1 .998 .999 .998 

BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings -47.0% -47.0% -46.6% 17.6% 10.7% 7.5% .401 .134 .016 .765 .956 .999 
Note. Power refers to proportion of 95% credibility interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting, 
respectively. 
 
 
Table 10. 
Model fit for Empirical Data Study. 

 

Note. BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors. PP = posterior 
predictive; CUs = a priori correlated uniquenesses. 

 Maximum likelihood analyses 
Model Parameters df p-value CFI TLI RMSEA 
CFA 190 1700 0 .684 .671 .053 
CFA+CUs 244 1646 0 .750 .731 .048 
ESEM 410 1480 0 .850 .820 .039 
ESEM+CUs 464 1426 0 .912 .891 .030 
 Bayesian analysis 
Model Parameters 2.5% PP limit 97.5% PP limit PP p-value DIC BIC 
BSEM-CL 430 7422 7688 0 424152 426837 
BSEM-CL+CUs 484 4304 4571 0 421083 424117 
BSEM-RC 1960 -176 171 .518 418026 430265 
BSEM-CLRC 2200 -176 169 .526 418027 432215 
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Table 11. 
Correlation among the Big-Five Factors (Emotional Stability = reversed Neuroticism[RN]) 

Model  C E RN O M(SD) 

CFA+ CUs Agreeableness (A) -     

Conscientiousness (C) .243(.022)* -    

Extraversion (E) .253(.021)* .395(.023)* -   

Emotional Stability (RN) .305(.019)* .142(.023)* .502(.019)* -  

Openness (O) -.092(.022)* .061(.024)* .081(.023)* -.054(.022)* .184(.191) 

ESEM+CUs Agreeableness (A) -     

Conscientiousness (C) .078(.016)* - 
   

Extraversion (E) .189(.017)* .181(.015)* - 
  

Emotional Stability (RN) .239(.015)* .071(.015)* .227(.015)* - 
 

Openness (O) .006(.018) -.051(.017)* .090(.018)* -.085(.017)* .095(.114) 
BSEM-CL+ 
CUs1 

Agreeableness (A) 
     

Conscientiousness (C) .099(.103) 
    

Extraversion (E) .237(.101)* .232(.105)* 
   

 Emotional Stability (RN) .313(.087)* .107(.100) .318(.095)* 
  

 Openness (O) -.050(.099) -.069(.099) .057(.105) -.124(.095) .112(.160) 
BSEM-RC  Agreeableness (A) 

     

Conscientiousness (C) .076(.045) 
    

Extraversion (E) .018(.036) .007(.097) 
   

Emotional Stability (RN) .054(.047) -.044(.050) .192(.065)* 
  

Openness (O) -.146(.031)* .042(.036) -.019(.039) -.087(.050) .009(.093) 
BSEM-
CLRC 

Agreeableness (A) 
     

Conscientiousness (C) .160(.123) 
    

Extraversion (E) .208(.104)* .235(.126)* 
   

Emotional Stability (RN) .312(.096)* .131(.126) .432(.104)* 
  

Openness (O) -.060(.095) .020(.115) .030(.110) -.100(.100) .137(.168) 

Note. 1 A priori correlated uniquenesses were freely estimated by using noninformative priors; BSEM-CL = BSEM+cross-loading 
priors; BSEM-RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors; CUs 
= correlated uniquenesses;* indicates p < .05 for CFA and ESEM but it indicates significance in the sense of their 95% posterior 
distribution credibility intervals not including zero for BSEM models. We also report standard errors of correlation coefficients for CFA 
and ESEM and posterior standard deviation for BSEM.
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Table 12 
Root Mean Square Residual (RMSR) and RMSEA for Cross-validation Analysis (between Wave 1 and 2 Data) 
 Cross-validation from Wave 1 to Wave 2 
 RMSR  RMSEA 
 Mean Quantile (2.5%) Quantile (97.5%)  RMSEA 90 Percent C.I. 
CFA+CUs .049 .046 .052  .054 [.053, 0.55] 
ESEM+CUs .036 .033 .039  .043 [.042, 0.44] 
BSEM+CL priors +CUs1 .036 .033 .039  .043 [.042, 0.44] 
BSEM+RC priors .033 .031 .036  .036 [.035, 0.37] 
BSEM+CL priors + RC priors .033 .031 .036  .036 [.035, 0.37] 
 Cross-validation from Wave 2 to Wave1 
CFA+CUs .047 .046 .049  .048 [.047, .048] 
ESEM+CUs .033 .032 .035  .044 [.043, .045] 
BSEM-CL+CUs .033 .032 .035  .044 [.043, .044] 
BSEM-RC .032 .030 .033  .045 [.044, .045] 
BSEM-CLRC .033 .031 .035  .045 [.044, .046] 

 
Table 13 
RMSEA for 5-Fold Cross-validation Analysis 
 From 80% to 20%  
 RMSEA 90 Percent C.I. 
CFA+CUs .046 [.044, 0.47] 
ESEM+CUs .031 [.029, 0.33] 
BSEM+CL priors +CUs1 .039 [.038, 0.41] 
BSEM+RC priors .026 [.024, 0.28] 
BSEM+CL priors + RC priors .026 [.024, 0.28] 
 From 20% to 80%  
CFA+CUs .047 [.046, .048] 
ESEM+CUs .034 [.033, .035] 
BSEM-CL+CUs .040 [.039, .041] 
BSEM-RC .045 [.044, .045] 
BSEM-CLRC .045 [.044, .045] 
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Table 14 
Summary for the Key Findings  

 Hypothesis Support for predictions Inconsistent with predictions 
H1 Model fit BSEM-RC and BSEM-CLRC fit the data better (e.g., having 

low model rejection rate) than BSEM-CL and ESEM 
BSEM-CL showed lower DIC to a very small extent 

H2 Close performance 
between ESEM 
and BSEM-CL. 

ESEM will perform more closely to BSEM-CL than BSEM-
RC and BSEM-CLRC in terms of model fit, bias, coverage, 
and power in estimation of major loadings and factor 
correlations 

- 

   Research question 
Q1 Comparison 

between ESEM 
and different 
BSEM models in 
the simulation 
study 

• The pattern of results in main loadings and factor correlations was substantially varied by the factor structures: ESEM resulted in 
more accurate parameters estimates than BSEM-CL and BSEM-CLRC in unbalanced factor structures (all cross-loadings were 
positive), the reverse being true in a balanced factor structure (i.e., the sum of the sizes of the cross-loadings for each factor = 0). 

• BSEM-CL and BSEM-CLRC tended to result in more inflated estimated parameters than ESEM. 
• BESM-CL provided unstable estimation solutions in terms of the larger bias SD, lower coverage, and less power. 
• Specifying mean of cross-loadings to 0.1 in BSEM-CL and target value to 0.1 in ESEM changed the pattern substantially. 

However, change variances of cross-loadings and residual covariances in BSEMs lead to similar results. 
• The prior variance choice did not have an important impact on the results 

Q2 comparison 
between 
simulation and real 
data results 

• The pattern of results revealed in the simulation study was largely consistent with the findings based on real data. 
• The differences between different model solutions were smaller than those in simulation study. 

Note. DIC = deviance information criterion; BSEM-CL = BSEM + cross-loading priors; BSEM-RC=BSEM + residual covariance priors; BSEM-CLRC=+cross-
loading priors + residual covariance priors;
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Figure 1. An example of loadings matrix and rotation matrices in EFA with target rotation. 
Note. Matrix A designated whether each pattern coefficient was (1) or was not (0) a target. Matrix B provided values that targeted elements would be 
rotated toward and denoted nontargeted elements with a ? sign. Matrix  provided population values. 
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Figure 2. Relative bias of factor correlations across models based on unbalanced (Design 2) and balanced factor structure (Design 3). 
Note. BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors; 
ESEM(Free:2MinCL) = ESEM with Free 2 minor cross-loadings (.01); ESEM(Free:2MajCL) = ESEM with Free 2 major cross-loadings; ESEM(Free:4MajCL) = Free 4 major cross-
loadings; ESEM(~.1) = ESEM with targeted value = 0.1. 
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Figure 3. Relative bias of factor correlations across BESM models based on unbalanced (Design 2) and balanced 
factor structure (Design 3). 
Note. BSEM-CL = BSEM+cross-loading priors (M = 0, Var = .01); BSEM-CL(Var=.005) = BSEM+cross-loading priors (M = 0, Var 
= .005); BSEM-CL(Var=.02)  = BSEM+cross-loading priors (M = 0, Var = .02); BSEM-RC = BSEM+Residual covariances (M = 0, Var 
= .01); BSEM-RC(Var=.005) = BSEM+Residual covariances (M = 0, Var = .005); BSEM-RC(Var=.02) = BSEM+Residual covariances 
(M = 0, Var = .02); BSEM-CLRC= BSEM+Residual covariances and cross-loadings (M=0, Var=.01); BSEM-CL(M=1) = BSEM+cross-
loading priors (M = 1, Var = .01). 
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Figure 4. Factor loadings across models based on the Big-five Data.  
Note. Dot points present average major loadings or cross-loadings for each factor; error bars present +/- SE of correlation coefficients for 
CFA and ESEM and +/- posterior SD for BSEM models. BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM+residual 
covariance priors; BSEM-CL RC=+cross-loading priors + residual covariance priors 
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External Appendix 1: 

Model Specifications of ESEM in Simulation Study (Study 1) 

   
(A)             (B)      (C) 

 
(D )           (E)     (F) 

Note. ESEM(~.1) = ESEM with targeted value = 0.1; ESEM(Free:2MinCL) = ESEM with Free 2 minor cross-loadings (.01); ESEM(Free:2MajCL) = ESEM with Free 2 major cross-
loadings; ESEM(Free:4MajCL) = Free 4 major cross-loadings ;  
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External Appendix 2: 

Additional Assessment on Simulation Design 1 (Study 1) 

Table S2 
Results for Simulation Design 1 

Model 

Major 
Cross- 
loading Size Bias SD of bias MSE Absolute bias 95% coverage Power 

   TF BCL SCL FC TF BCL SCL FC TF BCL SCL FC TF BCL SCL FC TF BCL SCL FC TF BCL SCL FC 

CFA .100 200 .016 – – .046 .072 – – .064 .005 – – .006 .059 – – .065 .926 – – .860 1.000 – – 1.000 

ESEM .100 200 .005 -.013 -.007 .017 .084 .065 .066 .061 .007 .004 .004 .004 .067 .053 .053 .052 .959 .997 .997 .997 1.000 .250 .061 1.000 

BSEM-CL .100 200 .038 -.047 -.013 .038 .080 .041 .042 .062 .008 .004 .002 .005 .071 .052 .035 .060 .944 .985 .998 .986 1.000 .017 .001 1.000 

BSEM-RC .100 200 .071 – – -.019 .075 – – .058 .011 – – .004 .084 – – .049 .887 – – .946 1.000 – – 1.000 

BSEM-CLRC .100 200 .070 -.062 -.010 -.016 .074 .028 .029 .057 .010 .005 .001 .004 .084 .062 .024 .047 .976 .999 1.000 .997 1.000 .000 .000 1.000 

CFA .100 500 .017 – – .047 .049 – – .039 .003 – – .004 .041 – – .052 .898 – – .760 1.000 – – 1.000 

ESEM .100 500 .012 -.020 -.013 .032 .053 .042 .042 .039 .003 .002 .002 .003 .043 .037 .035 .042 .953 .991 .996 .993 1.000 .480 .059 1.000 

BSEM-CL .100 500 .028 -.037 -.015 .041 .052 .033 .035 .039 .003 .002 .001 .003 .047 .041 .030 .048 .961 .992 .998 .999 1.000 .052 .001 1.000 

BSEM-RC .100 500 .065 – – -.024 .052 – – .036 .007 .010 .000 .002 .069 – – .034 .877 – – .913 1.000 – – 1.000 

BSEM-CLRC .100 500 .056 -.058 -.010 -.014 .047 .019 .021 .035 .005 .004 .001 .001 .061 .058 .019 .030 .997 1.000 1.000 1.000 1.000 .000 .000 1.000 

CFA .100 1000 .018 – – .047 .038 – – .027 .002 – – .003 .033 – – .048 .847 – – .585 1.000 – – 1.000 

ESEM .100 1000 .015 -.022 -.015 .037 .037 .030 .030 .027 .002 .001 .001 .002 .032 .030 .027 .040 .947 .988 .993 .953 1.000 .747 .064 1.000 

BSEM-CL .100 1000 .025 -.033 -.017 .043 .037 .026 .028 .028 .002 .002 .001 .003 .036 .036 .026 .045 .977 .997 .999 1.000 1.000 .078 .000 1.000 

BSEM-RC .100 1000 .063 – – -.025 .042 – – .025 .006 – – .001 .064 – – .029 .868 – – .853 1.000 – – 1.000 

BSEM-CLRC .100 1000 .051 -.059 -.011 -.010 .035 .016 .016 .025 .004 .004 .000 .001 .053 .059 .016 .021 1.000 1.000 1.000 1.000 1.000 .000 .000 1.000 

CFA .200 200 .026 – – .073 .084 – – .062 .008 – – .009 .069 .200 .010 .082 .879 – – .747 1.000 – – 1.000 

ESEM .200 200 .009 -.025 -.011 .029 .085 .068 .069 .060 .007 .005 .005 .004 .068 .057 .056 .054 .959 .996 .996 .994 1.000 .745 .068 1.000 

BSEM-CL .200 200 .046 -.095 -.019 .062 .082 .041 .044 .061 .009 .011 .002 .008 .075 .095 .038 .073 .932 .869 .997 .969 1.000 .180 .002 1.000 

BSEM-RC .200 200 .074 – – .014 .091 – – .057 .014 – – .003 .092 – – .048 .839 – – .949 1.000 – – 1.000 

BSEM-CLRC .200 200 .078 -.129 -.014 .010 .079 .027 .030 .055 .012 .017 .001 .003 .091 .129 .027 .046 .965 .891 1.000 .998 1.000 .005 .000 1.000 

CFA .200 500 .027 – – .074 .065 – – .038 .005 – – .007 .052 .200 .010 .075 .804 – – .505 1.000 – – 1.000 

ESEM .200 500 .017 -.031 -.017 .044 .053 .043 .045 .038 .003 .003 .002 .003 .044 .042 .039 .049 .947 .986 .992 .984 1.000 .976 .077 1.000 

BSEM-CL .200 500 .037 -.069 -.023 .064 .053 .034 .038 .038 .004 .006 .002 .006 .052 .069 .036 .066 .946 .926 .993 .989 1.000 .602 .003 1.000 

BSEM-RC .200 500 .067 – – .011 .075 – – .035 .010 – – .001 .075 – – .029 .812 – – .957 1.000 – – 1.000 

BSEM-CLRC .200 500 .064 -.121 -.015 .012 .053 .019 .023 .034 .007 .015 .001 .001 .069 .121 .022 .029 .991 .966 1.000 1.000 1.000 .002 .000 1.000 



CFA .200 1000 .028 – – .074 .057 – – .027 .004 – – .006 .045 – – .074 .761 – – .230 1.000 – – 1.000 

ESEM .200 1000 .020 -.033 -.019 .049 .038 .031 .034 .027 .002 .002 .002 .003 .034 .038 .032 .050 .937 .969 .982 .904 1.000 1.000 .103 1.000 

BSEM-CL .200 1000 .034 -.057 -.025 .065 .038 .027 .033 .027 .003 .004 .002 .005 .042 .058 .033 .065 .962 .959 .993 .997 1.000 .893 .002 1.000 

BSEM-RC .200 1000 .065 – – .011 .070 – – .024 .009 – – .001 .069 – – .022 .800 – – .952 1.000 – – 1.000 

BSEM-CLRC .200 1000 .060 -.121 -.016 .016 .042 .016 .019 .024 .005 .015 .001 .001 .062 .121 .021 .024 .996 .979 1.000 1.000 1.000 .000 .000 1.000 

CFA .300 200 .035 – – .101 .102 – – .060 .012 – – .014 .081 – – .104 .816 – – .602 1.000 – – 1.000 

ESEM .300 200 .012 -.032 -.013 .033 .085 .070 .071 .058 .007 .006 .005 .004 .068 .062 .058 .055 .958 .993 .995 .995 1.000 .969 .078 1.000 

BSEM-CL .300 200 .054 -.145 -.025 .085 .084 .042 .047 .059 .010 .023 .003 .011 .080 .145 .043 .090 .918 .486 .993 .921 1.000 .566 .003 1.000 

BSEM-RC .300 200 .075 – – .056 .117 – – .055 .019 – – .006 .102 – – .066 .803 – – .840 1.000 – – 1.000 

BSEM-CLRC .300 200 .084 -.203 -.018 .040 .089 .027 .031 .054 .015 .042 .001 .005 .099 .203 .029 .056 .941 .101 1.000 .990 1.000 .026 .000 1.000 

CFA .300 500 .037 – – .102 .087 – – .037 .009 – – .012 .065 – – .102 .762 – – .257 1.000 – – 1.000 

ESEM .300 500 .019 -.037 -.019 .048 .053 .044 .049 .037 .003 .003 .003 .004 .045 .047 .042 .052 .944 .979 .988 .975 1.000 1.000 .099 1.000 

BSEM-CL .300 500 .046 -.101 -.030 .086 .054 .034 .043 .037 .005 .011 .003 .009 .058 .101 .042 .086 .929 .707 .978 .943 1.000 .983 .011 1.000 

BSEM-RC .300 500 .067 – – .054 .107 – – .033 .016 – – .004 .083 – – .056 .797 – – .721 1.000 – – 1.000 

BSEM-CLRC .300 500 .072 -.192 -.019 .042 .065 .018 .025 .033 .009 .037 .001 .003 .077 .192 .026 .046 .967 .075 1.000 1.000 1.000 .017 .000 1.000 

CFA .300 1000 .038 – – .102 .081 – – .026 .008 – – .011 .057 – – .102 .755 – – .044 1.000 – – 1.000 

ESEM .300 1000 .022 -.039 -.021 .053 .038 .032 .038 .026 .002 .003 .002 .003 .035 .043 .035 .053 .933 .957 .967 .877 1.000 1.000 .149 1.000 

BSEM-CL .300 1000 .044 -.081 -.033 .086 .039 .027 .040 .026 .003 .007 .003 .008 .049 .081 .042 .086 .940 .819 .965 .965 1.000 1.000 .015 1.000 

BSEM-RC .300 1000 .065 – – .055 .104 – – .023 .015 – – .004 .076 – – .056 .799 – – .531 1.000 – – 1.000 

BSEM-CLRC .300 1000 .068 -.190 -.020 .045 .055 .015 .022 .023 .008 .037 .001 .003 .070 .190 .025 .046 .974 .039 1.000 1.000 1.000 .010 .000 1.000 

SD – – .023 .091 .006 .034 .022 .020 .022 .014 .004 .029 .001 .003 .018 .088 .014 .021 .073 .475 .492 .228 .000 .393 .036 .000 

Note. BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors; TF = Major 
loading; BCL = Major cross-loadings; SCL = Minor cross-loadings; FC = Factor correlations.  
 



 

External Appendix 3: 

Additional Assessment on Simulation Designs 2&3 (Study 1) 

 
Table S3A 
Results for Simulation Design 2&3 in relation to major cross-loadings (Study 1). 

Model description Relative Bias SD of Relative Bias 95% coverage  
Design 2  200 500 1000 200 500 1000 200 500 1000 200 500 1000 
ESEM Target rotation -16.1% -18.3% -19.3% 45.5% 30.4% 23.8% .701 .990 .731 .681 .802 .864 
ESEM(Geomin) Geomin rotation 15.3% 14.6% 14.2% 42.5% 28.8% 22.4% .572 .983 .973 .894 .990 1.000 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) -22.7% -25.3% -26.2% 48.1% 33.8% 27.7% .716 .982 .947 .636 .760 .813 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, .4) -7.0% -8.8% -9.6% 45.7% 30.3% 22.8% .651 .976 .942 .687 .862 .971 
ESEM(Free:4MajCL) Free 4 major cross-loadings (.1,.2,.3, .4) -0.6% -2.2% -2.9% 52.5% 32.7% 23.0% .638 .980 .981 .698 .844 .921 
ESEM(~.1) Target value = .1 -1.0% -5.3% -7.9% 70.9% 66.5% 65.6% .572 .708 .552 .769 .856 .885 
BSEM-CL Cross-loadings (M = 0, Var = .01) -71.6% -55.8% -46.6% 32.2% 32.8% 31.5% .433 .592 .752 .333 .574 .667 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) -83.2% -68.4% -56.4% 23.2% 28.0% 29.1% .165 .146 .179 .242 .549 .675 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) -58.2% -45.7% -40.1% 40.1% 36.0% 33.1% .856 .949 .979 .378 .561 .623 
BSEM-CLRC Residual covariances+cross-loadings 

(M=0, Var=.01) -89.0% -87.9% -87.7% 17.9% 15.4% 14.1% .370 .388 .376 .000 .000 .000 
BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings -20.6% -10.2% -5.2% 26.4% 20.6% 15.7% .919 .990 1.000 .776 .862 .910 
Design 3              
ESEM Target rotation -53.5% -53.1% -52.8% 57.7% 48.8% 45.6% .913 .642 .406 .687 .772 .792 
ESEM(Geomin) Geomin rotation -53.5% -53.3% -53.0% 77.2% 71.6% 69.7% .750 .514 .497 .786 .874 .947 
ESEM(Free:2MinCL) Free 2 minor cross-loadings (.01) -71.6% -71.4% -71.2% 64.9% 57.4% 54.9% .809 .412 .167 .644 .806 .913 
ESEM(Free:2MajCL) Free 2 major cross-loadings (.2, -.4) -18.5% -17.4% -16.7% 40.7% 26.0% 19.1% .984 .974 .954 .699 .842 .939 
ESEM(Free:4MajCL) Free 4 major cross-loadings (-.1,.2,.3, -.4) 2.4% 3.6% 4.3% 49.0% 30.5% 21.2% .983 .982 .979 .748 .884 .967 
ESEM(~.1) Target value = .1 -57.5% -57.6% -57.6% 93.2% 89.4% 88.3% .643 .486 .473 .816 .951 .994 
BSEM-CL Cross-loadings (M = 0, Var = .01) -62.9% -55.8% -52.7% 29.2% 28.8% 28.0% .466 .474 .460 .447 .589 .644 
BSEM-CL(Var=.005) Cross-loadings (M = 0, Var = .005) -70.6% -60.5% -55.7% 20.7% 23.2% 24.6% .221 .180 .118 .426 .620 .694 
BSEM-CL(Var=.02) Cross-loadings (M = 0, Var = .02) -57.2% -52.8% -50.6% 36.9% 32.8% 29.9% .815 .875 .904 .427 .535 .564 
BSEM-CLRC Residual covariances+cross-loadings 

(M=0, Var=.01) -77.9% -75.5% -75.6% 16.3% 12.1% 10.3% .435 .452 .451 .020 .016 .012 
BSEM-CL(M=1) Mean = .1, Var = .01 for cross-loadings -69.2% -62.4% -59.4% 70.0% 70.1% 69.7% .519 .503 .500 .711 .823 .840 



Note. Power =  the corresponding 95% coverage for ESEM models using a ML bootstrap confidence interval. For Bayes, power is computed as the proportion of the 
replications for which the 95% Bayesian credibility interval (or the ML bootstrap confidence interval) does not cover zero. 



External Appendix 4: 

Mean, Standard Deviation, and Range of Target and Cross Loadings for the Big Five Factors (Study 2) 

Table S5 
Mean, Standard Deviation, and Range of Target and Cross Loadings for the Big Five Factors 

Model             

 Agreeableness Conscientiousness Extraversion Emotional Stability Openness Total 

 M(SD) Range M(SD) Range M(SD) Range M(SD) Range M(SD) Range M(SD) Range 

 Target loadings 

CFA+CUs .531(.113) .340-746 .415(.118) .266-626 .453-.152 .129-.650 .509-.162 .086-.703 .411-.179 .053-.740 .464(.150) .053-.746 

ESEM+CUs .530(.105) .339-.749 .379(.141) .102-.607 .432(.145) .219-.690 .483(.157) .082-.640 .423(.171) .084-.724 .449(.150) .082-.749 

BSEM-CL+CUs .541(.108) .346-.766 .383(.145) .094-.618 .445(.152) .221-.715 .490(.160) .084-.651 .429(.174) .081-.731 .458(.154) .081-.760 

BSEM-RC .483(.083) .366-.626 .322(.167) .095-.584 .399(.081) .314-.541 .372(.098) .209-.548 .413(.208) -.021-.669 .397(.143) -.021-.669 

BSEM-CLRC .551(.068) .429-.644 .390(.137) .232-.613 .475(.082) .313-.613 .515(.134) .138-.659 .443(.207) .039-.728 .475(.141) .039-.728 

 Cross-loadings 

ESEM+CUs .010(.093) -.228-.242 .017(.136) -.360-.319 .025(.110) -.172-.306 .032(.134) -.202-.327 .002(.069) -.137-.171 .017(.111) -.360-.327 

BSEM-CL+CUs1 .008(.093) -.215-.260 .011(.136) -.378-.310 .018(.111) -.179-.306 .021(.136) -.218-.327 .007(.070) -.131-.182 .013(.111) -.378-.327 

BSEM-RC - - - - - - - - - - - - 

BSEM-CLRC .003(.068) -.180-.177 .005(.074) -.241-.143 .014(.062) -.103-.190 .006(.081) -.129-.235 .005(.055) -.096-.163 .007(.068) -.241-.235 
Note. CL = cross-loadings priors; RC = residual covariances priors; CUs = correlated uniquenesses; BSEM-CL = BSEM+cross-loading priors; BSEM-
RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors;



External Appendix 5: 

Mean, Standard Deviation, and Range of Correlated Uniqunesses (CUs) (Study 2) 

Table S6 
Mean, Standard Deviation, and Range of Correlated Uniqunesses (CUs)  

Model A priori CUs (57) other CUs (1713) 
 M(SD) M(SD) 
CFA+CUs .117(.134) - 
ESEM+CUs .109(.103) - 
BSEM-CL+CUs .115(.102) - 
BSEM-RC .168(.132) .052(.103) 
BSEM-CLRC .087(.097) .000(.052) 

Note. CL = cross-loadings priors; RC = residual covariances priors; CUs = correlated uniquenesses. 
 



External Appendix 6: 

Cross-validation and External validity (Study 2) 

Table S6A 
Absolute Average (SD) for Correlations between the Big-Five factors and Five Covariates (Self-Esteem, Positive 
Affect, Negative Affect, Life Satisfaction, and Emotion Self-Concept) 

Model Agreeableness Conscientiousness 
Emotional 
stability Extraversion Openness 

CFA+CUs .265(.234) .201(.207) .587(.552) .480(.367) .090(.106) 

ESEM+CUs .266(.232) .164(.201) .557(.533) .382(.272) .108(.129) 

BSEM-CL+CUs .293(.253) .183(.216) .570(.541) .413(.302) .111(.139) 

BSEM-RC .088(.093) .033(.028) .333(.339) .215(.154) .054(.067) 
BSEM-CLRC .279(.247) .176(.187) .584(.549) .460(.350) .089(.107) 

Table S6B 
Correlations between the Big-Five Factors and Covariates. 

 Agreeableness Conscientiousness 
Emotional 
stability Extraversion Openness 

 CFA+CUs 

LIFSAT .246(.016) .227(.017) .493(.014) .398(.016) -.075(.017) 

PANNEG -.223(.015) -.256(.016) -.638(.011) -.254(.015) .096(.016) 

PANPOS .397(.014) .098(.016) .456(.013) .570(.013) .140(.016) 

EMOTSC .230(.012) .254(.013) .720(.009) .666(.010) -.106(.013) 

ESTMSC .227(.014) .171(.016) .628(.011) .511(.013) .033(.016) 

 ESEM+CUs 

LIFSAT .235(.016) .220(.016) .469(.014) .306(.016) -.093(.017) 

PANNEG -.199(.014) -.267(.015) -.630(.011) -.129(.015) .123(.015) 

PANPOS .430(.013) .007(.015) .414(.013) .505(.013) .163(.015) 

EMOTSC .229(.012) .213(.013) .681(.009) .543(.011) -.132(.013) 

ESTMSC .238(.014) .114(.015) .590(.012) .425(.014) .030(.015) 

 BSEM-CL+CUs 

LIFSAT .257(.016) .237(.016) .481(.014) .336(.015) -.114(.017) 

PANNEG -.227(.014) -.283(.015) -.633(.011) -.171(.015) .145(.015) 

PANPOS .449(.013) .023(.015) .435(.013) .524(.013) .132(.015) 

EMOTSC .263(.012) .238(.013) .697(.009) .579(.010) -.159(.013) 

ESTMSC .267(.014) .132(.015) .603(.011) .455(.013) .004(.015) 

 BSEM-RC 

LIFSAT .101(.018) .010(.019) .281(.018) .165(.018) -.059(.018) 

PANNEG -.088(.017) -.067(.018) -.408(.017) -.053(.018) .072(.017) 

PANPOS .162(.017) -.038(.018) .172(.019) .296(.017) .059(.017) 

EMOTSC .040(.016) -.024(.017) .453(.016) .341(.016) -.076(.016) 

ESTMSC .048(.017) -.024(.018) .350(.018) .222(.018) .006(.017) 

 BSEM-CLRC 

LIFSAT .259(.016) .201(.018) .495(.014) .382(.015) -.082(.016) 

PANNEG -.243(.015) -.241(.016) -.631(.011) -.238(.015) .108(.015) 

PANPOS .406(.014) .083(.016) .444(.013) .548(.013) .120(.015) 

EMOTSC .242(.012) .218(.013) .729(.008) .642(.010) -.116(.012) 



ESTMSC .247(.014) .139(.016) .619(.011) .491(.013) .017(.015) 
Note. LIFSAT = Self-Esteem, Positive Affect, Negative Affect, Life Satisfaction, and Emotion Self-Concept; BSEM-CL = 
BSEM+cross-loading priors; BSEM-RC=BSEM+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual 
covariance priors; 



External Appendix 7: 

Annotated Mplus Syntaxes 

Population model generation for Design 1  
 
TITLE: Population model generation for Design 1  
MONTECARLO: 
           NAMES ARE y1-y15; 
           NOBSERVATIONS = 500; 
           NREPS = 500; 
           SEED = 4533; 
           REPSAVE = ALL; 
           SAVE = cfa-N500-L2-*.dat; 
 
ANALYSIS: ESTIMATOR = ML; 
 
Model population: 
!target loading 
f1 by y1*.8 y2*.8 y3*.8 y4*.8 y5*.8; 
f2 by y6*.8 y7*.8 y8*.8 y9*.8 y10*.8; 
f3 by y11*.8 y12*.8 y13*.8 y14*.8 y15*.8; 
!corss-loading 
f1 by y6*.2 y7-y15*.01; 
f2 by y1-y5*.01 y11*.2 y12-y15*.01; 
f3 by y1*.2 y2-y10*.01; 
 
[y1-y15*0]; y1-y15*.5; 
f1-f3*1;  [f1-f3*0]; 
 
f1-f3 with f1-f3*.5; 
 
OUTPUT: tech9; 



TITLE: ESEM model 277 (specific replicate)  
 DATA: FILE = cfa-N500-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = ML; 
ROTATION = TARGET; 
Model : 
!target loading 
f1 by y1-y5 y6-y15~0 (*t); 
f2 by y6-y10 y1-y5~0 y11-y15~0 (*t); 
f3 by y11-y15 y1-y10~0 (*t); 
output: tech1 tech8 stdy svalues;  
 
TITLE: ESEM with targeted value = 0.1 (specific 
replicate) 
 
 
ESEM with Free 2 minor cross-loadings (Free:2MinCL) 
 
TITLE: ESEM2min model 277  
 DATA: FILE = cfa-N200-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = ML; 
ROTATION = TARGET; 
 
Model : 
!target loading 
f1 by y1-y5 y7 y11 y6~0 y8-y10~0 y12-y15~0 (*t); 
f2 by y6-y10 y1 y12 y2-y5~0 y11~0 y13-y15~0 (*t); 
f3 by y11-y15 y2 y6 y1~0 y3-y5~0 y7-y10~0 (*t); 
 
output: svalues cinterval; 
 
 ESEM with Free 2 major cross-loadings (Free:2MajCL);  
TITLE: ESEM2maj model 277  
 DATA: FILE = cfa-N200-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = ML; 
ROTATION = TARGET; 
 
Model : 
!target loading 
f1 by y1-y5 y6 y15 y7-y10~0 y11-y14~0 (*t); 
f2 by y6-y10 y3 y11 y1-y2~0 y4-y5~0 y12-y15~0 (*t); 
f3 by y11-y15 y1 y8 y2-y5~0 y6-y7~0 y9-y10~0 (*t); 
 
output: svalues cinterval; 
 
ESEM with  Free 4 major cross-loadings (Free:4MajCL) 
TITLE: ESEM4maj model 277  
 DATA: FILE = cfa-N200-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = ML; 
ROTATION = TARGET; 
 
Model : 
!target loading 

f1 by y1-y5 y6 y10 y12 y15 y7-y9~0 y11~0 y13~0 
y14~0 (*t); 
f2 by y6-y10 y2 y3 y11 y14 y1~0 y4~0 y5~0 y12~0 
y13~0 y15~0 (*t); 
f3 by y11-y15 y1 y5 y7 y8 y2-y4~0 y6~0 y9~0 
y10~0 (*t); 
 
output: svalues cinterval; 
TITLE: BSEM model with priors for cross-
loadings (BSEM+CL) 277  
 DATA: FILE = cfa-N500-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = BAYES; 
FBITERATIONS = 10000; 
PROCESSORS = 2; 
Model : 
  !target loading 
f1 by y1* y2 y3 y4 y5; 
f2 by y6* y7 y8 y9 y10; 
f3 by y11* y12 y13 y14 y15; 
f1-f3@1; 
!corss-loading 
f1 by y6-y15*0 (a1-a10); 
f2 by y1-y5*0 (a11-a15); 
f2 by y11-y15*0 (a16-a20); 
f3 by y1-y10*0 (a21-a30); 
  MODEL PRIORS: 
a1-a30 ~ N(0, .01); 
output: tech1 tech8 stdy svalues;  
 
TITLE: BSEM model with residual covariances 
priors (BSEM-RC) 227  
DATA: FILE = cfa-N500-L2-277.dat ;  
 VARIABLE: NAMES = y1-y15; 
USEVARIABLES = y1-y15; 
ANALYSIS: ESTIMATOR = BAYES; 
FBITERATIONS = 10000; 
PROCESSORS = 2; 
Model : 
!target loading 
f1 by y1* y2 y3 y4 y5; 
f2 by y6* y7 y8 y9 y10; 
f3 by y11* y12 y13 y14 y15; 
f1-f3@1; 
!correlated residual 
y1-y15 (p1-p15); 
y1-y15 with y1-y15 (p16-p120); !upper-triangular 
elements taken row-wise 
  MODEL PRIORS: 
p1-p15~IW(1,21); 
p16-p120~IW(0,21); 
 
TITLE: BSEM model with residual covariances 
priors (BSEM-CLRC) 227  



   DATA: FILE = cfa-N500-L2-227.dat ; 
   VARIABLE: NAMES = y1-y15; 
  USEVARIABLES = y1-y15; 
  ANALYSIS: ESTIMATOR = BAYES; 
  FBITERATIONS = 10000; 
  PROCESSORS = 2; 
  Model : 
  !target loading 
  f1 by y1* y2 y3 y4 y5; 
  f2 by y6* y7 y8 y9 y10; 
  f3 by y11* y12 y13 y14 y15; 
  f1-f3@1; 
  !corss-loading 
  f1 by y6-y15*0 (a1-a10); 
  f2 by y1-y5*0 (a11-a15); 
  f2 by y11-y15*0 (a16-a20); 
  f3 by y1-y10*0 (a21-a30); 
  !corelated residual 
  y1-y15 (p1-p15); 
  y1-y15 with y1-y15 (p16-p120); !upper-triangular 
elements taken row-wise 
  MODEL PRIORS: 
  a1-a30 ~ N(0, .01); 
  p1-p15~IW(1,21); 
  p16-p120~IW(0,21); 
  output: tech1 tech8 stdy svalues;



Population model generation for Design 2  
 
TITLE: Population model generation for Design 2  
 
MONTECARLO: 
           NAMES ARE y1-y15; 
           NOBSERVATIONS = 500; 
           NREPS = 500; 
           SEED = 4533; 
           REPSAVE = ALL; 
           SAVE = cfa-N500-L2-*.dat; 
ANALYSIS: ESTIMATOR = ML; 
Model population: 
!target loading 
f1 by y1*.8 y2*.8 y3*.8 y4*.8 y5*.8; 
f2 by y6*.8 y7*.8 y8*.8 y9*.8 y10*.8; 
f3 by y11*.8 y12*.8 y13*.8 y14*.8 y15*.8; 
!corss-loading 
f1 by y6*.4 y7-y9*.01 y10*.1 y11*.01 y12*.3 y13-y14*.01 y15*.2; 
f2 by y1*.01 y2*.3 y3*.2 y4-y5*.01 y11*.4 y12-y13*.01 y14*.1 y15*.01; 
f3 by y1*.4 y2-y4*.01 y5*.1 y6*.01 y7*.3 y8*.2 y9-y10*.01; 
[y1-y15*0]; y1-y15*.5; 
f1-f3*1;  [f1-f3*0]; 
f1-f3 with f1-f3*.5; 
OUTPUT: tech9;  
----------------------------------------------------------------- 
TITLE: Population model generation for Design 3  
 
TITLE: Monte Carlo simulation study for alignment 
MONTECARLO: 
           NAMES ARE y1-y15; 
           NOBSERVATIONS = 500; 
           NREPS = 500; 
           SEED = 4533; 
           REPSAVE = ALL; 
           SAVE = cfa-N200-L2-*.dat; 
 
ANALYSIS: ESTIMATOR = ML; 
Model population: 
!target loading 
f1 by y1*.8 y2*.8 y3*.8 y4*.8 y5*.8; 
f2 by y6*.8 y7*.8 y8*.8 y9*.8 y10*.8; 
f3 by y11*.8 y12*.8 y13*.8 y14*.8 y15*.8; 
!corss-loading 
f1 by y6*-.4 y7-y9*.01 y10*-.1 y11*-.01 y12*.3 y13-y14*-.01 y15*.2; 
f2 by y1*-.01 y2*.3 y3*.2 y4-y5*-.01 y11*-.4 y12-y13*.01 y14*-.1 y15*.01; 
f3 by y1*-.4 y2-y4*.01 y5*-.1 y6*-.01 y7*.3 y8*.2 y9-y10*-.01; 
 
[y1-y15*0]; y1-y15*.5; 
f1-f3*1;  [f1-f3*0]; 
 
f1-f3 with f1-f3*.5; 
 
OUTPUT: tech9;



Mplus Syntaxes for Study 2:  
TITLE: ESEM with the a priori correlated 
uniquenesses (ESEM+CUs) 
 
  ANALYSIS: 
  ROTATION= TARGET;  ESTIMATOR=ML; 
  ! starts=400; iterations=25000; 
  MODEL: 
  neur  BY aneo01r-aneo56 aneo02-aneo60~0                   
(*1); 
  exta  BY aneo02-aneo57r aneo01r-aneo56~0 
aneo03r-aneo60~0 (*1); 
  open  BY aneo03r-aneo58 aneo01r-aneo57r~0 
aneo04-aneo60~0 (*1); 
  conc  BY aneo04-aneo59r aneo01r-aneo58~0 
aneo05-aneo60~0  (*1); 
  agre  BY aneo05-aneo60 aneo01r-aneo59r~0                  
(*1); 
 
! 57 pairs of the a priori CUs 
  ANEO24R WITH ANEO29R; 
 
  ANEO04  WITH ANEO34 ; 
  ANEO04  WITH ANEO49 ; 
  ANEO04  WITH ANEO14R; 
  ANEO04  WITH ANEO39R; 
  ANEO34  WITH ANEO49 ; 
  ANEO34  WITH ANEO14R; 
  ANEO34  WITH ANEO39R; 
  ANEO49  WITH ANEO14R; 
  ANEO49  WITH ANEO39R; 
  ANEO14R WITH ANEO39R; 
 
  ANEO19  WITH ANEO09R; 
  ANEO19  WITH ANEO54R; 
  ANEO09R WITH ANEO54R; 
 
  ANEO05  WITH ANEO15R; 
  ANEO05  WITH ANEO55R; 
  ANEO15R WITH ANEO55R; 
 
  ANEO20  WITH ANEO40 ; 
  ANEO20  WITH ANEO45R; 
  ANEO40  WITH ANEO45R; 
 
  ANEO25  WITH ANEO35 ; 
  ANEO25  WITH ANEO60 ; 
  ANEO35  WITH ANEO60 ; 
 
  ANEO10  WITH ANEO50 ; 
  ANEO10  WITH ANEO30R; 
  ANEO50  WITH ANEO30R; 
 
  ANEO02  WITH ANEO27R; 
 

  ANEO32  WITH ANEO47 ; 
  ANEO32  WITH ANEO52 ; 
  ANEO47  WITH ANEO52 ; 
 
  ANEO07  WITH ANEO37 ; 
  ANEO07  WITH ANEO12R; 
  ANEO07  WITH ANEO42R; 
  ANEO37  WITH ANEO12R; 
  ANEO37  WITH ANEO42R; 
  ANEO12R WITH ANEO42R; 
 
 
  ANEO21  WITH ANEO01R; 
  ANEO21  WITH ANEO31R; 
  ANEO01R WITH ANEO31R; 
 
  ANEO26  WITH ANEO16R; 
  ANEO26  WITH ANEO46R; 
  ANEO16R WITH ANEO46R; 
 
  ANEO06  WITH ANEO56 ; 
 
  ANEO11  WITH ANEO41 ; 
  ANEO11  WITH ANEO51 ; 
  ANEO41  WITH ANEO51 ; 
 
  ANEO13  WITH ANEO43 ; 
  ANEO13  WITH ANEO23R; 
  ANEO43  WITH ANEO23R; 
 
  ANEO28  WITH ANEO08R; 
 
  ANEO53  WITH ANEO58 ; 
  ANEO53  WITH ANEO48R; 
  ANEO58  WITH ANEO48R; 
 
  ANEO18R WITH ANEO38R; 
 
  OUTPUT: SVALUES; TECH1; stdyx; mod 
RESIDUAL; 
 
 
 
 
 
 
 
 
 



 
TITLE: BSEM with cross-loadings covariances priors 
and the a priori correlated uniquenesses (BSEM-
CL+RC) 
  ANALYSIS: ESTIMATOR = BAYES; 
  FBITERATIONS = 100000; PROCESSORS = 2; 
  thin = 10; 
  chains = 2; 
  MODEL: 
  neur  BY aneo01r* aneo06-aneo56; 
  exta  BY aneo02* aneo07-aneo57r; 
  open  BY aneo03r* aneo08r-aneo58; 
  conc  BY aneo04* aneo09r-aneo59r; 
  agre  BY aneo05* aneo10-aneo60; 
 
  neur-agre@1; 
 
  !cross-laoding 
 
  neur by aneo02-aneo60*0 (a1-a48); 
  exta by aneo01r-aneo56*0 (b1-b12); 
  exta by aneo03r-aneo60*0 (b13-b48); 
  open  BY aneo01r-aneo57r*0 (c1-c24); 
  open  BY aneo04-aneo60*0 (c25-c48); 
  conc  BY aneo01r-aneo58*0 (d1-d36); 
  conc  BY aneo05-aneo60*0 (d37-d48); 
  agre  BY aneo01r-aneo59r*0 (e1-e48); 
 
! ! 57 pairs of the a priori CUs 
     ANEO24R WITH ANEO29R (c100); 
…….. 
…….. 
     ANEO18R WITH ANEO38R (c156); 
 
  MODEL PRIORS: 
  a1-a48 ~ N(0, .01); 
  b1-b48 ~ N(0, .01); 
  c1-c48 ~ N(0, .01); 
  d1-d48 ~ N(0, .01); 
  e1-e48 ~ N(0, .01); 
! noninformative (diffuse) prior for CUS 
c100-c156 ~ N(0, 1000);  
  output: tech1 tech8 stdy svalues; 
 
TITLE: BSEM with residual covariances priors 
(BESM-RC) 
ANALYSIS: ESTIMATOR = BAYES; 
  FBITERATIONS = 100000; PROCESSORS = 2; 
  thin = 10; 
  chains = 2; 
 
  MODEL: 
  neur  BY aneo01r* aneo06-aneo56; 
  exta  BY aneo02* aneo07-aneo57r; 
  open  BY aneo03r* aneo08r-aneo58; 
  conc  BY aneo04* aneo09r-aneo59r; 
  agre  BY aneo05* aneo10-aneo60;! 
 
  neur-agre@1; 
 

  aneo01r-aneo60 (p1-p60); 
  aneo01r-aneo60 with aneo01r-aneo60 (r1-r1770); 
 
  MODEL PRIORS: 
 
  p1-p60~IW(1,66); 
  r1-r1770~IW(0,66); 
  output: tech1 tech8 stdy svalues; 
 
TITLE: BSEM with cross-loadings and residual 
covariances priors (BSEM+CLRC) 
ANALYSIS: ESTIMATOR = BAYES; 
  FBITERATIONS = 100000; PROCESSORS = 2; 
  thin = 10; 
  chains = 2; 
 
  MODEL: 
  neur  BY aneo01r* aneo06-aneo56; 
  exta  BY aneo02* aneo07-aneo57r; 
  open  BY aneo03r* aneo08r-aneo58; 
  conc  BY aneo04* aneo09r-aneo59r; 
  agre  BY aneo05* aneo10-aneo60;! 
  neur-agre@1; 
 
  neur by aneo02-aneo60*0 (a1-a48); 
 
  exta by aneo01r-aneo56*0 (b1-b12); 
  exta by aneo03r-aneo60*0 (b13-b48); 
 
  open  BY aneo01r-aneo57r*0 (c1-c24); 
  open  BY aneo04-aneo60*0 (c25-c48); 
 
  conc  BY aneo01r-aneo58*0 (d1-d36); 
  conc  BY aneo05-aneo60*0 (d37-d48); 
 
  agre  BY aneo01r-aneo59r*0 (e1-e48); 
 
  aneo01r-aneo60 (p1-p60); 
  aneo01r-aneo60 with aneo01r-aneo60 (r1-r1770); 
 
  MODEL PRIORS: 
  a1-a48 ~ N(0, .01); 
  b1-b48 ~ N(0, .01); 
  c1-c48 ~ N(0, .01); 
  d1-d48 ~ N(0, .01); 
  e1-e48 ~ N(0, .01); 
 
  p1-p60~IW(1,66); 
  r1-r1770~IW(0,66); 
  output: tech1 tech8 stdy svalues; 
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