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1 Introduction

In this note we describe the Mplus implementation of the weighted least
squares estimation in the presence of missing data. This estimation method
has been available in Mplus since Version 3. The method yields consistent
estimates under some general missing data assumptions, however, those as-
sumptions are somewhat more restrictive than assumptions usually used with
the maximum-likelihood estimator. In this note we prove the consistency of
the weighted least squares estimates under the correct missing data assump-
tions and also conduct a simulation study to illustrate the performance of
this estimator.

2 Types of Missing Data

Suppose that Y = (Y7, ...,Y,) are the p observed dependent variables, X =
(X1, ..., X,) are the ¢ observed independent variables in the model. In this
note we consider the situation when missing data occurs only for the de-
pendent variables, i.e., we assume that missing data for the independent
variables does not occur. If this is not the case in a particular application
the independent variables with missing values have to be included as depen-
dent variables in the model so that the model can infer the missing values.
Let py1, po, ..., pr, are all possible incomplete missing data patterns. Note that
we only list the incomplete data patterns, i.e., the full data pattern is not
included in this list.

Suppose that in pattern p; we have the decomposition Y = (Y, Y;.,),
where Y,,; are the observed variables in that pattern and Y, ; are the missing
variables. A missing data mechanism is a model for the missing data pattern,
i.e., a model that describes the probability P(p;) that the pattern p; occurs.
In particular we are interested in the effect of the model variables Y,;, Y;,,
and X on the probability P(p;). There are four different types of missing
data mechanisms that we consider in this note. We list these below in order
from the most restrictive to the most general.

e MCAR - Missing completely at random This type is defined by the
equation
Pl X, You, Yina) = f(1),
where f is a function, i.e., none of the three types of variables X, Y, ;, Y,,.;
have an effect on the missing data patterns.



e MARX - Missing at random with respect to X This type is defined by
the equation
P(pl|X7 }/o,lu Ym,l) = f(la X)7

where f is a function, i.e., only the covariate variables X have an effect
on the missing data patterns. Note here that if there are no covariates
in the model then MARX is equivalent to MCAR.

e MAR - Missing at random This type is defined by the equation
P<pl‘X7 Y;),la Ym,l) = f(la X7 Yvo,l)a

where f is a function, i.e., only the covariate variables X and the
observed dependent variables Y,; have an effect on the missing data
patterns. Note here that if there is only one dependent variable Y then
there is only one incomplete pattern which has no observed dependent
variables in it. Therefore MAR is equivalent to MARX for models with
one dependent variable.

e NMAR - Missing at random This type is defined by the equation
P(pl|X) §/O,l7 Ym,l) = f(la X7 )/o,h Ym,l);

where f is a function, i.e., all three types of variables have an effect on
the missing data patterns.

It is well know how FIML (full information maximum-likelihood) estima-
tion performs under all of these conditions, see Rubin and Little (2002) and
Muthen and Brown (2001). FIML yields consistent parameter estimates and
standard errors when the missing data is MAR (and also under the more re-
strictive assumptions MARX and MCAR) when the model is estimated from
the entire data sets including observations with missing data. FIML esti-
mates can be biased when under the NMAR assumption. Under the NMAR
assumption it is possible to obtain consistent estimates if the missing data
mechanism model is estimated as well, see Muthén et at. (2010).

If listwise deletion is applied, i.e., the model is estimated only from ob-
servations with full records then the ML estimates are consistent under the
MCAR and MARX assumptions but the estimates are less efficient than the
FIML estimates based on the entire data set.

In this note we study the performance of the weighted least square esti-
mation in Mplus under the various missing data assumptions. For brevity



we denote the weighted least square estimation by WLS, but everything in
this note applies also for the remaining weighted least squares estimators
WLSMV, WLSM and ULSMV.

3 WLS under MARX

In this section we will show that under the MARX assumption the WLS
estimator yields consistent estimates. Suppose that there are N observations
in the data. Define the missing variable indicator R;. for ¢« = 1,..., P and
r=1,....,N by
R — {O if Y;, is missing
" 1 otherwise.

We follow the description of the WLS estimator given in Muthén and Satorra
(1995) for the complete data case and explain how that estimator is modified
to accommodate missing data. Denote by o7 the first stage parameters (in-
tercepts, thresholds and slopes) and by o5 the second stage parameters (cor-
relations and covariances). Denote by l;, = L(Y;,|X) and l;;, = L(Y;r, Yjr| X)
be the univariate and the bivariate conditional log-likelihoods for the r—th
individual. The full information univariate and bivariate conditional log-
likelihoods are

N
r=1
and
N n n
lij =Y g R Rjr + > Ly Rir(1 = Rjp) + > Ljp(1 — Riy) Rjy. (2)
r=1 r=1 r=1

Under the MARX condition

P(Ry =0) =Y f(I,X)

l

where the sum is taken over all missing data patterns p; for which the i—th
variable is missing. Therefore the multivariate MARX condition implies uni-
variate MARX condition since in the above formula only X influences the
probability of missingness. Similarly one can establish that the multivariate
MARX condition leads to bivariate MARX condition for any pair of variables
Y; and Y;. Since the MARX condition is a special case of the MAR condition



we can therefore conclude that both the univariate and bivariate models can
be estimated constantly using FIML estimation. The WLS estimator uses
the univariate FIML estimates as the first stage estimate 6, and therefore
these estimates are consistent. The second stage estimates 6, are obtained
by fixing the oy parameters in (4) to the first stage estimates 6; and then
maximizing (4) over the second stage parameters. Since the first stage es-
timates are consistent this estimation is equivalent to the estimation where
the first stage parameters are fixed to their true values, i.e., to the FIML
estimation of the second stage parameters where the first stage parameters
are fixed to their true values. Since the missing data mechanism is MAR this
FIML estimation is consistent and therefore the second stage WLS estimates
are also consistent.

Note here that

L=l (3)

where the sum is taken over all observations r for which Yj, is present. Also if
we ignore the second and third sums in (4) which do not contain any second
stage parameters we get that

lij =c+ Z lijr (4>

where the sum is taken over all observations r for which both Y;, and Yj, are
present and c is a constant independent of the second stage parameters, i.e.,
a constant that can be ignored in the second stage optimization. This shows
that the first and the second stage WLS estimates are essentially obtained
by univariate and bivariate listwise deletion, i.e., by pairwise deletion.

As in Muthén and Satorra (1995) (under the regularity conditions B1-B7)
the consistency of the first and the second stage estimates implies the con-
sistency of the third stage estimates. The proof of the asymptotic normality
of the parameter estimates is the same as in Muthén and Satorra (1995).
The only new assumption that we make is that for all pairs (7, j) as n — oo,

N R;.Rj, — 00, i.e., the pairs of variables where both variables are present
goes to infinity as N goes to infinity. Of course, this is a requirement for the
consistency as well.

To obtain the standard errors for the WLS estimates we use the same
method as in Muthén and Satorra (1995). Let g, be the vector of all first
derivatives for the r-th observation
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Let g = YN, g,. Let & be the first and the second stage estimates and
let & be the true parameter values. For some point ¢* between ¢ and &
0=g(6) =g(c)+ 0g(c*)/0o(6 — &) and therefore

N - 0) = (TR D) g,

By Liapounov CLT n~'/2¢(&) is asymptotically normal with mean zero and
variance V = N1 lim>"_| E(g"(5)g"(5)"). Also if

_n—1 * _ N1 —~
A = plim —N ) = plim 7]\[ 99(7)
do do

we get that NY2(6 — &) % N(0,T = ALV A1),
The structural parameters 6 are estimated in the third stage by minimiz-
ing the objective function

F(0) =2 (c(0) =)W (o(0) —6)'

where W is chosen to be either I' or the diagonal of I" or the identity matrix
depending on which weighted least square estimator we use. To get the
asymptotic distribution of the structural parameters 6 we apply Theorem
4.1.3. in Amemiya (1985) and we get that

Var(0) = N"HA WA AW ITIW IAAW L A)

where A = 00 /06.

Let’s also consider the properties of the listwise deletion WLS estimation.
Listwise deletion can be thought of as a two-stage missing data scheme. In
the first stage missing data occurs from the true missing data mechanism
and in the second stage all variable of an observation are removed if any of
the variables for that observation is missing. Under the MARX assumption
only X variables can affect the missing data pattern for the true missing
data mechanism. This however implies that only X variables affect the two-
stage missing data mechanism. Thus under MARX the WLS estimation
with listwise deletion is a special case of the WLS estimation with pairwise
deletion for a MARX two stage missing data mechanism. Therefore under
MARX the WLS estimation with listwise deletion is also consistent however
it uses less information that the WLSMV pairwise deletion and therefore it
can be expected to be less efficient.



4 Simulation Study

In this section we compare the WLSMYV estimator described above which
we call WLSMV-PD (pairwise deletion) with the WLSMV estimator using
listwise deletion which we call WLSMV-LD. Consider the following simple
structural equation model with three dependent binary variables and one
independent continuous covariate. Let the binary variable Y} take values 0
and 1. Let the continuous covariate be X and the latent factor variable be
1. The model is described by the following two equations

P(Y; =0) = ®(r; — \jn)

n=pX+¢

where ® is the standard normal distribution function. We generate 100 data
sets using the above model and the following parameter values 7; = 0, \; = 1,
£ = 1. Both ¢ and X are generated from a standard normal distribution.
Missing data is generated using the following missing data mechanism

1

P(Y; is missing) = T+ Bap(i— X)’

i.e., from a MARX missing data mechanism. This missing data mechanism
yields approximately 26% of missing data for each variable and approximately
57% of all observations have at least one missing value. Thus the WLSMV-
LD is based on 43% of the data while WLSMV-PD is based on 74% of the
data. We analyze each data set with both estimators. The results of the
simulation study are presented in Table 1. It is clear from these results
that both WLSMV-PD and WLSMV-LD produce unbiased estimates for the
parameters and their standard errors, however the WLSMV-PD estimates
are much more efficient than the WLSMV-LD estimates.

5 Discussion

In this note we described how the weighted least squares estimators in Mplus
handle missing data and we showed that the estimators are consistent under
the MARX missing data assumption. We also showed that these estima-
tors are much more efficient than estimators based on listwise deletion. This
weighted least squares method has been available in Mplus since Version 3.



Table 1: MARX simulation results

WLSMV-PD WLSMV-LD | WLSMV-PD | WLSMV-LS
Parameter | Bias(Coverage) | Bias(Coverage) MSE MSE
n 0.01(.96) 0.02(.92) 0.006 0.016
T 0.00(.97) 20.02(.92) 0.005 0.016
T 20.01(.95) 20.02(.96) 0.006 0.014
A 0.02(.99) 0.03(.97) 0.013 0.029
o 0.00(.93) 0.01(.97) 0.017 0.028
N 0.03(.95) 0.05(.96) 0.024 0.050
o] 0.00(.99) 0.00(.96) 0.004 0.012

In the latest Version 6 new methods are available that can handle less re-
strictive missing data assumptions. In Version 6 it is possible to use any
of the following three method under the more general MAR assumption:
the maximum-likelihood estimator, the Bayes estimator, and the multiple
imputation method followed by the weighted least squares estimator. The
simulation studies in Section 3 of Asparouhov and Muthén (2010) illustrate
the deficiencies of the weighted least squares estimation under the more gen-
eral MAR condition and show that the above three approaches resolve these
deficiencies.

In this note we described the missing data handling of the weighted least
squares estimation for single level models however similar arguments and
results apply for the weighted least squares estimation of two-level mod-
els. Two-level simulation studies are presented in Asparouhov and Muthén
(2010).

Note also that the weighted least squares method can not be used for
NMAR modeling. Many of the NMAR models include the missing data
indicators in the model. Under this modeling approach however the missing
data mechanism is not MARX but it is MAR since the missing data indicator
variables have an effect in the missing data patterns.

Nevertheless the weighted least squares treatment of missing data should
be useful in situations when the amount of missing data is not substantial
or when the MARX assumption is considered plausible. Including more
covariates in that model that could potentially predict missingness can yield



a model where the MARX condition is more plausible.
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