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Delphine S. Courvoisier
University of Geneva

David A. Cole
Vanderbilt University

The authors show how structural equation modeling can be applied to analyze change in longitudinal
multitrait-multimethod (MTMM) studies. For this purpose, an extension of latent difference models
(McArdle, 1988; Steyer, Eid, & Schwenkmezger, 1997) to multiple constructs and multiple methods is
presented. The model allows investigators to separate true change from measurement error and to analyze
change simultaneously for different methods. The authors also show how Campbell and Fiske’s (1959)
guidelines for analyzing convergent and discriminant validity can be applied to the measurement of latent
change. The practical application of the multimethod change model is illustrated in a reanalysis of child
depression and anxiety scores (N � 906 American children) that were assessed by self- and parent reports
on three measurement occasions. The analyses revealed that (a) the convergent validity of change was
low for both constructs and (b) sex was a significant predictor of self-reported, but not of parent reported,
anxiety states. Finally, the authors discuss advantages and limitations and compare the model with other
approaches for analyzing longitudinal MTMM data.

Keywords: multitrait-multimethod analysis, longitudinal confirmatory factor analysis, convergent and
discriminant validity, latent change analysis, latent difference models

Supplemental materials: http://dx.doi.org/10.1037/a0017888.supp

Eid and Diener (2006) observed that multimethod research
designs are nowadays preferred to single method designs in almost
all areas of psychological research. Developmental psychology is
no exception, as is proven by an increasing number of longitudinal
studies in the field that use multitrait-multimethod (MTMM) de-
signs. Recent examples of such multitrait-multimethod-
multioccasion (MTMM-MO) studies include multimethod inves-
tigations of adolescent popularity, social adaptation, and deviant
behavior (Allen, Porter, McFarland, Marsh, & McElhaney, 2005);
childhood depression and anxiety (Cole, Martin, Peeke, Hender-
son, & Harwell, 1998; Tram & Cole, 2006); parenting effects on
the mental health of bereaved children (Kwok et al., 2005); tem-
perament in early childhood (Majdandzic & van den Boom, 2007);
the development of aggressive behavior in children (Ostrov &

Crick, 2007); and the relation between parental warmth/positive
expressiveness and children’s empathy-related responding and so-
cial functioning (Zhou et al., 2002).

In this article, our goal is to demonstrate how structural equation
modeling (SEM) can be used to analyze change in MTMM-MO
studies in a comprehensive and sophisticated way. SEM allows
researchers to test an overall theoretical model and to account
explicitly for measurement error in the observed (change) scores.
Furthermore, SEM has been applied successfully to the analysis of
cross-sectional MTMM data (e.g., Dumenci, 2000; Eid, Lisch-
etzke, & Nussbeck, 2006; Marsh, 1989; Widaman, 1985; Wothke,
1995).

MTMM-MO designs have become increasingly popular for
several reasons. First, panel studies that rely on only a single
method (e.g., a single item or scale) or a single source (e.g.,
self-rating) are often less informative than are studies that combine
multiple sources of information. Second, the generalizability of
multimethod investigations tends to be broader than that of single-
method studies (Morris, Robinson, & Eisenberg, 2006). Results
based on a single method may be specific to that particular mea-
surement instrument (e.g., test, rater, or observation) and thus
limited in scope. Third, in contrast to monomethod studies,
MTMM-MO designs make it possible to update the convergent
and discriminant validity information about the measures each
time measurement takes place. This is important given that the
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degree of validity of a particular method (e.g., rater, questionnaire,
test, observation) might change in the course of a longitudinal
study.

Changes in the validity and other psychometric properties of the
measures over time are a serious problem in many longitudinal
studies. Imagine, for example, a study that investigates the devel-
opment of aggressive behavior from childhood to adolescence
using self-report questionnaires. The question arises, are the same
questionnaires appropriate for both children and adolescents? By
using MTMM-MO designs, researchers can test whether the con-
vergent and discriminant validity of their measures remains con-
stant throughout their study.

Finally (and perhaps most importantly), changes in the under-
lying construct might not be correctly identified by a single
method. Furthermore, different methods might disagree as to the
kind or amount of change that occurs. Collectively, these consti-
tute problems pertaining to the “convergent validity of change.”
For example, parents might underestimate the amount of change in
depression of their children compared with the children’s self-
reports. Compared with mono-method designs, MTMM-MO de-
signs provide more information about such changes in the under-
lying construct (see Hertzog & Nesselroade, 2003, for an overview
about measurement of change).

MTMM-MO data sets tend to be large and complex. The anal-
ysis of such data requires careful consideration. Some investigators
simply examine correlations among manifest variables. Others
conduct separate MTMM analyses for each wave. A drawback of
such approaches is that no overall theoretical model for the entire
data structure is ever tested. Analyses that are solely based on
manifest correlations have the additional disadvantage that mea-
surement error is not taken into account. Consequently, estimates
of the relations among the underlying constructs may be biased
(e.g., Bollen, 1989). One might, for instance, underestimate the
stability of interindividual differences in anxiety or depression
over time. One might also obtain biased estimates of cross-
sectional associations among constructs, potentially affecting es-
timates of the convergent and discriminant validity at a given point
in time.

Measurement error also affects the assessment of change.
Change scores based on observed variables may be especially
affected by measurement error, in part, because the unreliability of
both the pretest and the posttest score affects an observed differ-
ence score. Clearly, we need adequate methods for taking mea-
surement error into account as we model change in MTMM-MO
designs.

In this article, we show how these problems can be handled with
an SEM approach. Using SEM, an overall theoretical model can be
formulated and tested against the data. Furthermore, change can be
analyzed in terms of latent variables (McArdle, 1988; McArdle &
Hamagami, 2001; Steyer et al., 1997). We show how latent change
can be analyzed simultaneously for different methods. In particu-
lar, we present a confirmatory factor analysis (CFA) approach to
analyzing change in MTMM-MO studies. This approach is an
extension of McArdle’s (1988) latent difference (LD) model (see
also McArdle & Nesselroade, 1994; Steyer et al., 1997; Steyer,
Partchev, & Shanahan, 2000) to accommodate multiple constructs
and multiple methods.

Our article is organized as follows. We first provide a brief
review of existing SEM approaches for modeling MTMM-MO

data and motivate the need for a multimethod change model.
Second, the conventional (single-method) CFA model of change
(McArdle, 1988; McArdle & Hamagami, 2001; Steyer et al., 1997,
2000) is introduced. Third, we illustrate the usefulness of extend-
ing this model to multiple methods. Fourth, an application of the
multimethod change model to the development of childhood de-
pression and anxiety is presented as an illustrative example. Fi-
nally, we discuss the advantages and limitations of this approach
and show links to other recently developed methods for analyzing
MTMM-MO data.

SEM Approaches to Modeling MTMM-MO Data

To date, relatively few comprehensive statistical models have
been developed for the analysis of MTMM-MO data in develop-
mental psychology. Exceptions include Cudeck’s (1988) multipli-
cative approach; Cole and Maxwell’s (2003) multi-occasion cor-
related uniqueness (CU) approach; Burns, Walsh, and Gomez’s
(2003) extension of the correlated trait-correlated method (CT-
CM) model (Marsh, 1989; Marsh & Bailey, 1991; Marsh &
Grayson, 1995) to a multioccasion CT-CM model (see also Burns
& Haynes, 2006); and the development of multimethod latent state
trait (LST) models (Courvoisier, Nussbeck, Eid, Geiser, & Cole,
2008; see also Vautier, 2004). The primary focus of these models
is on analyzing latent states (LSs). These models do not focus on
change; they do not even include latent change variables. Never-
theless, change is often the primary focus in developmental psy-
chology. In the present article, we present a model for analyzing
change.

Vautier, Steyer, and Boomsma (2008) have developed a latent
change model that takes method effects (because of indicator-
specific [IS] effects) into account. In contrast to the approach
presented here, the model discussed by Vautier et al. is not spe-
cifically designed for MTMM-MO investigations, does not pro-
vide coefficients for quantifying the convergent and discriminant
validity of change, and does not allow for a comparison of change
scores across different methods. Furthermore, Vautier et al.’s
model assumes that method effects are perfectly stable over time,
whereas the model presented here provides for all of these possi-
bilities.

The Single-Method LS and LD Models

Let us assume that a researcher is interested in the development
of child depression and wants to find out whether (a) children
differ in their level of depression at each point in time, (b) the
mean level of depression changes over time, (c) some children
show a stronger increase or decrease of their depression scores
over time than do other children (i.e., whether there is interindi-
vidual variability in the amount of change), and (d) other variables
(such as, e.g., gender, parenting, social support, change of personal
competences) can predict why some children’s depression scores
change more than others’. These important research questions can
be answered by LD models. McArdle (1988) and Steyer et al.
(1997, 2000) have shown how the basic longitudinal CFA mea-
surement model can be reformulated as a LD model to study
interindividual differences in intraindividual change with respect
to a single construct. In contrast to these authors, we assume the
more general case in which one has to deal with multiple con-
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structs throughout this article. Below, we discuss the extension to
multiple methods.

In line with Steyer and colleagues (Steyer et al., 1997, 2000), we
present models for multiple indicators per construct-method-
occasion (CMO) combination. Multiple indicator models have
several advantages compared with single indicator models. For
example, multiple indicator models allow researchers to investi-
gate the degree of homogeneity versus indicator-specificity of
different indicators of a construct. Most important, these models
make it possible to test the assumption of measurement invariance
over time. Both advantages are illustrated in detail below.

We first introduce the basic longitudinal CFA measurement
model that serves as the base for analyzing latent change. To be in
line with Steyer, Ferring, and Schmitt’s (1992) classical article on
LS and LST theory, we refer to this model as the LS model. In
contrast to the LD model, the LS does not contain LDs as latent
factors but just a time-specific latent factor for each construct at
each time point. As these time-specific factors capture the true
state of an individual with respect to a particular construct at a
particular time point, the variables are called LS factors and hence
the name LS model (see Steyer et al., 1992).

The LS Model

Figure 1A shows an LS model for three manifest variables or
indicators Yict (i � indicator; i � 1, 2, 3; e.g., items or test scores)
measuring two constructs (c � 1, 2; e.g., depression and anxiety)
on two time points (t � 1, 2). In the LS model, there is a
time-specific latent factor Sct (c: construct; t: occasion of measure-
ment) for each construct at each measurement occasion. Each LS
factor Sct is measured by the same indicators Yict at each measure-
ment occasion. For example, depression might always be mea-
sured by the items of the Child Depression Inventory (CDI;
Kovacs, 1985). Each factor Sct represents the latent scores of
individuals on a particular construct at a given point in time (e.g.,
the depression scores on a specific measurement occasion cor-
rected for measurement error). Hence, these factors characterize
the LS of individuals (i.e., the degree of depression) at a given time
point and are therefore called LS factors.1 (The meanings of the
ISic latent variables are explained in detail below.)

Note that the covariance structure and the mean structure of the
variables are part of the model. That is, means are also analyzed,
especially because changes in latent factor means are also of
interest in most longitudinal studies. (In contrast, most cross-
sectional structural equation analyses focus only on the covariance
structure.) Further, note that for reasons of clarity, we do not
present the mean structure in the figures to avoid cluttering and to
reduce the complexity of the figures; however, we emphasize that
the mean structure is included in all models presented in this
article. Figure 1A implies the following general measurement
model for the indicators Yict:

Yict � �ict � �ictSct � εict. (1)

Equation 1 shows us that each indicator Yict has a factor loading
�ict on the corresponding factor. The factor loading can be inter-
preted as a discrimination parameter. For example, the higher the
loading of a depression scale, the greater the scale discriminates
between individuals with different latent depression scores. It is

common practice to fix the loading of one indicator per factor to
1.00 to identify the scale of each LS factor.2

In addition, each indicator has an additive constant (intercept)
�ict. The intercept �ict can be interpreted as a difficulty parame-
ter—the greater �ict, the easier the scale. For example, the state-
ment “sometimes, I feel sad” is probably easier to endorse than the
statement “I feel sad all the time.” To identify the means of the LS
factors Sct, it is convenient to fix the intercept of those indicators
to 0.00 whose state factor loadings are fixed to 1.00. Again, this
choice is arbitrary; other possibilities exist to identify the latent
means (see, e.g., Steyer et al., 2000).

In the general LS model, the loading and intercept parameters
both carry three indices, i, c, and t. This implies that the loadings
and intercepts can be different for each indicator and can also be
different for the same indicator at different time points. However,
as we see below, when LD scores are considered, one has to
impose measurement invariance constraints on these parameters
to make the LD scores meaningful. More specifically, one usually
holds these parameters equal for the same indicator over time.

The variable εict is a residual variable with a mean of zero. The
residual variable captures measurement error and variable-specific
effects (indicator-specificity). Indicator-specificity refers to reli-
able effects that are unique for an indicator and not shared with
other indicators. These effects might be due to a specific response
format, item wording, or content. For example, one depression
scale might focus more strongly on sadness, whereas another scale
might capture aspects of depression that are more related to leth-
argy. The variance of the residual variable, Var�εict�, tells us
something about the degree of unreliability of the indicators and
about the degree of indicator-specificity: the greater Var�εict�, the
more unreliable and/or specific variance is present in a scale. (As
we see below, with longitudinal data, we are able to separate the IS
variance from random error variance; this is not possible with
cross-sectional data, in which measurement error and indicator-
specificity are confounded.)

The model in Figure 1A assumes that the common state factors
Sct are uncorrelated with all residual variables εic�t�, and that all
residual variables εict are uncorrelated with each other.

Measurement invariance. An important assumption that
should generally be tested in longitudinal investigations is the
assumption of measurement invariance over time (Meredith &
Horn, 2001; Tisak & Tisak, 2000; Widaman & Reise, 1997). In the
longitudinal context, measurement invariance means that the rela-

1 Note that in LST theory (Steyer et al., 1992), the time-specific LS
factors Sct are further decomposed into a latent trait (stable component) and
a latent occasion-specific residual factor (situation-specific component).
However, in the present case, our goal is not to separate trait and state
components but to model change over time as a latent variable. Note also
that in the present context, a LS variable does not refer to a categorical
latent variable (i.e., latent class variable) but to a continuous latent variable
(i.e., a factor).

2 Identification generally refers to the question of whether enough in-
formation is available so that a unique solution can be determined for each
unknown model parameter, for example, factor loadings, factor variances,
and so forth. The present restrictions for identifying the scale of the state
factor are arbitrary; the metric of this factor could also be identified by
other restrictions, for example, by fixing its variance to 1.00 (see Bollen,
1989, for a detailed discussion of this issue).
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Figure 1. Longitudinal confirmatory factor analysis models for two constructs (Dep � Depression; Anx �
Anxiety) measured by one single method on two time points. Yict denotes the ith observed variable measuring
construct c on occasion t; �icm � time-invariant state factor loading; Sct � latent state factor; �icm �
indicator-specific factor loading; ISic � indicator-specific factor; εict � residual (error) variable (not shown for
all indicators). (A) Latent state model with correlated state factors. (B) Reformulation of the latent state model
as latent difference model. (C) Extended latent difference model including a predictor variable and an outcome
variable of change. �1–�3 denote latent residual variables. The variances of the latent variables Sc1, (Sc2 – Sc1),
ISic, and εict are estimated in the model. Intercepts (�ict) and latent means are also included in the model but are
not shown in the figure for simplification. The models are identified by fixing the intercept of the first indicator
to zero and its loading to one for each factor.
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tion between the observed variables and their underlying latent
variables do not change over time. In other words, the observed
(item, scale, test, etc.) scores should have the same meaning at
each point in time. Measurement invariance is particularly impor-
tant in the LD model, as this model is concerned with differences
between latent variables. To make sure that these differences are
meaningful (that one does not subtract “apples from oranges”),
measurement invariance has to be established.

How can measurement invariance be represented in the param-
eters of the LS model? An important aspect of measurement
invariance is that the links between the indicators and the latent
factors should remain the same over time. In the LS model, these
links are represented by the factor loadings �ict and intercepts �ict.
If both the factor loadings �ict and the intercepts �ict are time-
invariant (i.e., if, for the same indicator, these parameters take on
the same values on each measurement occasion), the condition of
strong measurement invariance is satisfied (Widaman & Reise,
1997).3

Time-invariant intercepts and loadings imply that the measure-
ment structure of the construct has not changed over time. In
contrast, variation in the intercepts over time would indicate
changes in the difficulty of a scale, and variation in the factor
loadings would indicate that the discrimination of a scale has
changed over time. Under the condition of measurement nonin-
variance, one would be faced with changes in the metric and
meaning of the underlying latent variables. This would lead to
complications when researchers want to compare, for instance,
latent means over time, given that in cases in which measurement
invariance is severely compromised, apples would be compared
with oranges.

Does measurement invariance always hold? No, but fortunately,
we are able to test this assumption empirically in the LS model.
This is possible because the LS model makes use of multiple
indicators for each LS factor at each time point. For this purpose,
we can specify a restricted version of the LS model, in which all
loadings and intercepts are constrained to be equal over time.
When such invariance constraints are imposed on all intercepts and
loadings, the measurement model in Equation 1 simplifies to

Yict � �ic � �icSct � εict. (2)

We can see that the index t for the measurement occasion has
now been dropped from the intercepts and loadings. This indicates
that these parameters can no longer vary over time. In practical
applications, the fit of this restricted model can be statistically
tested against the fit of the more general model in Equation 1 to
investigate whether the assumption of measurement invariance is
tenable. When the more constrained model with time-invariant
parameters fits worse than the model with freely estimated param-
eters, measurement invariance is not tenable for at least some
indicators.

If invariance of intercepts and loadings is only tenable for some,
but not all indicators, one speaks of partial measurement invari-
ance (Byrne, Shavelson, & Muthén, 1989). Partial invariance can
be sufficient to warrant proper interpretation of differences in the
structural model (e.g., differences in latent means over time).
According to Byrne et al. (1989, p. 458), a sufficient degree of
partial invariance is present if, in addition to the indicator whose
loading and intercept are fixed to set the scale of the latent factor,
at least one additional indicator has invariant parameters over time.

However, this is a rather arbitrary rule. In practice, researchers
need to think carefully of the possible causes and consequences of
violations of measurement invariance even if just one indicator is
non-invariant.

What does the LS model tell us about development and change?
If we go back to our depression and anxiety example, the variance
of a factor Sct tells us something about interindividual differences
in the true (i.e., error free) scores at a given time point. For
example, the question “how large are true interindividual differ-
ences in depression at the first measurement occasion?” can be
answered by estimating the variance of S11. Factor means for the
same construct can be compared over time to discover whether the
average level of depression and anxiety has changed over time.

The correlations among factors pertaining to the same construct
over time [i.e., Cor�Sct, Sct��] inform us about the stability of
interindividual differences over time. If these correlations equal
1.00, then interindividual differences on the same construct are
perfectly predictable from the preceding measurement occasion
(note that this would not preclude mean changes over time).

A limitation of the LS model is that it does not allow direct
analysis of interindividual differences in change (in terms of LD
scores). The following reformulation of the LS model to an LD
model allows us to analyze latent change variables that can be used
to relate interindividual differences in change to other variables
(McArdle, 1988; Steyer et al., 1997, 2000).

The LD Model

The basic idea of LD modeling is that a latent factor Sct can be
decomposed into the initial status (Time 1 � T1) factor Sc1 plus a
LD factor �Sct � Sc1�, where �Sct � Sc1� represents latent change
(growth or decline) from T1 to time t:

Sct � �Sct � Sc1 � Sc1� � 1Sc1 � 1�Sct � Sc1�. (3)

Equation 3 is a simple restatement and does not contain any
restrictive assumptions. Basically, we just added a variable ( Sc1)
and subtracted the same variable at the same time. This might seem
weird at first sight, but it allows us to consider true change as a
latent variable in the SEM. By implementing Equation 3 in the
structural model (as shown in Figure 1B), the LS model can be
transformed into a LD model (the measurement model remains
unchanged). The LD factors �Sct � Sc1� represent true interindi-
vidual differences in intraindividual change from T1 to time t on
construct c. The term true here means that the difference scores are
corrected for measurement error. Therefore, these models have
also been referred to as true change models (Steyer et al., 1997).

To illustrate, we can imagine that each individual has a score on
the LD factor �Sct � Sc1�. A negative score indicates a true decline
in depression for an individual, whereas a positive score indicates
a true increase, and a score of zero indicates no true change at all.
The LD factor mean and variance can also be estimated. The LD
factor mean reflects the average growth or decline between the two
time points for this sample. With regard to the depression example,

3 Widaman and Reise (1997) distinguished between four different de-
grees of measurement invariance. However, for our purpose, it is sufficient
to consider the case of strong measurement invariance, in which both the
factor loadings and intercepts are time-invariant.
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a positive mean would indicate that on average, individuals show
an increase in depression over time. The LD factor variance
reflects the degree of true variability (interindividual differences)
in change. In our example, a high variance would indicate that
individuals differ a lot in the degree to which their true depression
level changes over time.

LD modeling offers a direct approach to investigating change.
The LD model is statistically equivalent to the LS model, as it is
just a reformulation. That is, one does not specify a new model but
just makes the information about change more accessible (Steyer
et al., 1997, 2000). Furthermore, LD models are quite flexible. LD
variables can be included for investigating change between a given
occasion of measurement and the first time point or for change
between any specific pair of state factors that is of interest (e.g., to
study change between adjacent time points; see Steyer et al., 1997,
2000). As illustrated in Figure 1C, LD models can be used as
endogenous variables (outcomes) or predictor variables in slightly
expanded models. For example, one might be interested in finding
predictor variables that explain why depression scores increase
more for some people than others or why intervention programs
cause greater changes in cognitive abilities in some children than
in others. Alternatively, change scores may themselves be used as
predictors of other variables (e.g., change in cognitive abilities
may cause or at least predict change in school grades). Given that
LD models focus on interindividual differences in intraindividual
change, they can also be very useful for analyzing treatment effects
in intervention studies.

IS Effects

As we noted before, the residual variables εict in an LS or LD
model capture both indicator-specificity and random measurement
error. Consequently, in longitudinal studies in which the same
indicators are repeatedly measured, these residuals are often cor-
related over time (Sörbom, 1975). Such auto-correlated errors
indicate that the error variables do not only contain random mea-
surement error but also reliable IS effects that generalize across
time (Jöreskog, 1979; Marsh & Grayson, 1994; Raffalovich &
Bohrnstedt, 1987; Tisak & Tisak, 2000). Even though such effects
are not usually of substantive interest, failure to account for them
in the model can lead to specification error, misfit, and biased
parameter estimates (e.g., the overestimation of construct stabil-
ity).

One possible way to model IS effects in the LS and LD model
is to allow for correlations between residual variables pertaining to
the same indicator (so-called CU approach; Cole & Maxwell,
2003; Kenny, 1976; Lance, Noble, & Scullen, 2002; see discussion
above). High correlations between residual variables indicate a
high degree of indicator-specificity. The CU approach is a straight-
forward method to represent indicator-specificity in longitudinal
studies. However, it is limited in that it does not explain systematic
sources of variance by additional latent factors. As a consequence,
IS variance and random error variance remain confounded in this
approach. The inability to separate these variance components
leads to an underestimation of the reliable variance of an indicator.
Furthermore, when the number of indicators is large, the CU
approach lacks parsimony, as many residual correlations need to
be estimated.

Therefore, we recommend an alternative approach in which
indicator-specificity is represented by IS factors (Eid, Schneider,
& Schwenkmezger, 1999; Raffalovich & Bohrnstedt, 1987; Tisak
& Tisak, 2000) rather than correlated error variables. Figures 1A
and 1B show the LS and LD models with additional IS factors.
According to Eid et al. (1999), it is not necessary to include an IS
factor for each repeatedly measured indicator. These authors have
shown that it is sufficient to use i – 1 indicator specific factors per
construct (i.e., one IS factor less than there are indicators per
factor). Specifying all i IS factors per construct can cause underi-
dentification and other estimation problems. The extended LS
model with i – 1 IS factors is given by the following:

Yict � ��1ct � �1ctSct � ε1ct, for i � 1
�ict � �ictSct � �ictISic � εict, for i � 1 , (4)

where the first indicators (i � 1) have been selected as “reference
indicators” for which no IS factors are specified. The constant �ict

again denotes the intercept, �ict denotes the factor loading on the
state factor Sct, �ict is the factor loading on the IS factor ISic, and εict

is a residual variable with a mean of zero. It is assumed that ISic

also has a mean of zero and is uncorrelated with all state factors Sct

that belong to the same construct.4 Furthermore, it is assumed that
the residual variables εict are uncorrelated with all other latent
variables and with all other residual variables. Note that in contrast
to Sct, the factor ISic is time-unspecific and therefore carries no
occasion index t, because ISic represents IS effects that generalize
across time.

We recommend that IS factors be included in longitudinal
models whenever indicators show IS effects over time. If such
effects are not present (i.e., because of a high degree of homoge-
neity of the indicators or long time intervals between the measure-
ments), these factors can be dropped, leading to the simpler model
in Equation 1. In the final section of this article, we discuss some
specific problems that may occur with IS factors in practical
applications and appropriate solutions for these problems.

In the extended LS model with IS factors, measurement invari-
ance can also be tested. For this purpose, one simply constrains the
intercepts and factor loadings to be time-invariant and then com-
pares the fit of such a restricted model with the fit of an uncon-
strained model in which the intercepts and loadings are free to take
on any value.

The Multimethod Change Model

The LS/LD approach can easily be generalized for use in an
MTMM-MO design. For example, imagine that a researcher wants
to assess change in depression and anxiety as measured by two

4 According to their psychometric definition (see Eid, 2000; Eid, Lisch-
etzke, Nussbeck, & Trierweiler, 2003), indicator-specific factors may be
correlated with all other indicator-specific factors and with all state factors
that belong to different constructs. Correlations between indicator-specific
factors are often meaningful and interpretable (e.g., if two items share
common method variance because of a similar wording, one would expect
their indicator-specific factors to be correlated). In contrast, correlations
between indicator-specific factors and other state factors are often difficult
to interpret and also close to zero in many cases. In cases in which it is not
plausible to assume these correlations to be different from zero, one may
consider fixing them to zero a priori for reasons of parsimony.
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different methods (e.g., self- and parent report). As shown in
Figure 2, the only difference is that the variables and constants in
the new model receive an additional index m to represent the
method. For example, the indicators Yicmt now carry four, and the
state factors Scmt carry three indices (i � indicator, c � construct,
m � method, t � time point). An LD model can then be specified
for each construct-method unit. To our knowledge, an application
of such an extended LD model to MTMM-MO data has not yet
been presented in psychology.

The multimethod change model is especially relevant to re-
searchers analyzing MTMM-MO data. According to Campbell and
Fiske (1959), different methods should converge in measuring the
same attribute (convergent validity). In addition, a new measure or
construct should be distinguishable from an already established
measure or construct (discriminant validity). For example, a new
test should not correlate too highly with an existing test supposed

to measure a different construct. If we transfer Campbell and
Fiske’s guidelines to the measurement of change, we can assess the
convergent validity of change by correlating the LD variables
pertaining to the same construct but different methods [e.g.,
�S112 � S111� and �S122 � S121� in Figure 2]. High correlations
indicate that different methods are in agreement as to the assess-
ment of interindividual differences in intraindividual change. In-
dividuals with high change scores according to one method would
also have high change scores according to the other method.

In addition, the means of the LD factors can be compared across
different methods measuring the same construct. Convergent va-
lidity with respect to mean change suggests that different methods
agree with regard to the direction of mean change over time: mean
increase, mean decrease, or mean stability. For example, do self-
and parent reports converge with regard to the assessment of mean
change in depression and anxiety over time? Note that mean
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Figure 2. Multimethod change model for two constructs (Dep � Depression; Anx � Anxiety) measured by
two methods (Sel � Self-Report; Par � Parent Report) on two time points. Each square highlights a construct
method unit. Yicmt denotes the ith observed variable measuring construct c by method m on occasion t. Latent
difference variables are included for each construct-method unit. �icm � time invariant state factor loading; �icmt �
indicator-specific factor loading. The variances of the latent variables—that is, Var(Scm1), Var(Scm2 – Scm1), Var(ISicm),
and Var(εicmt)—are estimated in the model. Intercepts (�icm) and latent means are also included in the model but are
not shown in the figure for simplification. The models are identified by fixing the intercept of the first indicator to zero
and its loading to one for each factor. To simplify, not all possible factor correlations are shown (but see the discussion
in the text).
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comparisons across methods are only meaningful if the different
methods (e.g., raters) used equivalent scales (e.g., a self- and a
parent rating form of the same questionnaire, where both forms
contain equivalent items).

We can also apply Campbell and Fiske’s (1959) concept of
discriminant validity to variables that measure change. Correla-
tions among change variables that belong to the same method, but
different constructs [e.g., �S112 � S111� and �S212 � S211� in
Figure 2] can be interpreted in terms of discriminant validity of
change. High correlations might indicate that a method is not
sufficiently sensitive to differences in change processes for the two
different constructs. For example, parents rating the depression
and anxiety of their children might be unable to distinguish change
in depression from change in anxiety. More broadly, one can
ascertain whether the pattern of correlations among change scores
pertaining to different constructs is consistent from one method to
another. An application of Campbell and Fiske’s criteria to the
measurement of change is shown in the illustrative example dis-
cussed below.

The present model can also be used to determine the reliability
of observed change scores �Yicmt � Yicmt��. If we assume time-
invariant intercepts �icm, time-invariant state loadings �icm, and
time-invariant IS loadings �icm, we can express the observed dif-
ference scores as follows:

�Yicmt � Yicmt�� � �icm�Scmt � Scmt�� � εicmt � εicmt�. (5)

Note that there is no intercept in Equation 5 because we assume
�icmt � �icmt� � �icm, so that the intercepts cancel out. Given the
assumption of equal loadings �icm over time, the IS factors also
cancel out—IS effects do not affect the difference score under this
condition. Assuming uncorrelated error variables, the variance of
the difference score, Var�Yicmt � Yicmt��, can be decomposed as
follows:

Var�Yicmt � Yicmt�� � �icm
2 Var�Scmt � Scmt�� � Var�εicmt�

� Var�εicmt��. (6)

Notice that Equation 6 shows us why observed difference scores
often are so unreliable: The error variances of both time t and time
t� affect the variance of the difference score. We may calculate the
reliability for �Yicmt � Yicmt�� as follows:

Rel�Yicmt � Yicmt�� �
�icm

2 Var�Scmt � Scmt��

Var�Yicmt � Yicmt��
, (7)

where �icm
2 and Var�Scmt � Scmt�� are parameters to be estimated on

the basis of the model, and Var�Yicmt � Yicmt�� is the model-
implied difference score variance.

Identification and Estimation of the Models

Identification

In SEM with latent variables, each latent factor has to be
assigned a scale (Bollen, 1989). For the present models, a conve-
nient way to identify the scale and mean of each LS factor is to fix
the loading of one indicator to 1.00 and the intercept of the same
indicator to 0.00. Furthermore, if IS factors are included, one can
identify the scale of these factors by also fixing the loading of one

indicator to 1.00. As noted above, these restrictions are arbitrary.
Other, equivalent possibilities to identify the model exist (see, e.g.,
Steyer et al., 2000).

It is important to note that identification problems may arise in
measurement designs with only two time points. In this case, the
model part related to the IS factors may not be identified. The
following guidelines can be provided for these cases:

1. If there is only one construct measured by only two
indicators pertaining to only one method on only two
time points, the IS factor is underidentified when the
second loading is left to be freely estimated, unless the IS
factor is substantially correlated with an external covari-
ate in the model. If there is no external covariate or if the
IS factor is not substantially correlated with the covariate,
one has to fix both IS factor loadings (e.g., to 1.00) to
achieve identification.

2. If there are just two time points, just one construct, and
just one method, but three or more indicators per state
factor, an identification problem only occurs if one or
more of the IS factors are not substantially correlated
with any other IS factor or with any external covariate in
the model. If one or more of the IS factors are not
substantially correlated with any other variable in the
model, both loadings of this IS factor have to be fixed
(e.g., to 1.00) to achieve identification.

3. If there are just two time points and just two indicators
per state factor, but two or more methods or constructs,
an identification problem only occurs if one or more of
the IS factors are not substantially correlated with any
other factor or with any external covariate in the model.
If one or more of the IS factors are not substantially
correlated with any other variable in the model, both
loadings of this IS factor have to be fixed (e.g., to 1.00)
to achieve identification.

Estimation

All models presented in this article are special models of
CFA. The parameters of the models can therefore be estimated
using estimation methods (e.g., maximum likelihood [ML])
available in conventional SEM software (e.g., AMOS, EQS,
LISREL, Mplus, Mx). The models should be fit to raw data or
to the covariance matrix and mean vector of the observed
variables. ML estimation is based on the assumption of multi-
variate normality. If this assumption is violated, standard errors
and fit statistics may be biased. The use of robust ML estima-
tion (e.g., Satorra & Bentler, 1994) or Bootstrap methods (Bol-
len & Stine, 1992) is recommended in this case (e.g., Finney &
DiStefano, 2006).

Annotated Mplus (L. K. Muthén & Muthén, 1998–2007) input
files to estimate the models presented in this article are available
from the online supplementary materials. The following is an
illustrative application of these methods to an actual MTMM-MO
data set.
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Method

Sample

The three-wave data set used for the present illustration was
drawn from a larger data set collected by Cole and colleagues
(Cole et al., 1998; Cole, Martin, & Powers, 1997; Cole, Martin,
Powers, & Truglio, 1996; Cole, Truglio, & Peeke, 1997). Partic-
ipants were U.S. children (N � 906) who were in the third and
sixth grades at Time 1. Demographic characteristics were not
available for data analysis but are described at length in previous
publications (Cole et al., 1998, Cole, Martin, & Powers, 1997;
Cole et al., 1996; Cole, Truglio, & Peeke, 1997).

For simplicity, we analyzed the combined data of third and sixth
graders for the present illustration. We emphasize, however, that in
an actual substantive application, a multigroup approach (Jöres-
kog, 1971) should be preferred, in which the age groups are treated
separately. The time interval between each of the three measure-
ment occasions was 6 months. For the present illustration, we
selected two constructs (depression and anxiety) and two methods
(self-report and parent report).

Measures

Depression was measured by the child and parent form of the CDI
(and CDI–Parent Form; 26 items measured on a 3-point scale ranging
from 0 to 2; Kovacs, 1985). Anxiety was assessed by the child and
parent form of the Revised Children’s Manifest Anxiety Scale
(RCMAS–Child Form and RCMAS–Parent Form; 28 items measured
on a 3-point scale ranging from 0 to 2; Reynolds & Richmond, 1978).
The number and the wording of the items was equivalent across the
child and parent forms for both the CDI and the RCMAS. A more
detailed description of the scales can be found in Cole, Martin, and
Powers (1997), as well as Cole, Truglio, and Peeke (1997).

Details on the Statistical Analysis

Model structure. The LS/LD models estimated for the present
data had the same basic structure as the model shown in Figure 2, with
the exception that we considered three (instead of two) occasions of
measurement and used two (instead of three) indicators per state
factor. Hence, there were a total of 16 latent factors in the LS version
of the model: 12 state factors (three state factors for self-reported
depression, three state factors for self-reported anxiety, three state
factors for parent-reported depression, and three state factors for
parent-reported anxiety) and four IS factors (one for the second
indicator of self-reported depression, one for the second indicator of
self-reported anxiety, one for the second indicator of parent-reported
depression, and one for the second indicator of parent-reported anx-
iety). The LD version additionally contained eight LD factors (one
difference factor for self-reported depression T2 – T1, one difference
factor for self-reported depression T3 – T1, one difference factor for
self-reported anxiety T2 – T1, one difference factor for self-reported
anxiety T3 – T1, one difference factor for parent-reported depression
T2 – T1, one difference factor for parent-reported depression T3 – T1,
one difference factor for parent-reported anxiety T2 – T1, and one
difference factor for parent-reported anxiety T3 – T1).

We estimated two versions of the LS/LD model (referred to as
Model 1 and Model 2 in the following) to test whether measure-
ment invariance across time was tenable. In Model 1, we imposed

no measurement invariance constraints over time (i.e., all loadings
and intercepts were free to take on any value except those fixed to
ensure identification). In Model 2, all factor loadings and inter-
cepts were held equal over time (we also constrained the IS factor
loadings to be equal over time). A statistical comparison of the fit
of Model 1 and Model 2 allowed us to test the assumption of
strong factorial invariance (i.e., time-invariant intercepts and load-
ings). If Model 2 fit worse than Model 1, the assumption of strong
factorial invariance for all indicators would need to be rejected.

Factor indicators. In principle, we could have used the single
items of the CDI and RCMAS as manifest indicators in the models;
however, two considerations led us to use parcels instead. First, the
item responses were measured on a 3-point scale and thus represented
discrete (ordered categorical � ordinal) rather than continuous vari-
ables. Ordered categorical outcomes require the use of specific mod-
els and estimators (e.g., Finney & DiStefano, 2006). The treatment of
these issues is beyond the scope of this article.

Second, the large number of items per construct would have
led to extremely large models with an excessive number of
estimated parameters. Therefore, we created two parcels per
CMO unit (CMOU; i.e., there were two parcels for depression
measured by child report on each occasion of measurement, two
parcels for depression measured by parent report on each oc-
casion, and so on). We created the parcels by calculating the
mean of half of the items for each CMOU. Parcels consisted of
identical items on each occasion of measurement. Each depres-
sion parcel thus consisted of 13 items, and each anxiety parcel
consisted of 14 items. We wish to emphasize that in an actual
substantive application, researchers should conduct detailed
preliminary item analyses to make sure that the use of item
parcels instead of single items is warranted (T. D. Little, Cun-
ningham, Shahar, & Widaman, 2002).

Clustering of observations. A complication that often arises
in psychological studies is that observations are not independent
but clustered within a hierarchical structure. For example, in the
present data set, the children were nested within 49 school class-
rooms. Such complex sample structure is often referred to as
multilevel structure and requires a special treatment. When the
nonindependence of observations is ignored, standard errors and
test statistics in conventional covariance structure analyses can be
biased (Julian, 2001). In the present analysis, we handled this
problem by using robust ML estimation in which a so-called
Sandwich estimator is used to obtain adjusted standard errors and
test statistics that are robust to clustering and nonnormality of the
data (B. O. Muthén & Muthén, 1998–2004; B. O. Muthén &
Satorra, 1995; these robust statistics were obtained by using the
TYPE � COMPLEX option in Mplus).

Handling of missing data. We used full information ML
(FIML) estimation to handle missing data (Arbuckle, 1996; R. J. A.
Little & Rubin, 2003; Wothke, 2000). The FIML method relies on the
assumption that missing values are missing at random. Missing at
random requires that missing data are either missing completely at
random or that the missing information depends “on variables that are
included in the statistical model (which in the longitudinal setting
usually includes previous measurements of the same variable)” (Ghis-
letta & Lindenberger, 2005, p. 566). The FIML method is generally
preferred to listwise deletion and other ad hoc approaches to handling
missing data (Schafer & Graham, 2002; Wothke, 2000).
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Goodness-of-fit assessment. Goodness of fit was assessed us-
ing the chi-square test, the root-mean-square error of approximation
(RMSEA; Steiger, 1990), and the comparative fit index (CFI; Bentler,
1990). A nonsignificant chi-square value indicates that the assumption
of exact fit in the population is not rejected, suggesting a good fit of
the model to the data. The RMSEA coefficient is a measure of
approximate fit. RMSEA values smaller than .05 point to an accept-
able fit (Hu & Bentler, 1998, 1999). The CFI compares the fit of the
target model with the fit of a baseline model. The baseline model is a
null model that assumes zero covariation among the observed vari-
ables. For a good model, the CFI should be greater than 0.95 (Hu &
Bentler, 1998, 1999; Schermelleh-Engel, Moosbrugger, & Müller,
2003). To test for measurement invariance, we performed chi-square
difference tests to statistically compare nested models.5 As an addi-
tional descriptive index for model comparisons, we use the Bayesian
information criterion (BIC; Schwarz, 1978). According to this crite-
rion, the model with the smallest BIC value fits the data best.

IS effects. Preliminary analyses showed that IS effects were
present for all constructs and raters. (Models without IS factors did
not fit the data well.) Therefore, as explained above, we focused on
models that had the same structure as the one shown in Figure 2.

Results

Goodness of Fit

We first tested measurement invariance over time. For this
purpose, we compared the fit of Model 1 (without invariance
restrictions on loadings and intercepts) against Model 2 (with
loadings and intercepts held equal over time for all indicators).
Both models fit the data well. Model 1 had a nonsignificant
chi-square value: 	2(132) � 142.86, p � .24. Approximate fit
indices were also good (RMSEA � .010; CFI � .999).

The chi-square value of the more constrained Model 2 was also
nonsignificant, 	2(156) � 161.02, p � .38, and the model showed
a very good fit according to the other indices as well (RMSEA �
.006; CFI � 1.000). A chi-square difference test revealed that
Model 2 did not fit significantly worse than Model 1, 
	2(24) �
19.03, p � .75. Model 2 also had a lower BIC value (BICModel 2 �
–4,704) than Model 1 (BICModel 1 � –4,566). The results thus
indicate that the assumption of measurement invariance was ten-
able. Hence, we present detailed outcomes for Model 2. We first
discuss important findings from the measurement model.

Measurement Model: Indicator-Specificity and
Reliability

The measurement model provides us with information on the
degree of homogeneity and reliability of the indicators. Table 1
shows that the unstandardized intercepts, factor loadings, and
residual variances are very similar for the indicators of the same
LS factor (e.g., the intercepts, state factor loadings, and residual
variances for DS11 and DS21 are very similar). This shows that
the item parcels are essentially homogeneous.

Standardized factor loadings (see the fifth and eighth columns of
Table 1) can be interpreted as correlations between the indicator and
the corresponding LS and IS factors, respectively. Squared standard-
ized loadings represent variance components (see the last three col-
umns in Table 1) that give the percentage of variance explained by the

LS and IS factors, respectively. The sum of the squared standardized
loadings on both types of factors equals the reliability of an indicator.

In the present example, all indicators show high standardized factor
loadings on the state factors (range � .85–.96), whereas the standard-
ized loadings on the IS factors are substantial but much smaller
(range � .22–.37). This shows us that although IS effects are present
and nonnegligible, they play a minor role in the present application.

Overall, the variance components indicate that 72%–92% of the
observed variance is due to the corresponding state factor, whereas
only 5%–14% of the observed variance is due to reliable IS effects.
That is, the different indicators generally measure the same latent
dimension. Further, the reliability coefficients are high for all
indicators (range � .83–.92).

Structural Model: Convergent and Discriminant
Validity of States and Change

The structural model provides us with information on conver-
gent and discrimimant validity and change. The latent
MTMM-MO correlation matrices estimated in the state and change
versions of the multimethod change model are shown in Tables 2
and 3, respectively. These matrices contain coefficients of conver-
gent validity, discriminant validity, and stability among latent
factors that are corrected for measurement error. In both matrices,
convergent validity coefficients are printed in bold face, whereas
discriminant validity coefficients are italicized. Stability coeffi-
cients are framed in boxes in Table 2. The MTMM-MO matrix
obtained from the change version allows us to study the conver-
gent and discriminant validity of change.

From the moderate to small bold-face correlations we can see
that convergent validity is low for both the state scores (range �
.26–.36; see Table 2) and the LD scores (range � .14–.28; see
Table 3). The coefficients are higher for depression (range state
factors � .32–.36; range difference scores � .22–.28) than for
anxiety (range state factors � .26–.28; range difference scores �
.14–.18). Although the differences are not large, we speculate that
parents may find it easier to judge their children’s depression than
their anxiety. Further, the convergent validities are higher for the
state than for the change scores.

The convergent validity of change is very low. That is, interindi-
vidual differences in intraindividual change estimated from the self-
ratings do not correspond well with interindividual differences in
intraindividual change estimated from the parent ratings. Conse-
quently, an important substantive finding of the present modeling
is that conclusions about change in depression and anxiety drawn
from the parent ratings would be very different from conclusions
drawn on the basis of the self-ratings. This finding could indicate three
different things: Change scores based on the self-report may not be
valid; change scores based on the parent report may not be valid; or
both types of change scores may not be valid. One important conse-
quence of these findings is that researchers interested in studying
change in depression and anxiety of children would be ill-advised if
they based their assessment on a single method only. Another impor-
tant consequence is that in the next step, researchers should study the

5 We calculated the correctly scaled chi-square difference value under
robust ML estimation using the procedure described in Satorra and Bentler
(2001) and on the Mplus homepage at http://www.statmodel.com/
chidiff.shtml
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causes of these large discrepancies between the two rater types in
more detail to find out which method should be trusted more. One
way to investigate method effects in more detail would be to add
covariates that might explain why parents judge their children’s depres-
sion and anxiety so differently than do the children themselves (e.g., Eid
et al., 2006) or to add additional (possibly more objective) measures or
methods and study their association with the child and parent reports.

With regard to discriminant validity, we can see that the depression
and anxiety state factors are highly positively correlated. This is the
case for both the self-report (range � .74–.76) and the parent report
(range � .79–.83), indicating that the discriminant validity of the two
constructs is rather low for both types of ratings. Depression and
anxiety represent two closely related concepts. Not surprisingly, their
change scores are also highly positively correlated (range � .56–.83).
According to both methods, change in depression is strongly related to
change in anxiety. Interindividual differences in both depression and
anxiety remained relatively stable over time as shown by the high
stability coefficients in Table 2 (range � .61–.85).

The latent means and variances are shown at the bottom of
Tables 2 and 3. All variances are different from zero, indicating
that there is significant variability in the LS scores and in intrain-
dividual change over time (i.e., children differ in their status and in
the degree of change over time). If we compare the state means for
depression and anxiety across self- and parent ratings (see the
bottom of Table 2), we find that the parents reported consistently

lower levels of both depression (self-rating � 0.29–0.32; parent
rating � 0.18–0.20) and anxiety (self-rating � 0.56–0.72; parent
rating � 0.44–0.50) compared with the self-report.

The means of the latent change factors (see the bottom of Table
3) are all negative. This indicates that both constructs show a mean
decline over time. Although this mean decline is rather small, it is
consistent across both methods. However, the amount of mean
decline differs between self- and parent ratings. That is, parent
ratings show lower mean change over time (especially with regard
to anxiety) than do self-ratings (self-rating depression � –0.03;
parent rating depression � –0.02; self-rating anxiety � –0.10 to
–0.16; parent-rating anxiety � –0.04 to –0.06).6 In sum, the latent

6 As a reviewer of this article noted, raw mean differences can sometimes be
difficult to interpret, especially when raters used different scales. In this case,
one may consider using standardized mean differences. In the present study,
we did not use standardized mean differences because the self- and parent
reporters used identical scales so that the raw means were directly comparable
across raters. It should be noted that a standardization of mean differences
using the standard deviations can also be misleading in some cases. For
example, if groups differ in variability, a standardization magnifies the mean
difference in the group with smaller variability and attenuates the mean
difference in the group with larger variability. We recommend that standard-
ized effect sizes be used only in cases in which measurement instruments are
not comparable in terms of their metric.

Table 1
Estimated Intercepts, Factor Loadings, Residual Variances, and Variance Components in the Multimethod Change Model

Report
indicator

Intercept
�icm

Time-invariant state factor
loading �icm

Time-invariant indicator-specific
factor loading �icm

Residual variance
Var�εicmt�

Variance components

Estimate SE
Standardized

estimate Estimate SE
Standardized

estimate State
Indicator-
specific Reliability

DS11 0.00� 1.00� — 0.93 — — — 0.01 0.86 — 0.86
DS21 0.00a 0.92e 0.02 0.91 1.00� — 0.22 0.01 0.83 0.05 0.88
DS12 0.00� 1.00� — 0.92 — — — 0.02 0.85 — 0.85
DS22 0.00a 0.92e 0.02 0.90 1.00� — 0.22 0.01 0.81 0.05 0.86
DS13 0.00� 1.00� — 0.94 — — — 0.01 0.88 — 0.88
DS23 0.00a 0.92e 0.02 0.90 1.00� — 0.23 0.01 0.81 0.05 0.86
AS11 0.00� 1.00� — 0.94 — — — 0.02 0.88 — 0.88
AS21 0.06b 0.95f 0.02 0.91 1.00� — 0.24 0.02 0.83 0.06 0.89
AS12 0.00� 1.00� — 0.96 — — — 0.02 0.92 — 0.92
AS22 0.06b 0.95f 0.02 0.92 1.00� — 0.23 0.02 0.85 0.05 0.90
AS13 0.00� 1.00� — 0.96 — — — 0.02 0.92 — 0.92
AS23 0.06b 0.95f 0.02 0.91 1.00� — 0.25 0.02 0.83 0.06 0.89
DP11 0.00� 1.00� — 0.92 — — — 0.01 0.85 — 0.85
DP21 0.03c 1.01g 0.03 0.86 1.00� — 0.32 0.01 0.74 0.10 0.84
DP12 0.00� 1.00� — 0.91 — — — 0.01 0.83 — 0.83
DP22 0.03c 1.01g 0.03 0.85 1.00� — 0.35 0.01 0.72 0.12 0.84
DP13 0.00� 1.00� — 0.93 — — — 0.01 0.86 — 0.86
DP23 0.03c 1.01g 0.03 0.88 1.00� — 0.32 0.01 0.77 0.10 0.87
AP11 0.00� 1.00� — 0.94 — — — 0.01 0.88 — 0.88
AP21 �0.06d 1.07h 0.03 0.87 1.00� — 0.35 0.02 0.76 0.12 0.88
AP12 0.00� 1.00� — 0.95 — — — 0.01 0.90 — 0.90
AP22 �0.06d 1.07h 0.03 0.88 1.00� — 0.37 0.01 0.77 0.14 0.91
AP13 0.00� 1.00� — 0.94 — — — 0.01 0.88 — 0.88
AP23 �0.06d 1.07h 0.03 0.86 1.00� — 0.36 0.02 0.74 0.13 0.87

Note. The first number refers to the indicator, whereas the second number refers to the occasion of measurement. For example, DS12 stands for the first indicator
of depression self-report measured on the second occasion of measurement. Fixed parameters are marked with an asterisk. Standard errors are not available for
fixed parameters. Parameters set equal to each other (time invariant parameters) have the same superscript. i � indicator; c � construct; m � method; t � occasion
of measurement; DS � depression self-report indicator; AS � anxiety self-report indicator; DP � depression parent report indicator; AP � anxiety parent report indicator.
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means point to a lack of convergent validity of mean level and
mean change. Parent ratings appear to be less sensitive measures
for assessing change in their children’s depression and anxiety
than are the children’s self-ratings.

In summary, we notice that Campbell and Fiske’s (1959) criteria
for convergent and discriminant validity are not met in the present
example. The convergent validity of self- and parent reports as
well as the discriminant validity between depression and anxiety
are very low. As one reviewer of this article noted, researchers
may view these findings as rather discouraging. It should be noted,
however, that the present results are rather typical for multimethod
studies of personality traits (e.g., Fiske & Campbell, 1992), espe-
cially when traits with a rather low level of “visibility”—such as
depression and anxiety—are considered (e.g., Funder, 1995). In
such cases, low convergent validity is not unusual. With regard to
the low level of discriminant validity, one must keep in mind that
depression and anxiety represent two rather closely related con-
cepts for which high correlations must be expected.

Structural Model: Prediction by Sex

To illustrate the use of covariates, we estimated an extended
model in which the variable sex (dummy coded with 0 � boy, 1 �
girl) was used as a predictor variable for all latent factors. The
extended model also fit the data well, 	2(164) � 162.66, p � .52;
RMSEA � .000; CFI � 1.000. Because we had no specific
hypotheses and because there were 12 regression paths of interest
(we did not attempt to interpret paths between sex and the IS
factors), we used two-tailed z tests in conjunction with a
Bonferroni-adjusted alpha level of .05/12 � .004 to identify sig-
nificant relations with sex.

In the state version, sex was a significant predictor of all three
anxiety self-report state factors (T1–T3; standardized path coeffi-
cients � � .22, .26, .27; SEs � .03, .03, .04; z scores � 6.63, 8.34,
7.67; ps 
 .001, respectively), indicating a sex difference in
self-reported anxiety. Girls tended to report more anxiety than did
boys. Interestingly, this sex difference is not evident on the basis
of the parent reports. All paths from sex to the parent report state
factors are close to zero (range � –.10 to .003) and not signifi-
cantly different from zero according to the Bonferroni-adjusted
alpha level.

For self-reported depression, a similar trend emerged (girls were
somewhat more likely to be depressed), but the coefficients were
smaller and significant only at T3 (� � .16, SE � .04; z � 3.69,
p 
 .001). Latent change in depression and anxiety was not related
to sex.

Discussion

Multimethod measurement is routinely used by many develop-
mental psychology researchers. In this article, we have discussed
an SEM approach that is useful to study change in longitudinal
MTMM studies. In the final section of this article, we summarize
advantages and limitations, provide guidelines for applied re-
searchers, and show links to other models for MTMM-MO data.

Advantages

Why should a researcher prefer the present approach to conven-
tional data analytic strategies for analyzing MTMM-MO data? The

main advantage is that using SEM allows us to formulate and test
a model for the entire data structure. At the same time, SEM allows
us to take measurement error into account. As a consequence, we
obtain more reliable estimates of convergent validity, discriminant
validity, and stability because the relevant correlation coefficients
are corrected for measurement error.

In addition, we can use the model to study latent change for
different methods simultaneously and to test important assump-
tions such as, for instance, the assumption of measurement invari-
ance over time. Furthermore, we can assess important properties of
the measures such as convergent validity, discriminant validity,
indicator-specificity, and reliability. Studying the convergent va-
lidity of change is very important as different methods may lead to
different conclusions about change. For example, in the present
application, we found that self- and parent reports of depression
and anxiety showed poor convergent validity of change—with
respect to both, interindividual differences in change and mean
change over time.

A very useful feature of the multimethod change model is that
it provides a latent MTMM-MO correlation matrix. This matrix is
in line with Campbell and Fiske’s (1959) MTMM matrix, but it has
the important advantage that the correlations are estimated among
latent factors and thus are corrected for measurement error. The
latent MTMM-MO matrix available in the LS version of the model
allows quantifying the convergent and discriminant validity as
well as the stability of constructs. The MTMM-MO matrix ob-
tained from the LD version allows researchers to apply Campbell
and Fiske’s criteria for convergent and discriminant validity to the
measurement of change.

Another advantage of the SEM approach is its flexibility. For
example, the multimethod change model can be used to study
change with respect to a baseline measurement occasion or be-
tween adjacent measurement occasions (Steyer et al., 1997, 2000).
In addition, the model can easily be expanded to include predic-
tors, outcomes, or covariates of the latent factors already in the
model. In this way, we can, for example, relate latent change in
one construct to change in other constructs. We can also include
predictor variables to explain why some individuals change more
than others or to study the causes of low convergent validity of
different methods.

To investigate why methods show low convergent validity, we
can test whether outcome variables are differentially related to
change variables on the basis of different methods (convergent
validity of prediction). For instance, in the present reanalysis, we
identified sex as a significant predictor of anxiety states as mea-
sured by self-report (there was a tendency for girls to have higher
latent anxiety scores) but not of any of the parent report states or
any change scores. As noted by an anonymous reviewer of this
article, this might either indicate that the gender differences rep-
resent a method artifact of the self-report method or that parents
are insensitive to gender differences in anxiety.

Limitations

Sample size. The model presented here requires relatively
large samples. We encourage researchers who are in doubt as to
whether their sample size is sufficient to conduct an application-
oriented simulation study (Bandalos, 2006; Paxton, Curran, Bol-
len, Kirby, & Chen, 2001). B. O. Muthén and Muthén (2002)
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discussed how such a simulation can easily be implemented in the
Mplus program.

Number of time points. Although the model presented here
can in principle be applied to any number of time points, readers
should be aware of a potential limitation that emerges when only
two time points are used. This limitation has to do with the
specification of IS factors to capture IS effects. When only two
occasions are used, identification and estimation problems (e.g.,
improper solutions with out-of-range parameter estimates) occur
more frequently (see Ciesla, Cole, & Steiger, 2007). The problems
are often related to the IS factors, whose identification status can
be deficient when there are only two time points (see our discus-
sion of remedies in this case above).

Also, models with IS factors may not fit well if IS effects are not
unidimensional. For example, residual covariances among indica-
tors that are due to IS effects might follow an autoregressive
structure rather than the unidimensional (one-factor) structure im-
plied by the model with IS factors. With more than three time
points, deviations from unidimensionality would be indicated by a
lack of fit.

Another problem related to IS effects that does not depend on
the number of time points occurs if these effects account for a large
portion (say more than 20–30%) of the variance of the indicators.
This would indicate that the indicators are rather heterogeneous
and mirror distinct facets of a construct. The results obtained from
the structural model (e.g., the MTMM-MO matrix or correlations
with covariates) might then strongly depend on the choice of the
reference indicators for which no IS factors are specified.

The best way to avoid all these problems is to identify and select
homogeneous indicators for each construct. For homogenous in-
dicators, no IS factors are needed, and a less complicated version
of the model without these factors can be used. If this is not
possible and if IS effects do not follow a unidimensional structure,
then the use of a CU approach (e.g., Cole & Maxwell, 2003), in
which the residual variables for the same indicators are allowed to
correlate over time, is an appropriate alternative modeling strategy.

If IS factors account for a large portion of the indicator variance,
researchers should conduct sensitive analyses using different ref-
erence indicators. If the parameter estimates for the structural
model differ significantly for different reference indicators, then it
is important to carefully select the reference indicator on the basis
of substantive considerations: Which indicator can be seen as the
“gold standard” that best represents the construct?

Measurement invariance. A requirement for the proper in-
terpretation of the LD factors is that the measurement model for
each construct is invariant over time. At least strong factorial
invariance (time-invariant intercepts and factor loadings) is re-
quired to ensure that model parameters related to the LD factors
are interpretable. As we showed above, this assumption is testable,
and in the present application, it was not rejected by the goodness-
of-fit criteria. If measurement invariance were not tenable, the
interpretation of the LD factors would be compromised. In some
cases, however, researchers will be able to establish partial mea-
surement invariance (Byrne et al., 1989). As mentioned above,
partial measurement invariance means that invariance is tenable at
least for some indicators of a construct, a condition that can
re-enable judicious interpretation.

Links to Other Models

Finally, we think that it is useful to point out some links to other
models for analyzing MTMM-MO data. In Cole and Maxwell’s
(2003) CU approach, three types of shared method variance can be
represented by correlations among residual variables (“unique-
nesses”): (a) within-wave, cross-construct CUs for indicators per-
taining to the same method mirror method effects on a given time
point; (b) cross-wave, within-construct CUs for the same indicator
capture method variance caused by stable IS effects; and (c)
cross-wave, cross-construct CUs may be admitted to account for
additional effects due to the same method.

Cole and Maxwell’s (2003) approach of modeling different
types of shared method effects through residual correlations par-
allels Kenny’s (1976) correlated trait-CU model for cross-sectional
MTMM data (see also Lance et al., 2002). The advantage of Cole
and Maxwell’s model is that method and error effects are taken
into account so that structural (e.g., mediational) hypotheses can be
more accurately tested.

On the other hand, the CU approach has a number of limitations:
(a) many uniqueness correlations need to be estimated in designs
with many indicators, constructs, methods, and time points; (b)
random measurement error cannot be separated from IS variance
and shared method variance leading to an underestimation of the
reliabilities of the measures; and (c) variance components due to
construct, method, indicator-specificity, and error are not avail-
able.

A model that overcomes some of the limitations of the CU
approach is Burns et al.’s (2003; see also Burns & Haynes, 2006)
multi-occasion extension of the CT-CM model (Marsh, 1989;
Marsh & Bailey, 1991; Marsh & Grayson, 1995). Instead of
including various kinds of CUs, Burns et al.’s model uses
occasion-specific method factors to capture cross-sectional method
effects. The model represents an extension of the LS model with
one state factor for each construct and one method factor for each
method on each occasion of measurement.

Burns et al.’s (2003) approach allows separating occasion-
specific variance due to a construct from occasion-specific method
variance and error influences. Furthermore, different methods can
be correlated and external variables can be included to explain
method effects. A potential shortcoming is that this approach is
based on the cross-sectional CT-CM model and thus might be
prone to similar identification, estimation, and interpretation prob-
lems. Like Cole and Maxwell’s (2003) model, the model presented
by Burns et al. is a single indicator model. Hence, it cannot be used
to study construct-specific method effects.

Vautier et al. (2008) recently presented a true change model
with method effects. Their model is useful to deal with heteroge-
neous indicators in longitudinal studies. However, it is not specif-
ically designed to analyze MTMM-MO data. Vautier et al.’s model
includes only one indicator per CMOU, whereas the models dis-
cussed here are multiple indicator models. As a consequence,
Vautier et al.’s model assumes perfect temporal stability of method
effects and thus is not suitable for analyzing the convergent and
discriminant validity of change. In contrast, the models presented
here are specifically designed to deal with changes in all methods.
Note, however, that Vautier et al.’s model could be extended to a
multiple indicator model in which the assumption of perfect sta-
bility of method effects could be tested.
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Some research questions in developmental psychology are less
concerned with measuring change and are more concerned with
the assessment of situation-specific fluctuations around a stable
trait value. For example, a researcher might be primarily interested
in the degree to which situation-specific variables affect the mea-
surement of these constructs (e.g., Vautier, 2004). If the goal were
to separate stable from situation-specific components of variance
in a MTMM-MO study, the model proposed by Courvoisier et al.
(2008) can be applied. Courvoisier et al.’s model represents an
extension of the conventional LST model (Steyer, Schmitt, & Eid,
1999) to a multimethod LST model. A related approach has been
presented by Vautier (2004), who showed how method effects
caused by bipolar items can be studied in an extended LST model.

Readers might wonder how the LD approach discussed here
compares with latent growth curve modeling (LGCM; Bollen &
Curran, 2006; Duncan, Duncan, & Strycker, 2006). The difference
between LD models and LGCM is that LD models consider
change as such, whereas LGCM are concerned with a special
component of change (e.g., linear or curvilinear growth; Steyer et
al., 2000). In that sense, LD models are less restrictive than
LCGM, as the parameters of a LD model do not imply any specific
functional form of change but just consider “pure” change. As a
practical consequence, LD models may be used as alternative
models if LGCM do not fit because change does not follow a
simple pattern, such as, for example, straight line growth.

Conclusion

Using more than one method or source to assess the concepts of
interest in a study is highly recommended in all areas of psycho-
logical research (Eid & Diener, 2006). Multimethod assessment is
of particular importance to developmental psychology research,
given that the measurement of change is the focus of many studies.
With only a single method or source, it may not be possible to
draw valid conclusions about change. MTMM-MO studies enable
researchers to study the convergent and discriminant validity of
change. Therefore, we encourage developmental researchers to use
multiple constructs and multiple methods as well as sophisticated
methods of data analysis, such as SEM, not only in cross-sectional
investigations but also in longitudinal investigations.
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