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Growth mixture modeling with
non-normal distributions

Bengt Muthén+" and Tihomir Asparouhov

A limiting feature of previous work on growth mixture modeling is the assumption of normally distributed vari-
ables within each latent class. With strongly non-normal outcomes, this means that several latent classes are
required to capture the observed variable distributions. Being able to relax the assumption of within-class nor-
mality has the advantage that a non-normal observed distribution does not necessitate using more than one class
to fit the distribution. It is valuable to add parameters representing the skewness and the thickness of the tails.
A new growth mixture model of this kind is proposed drawing on recent work in a series of papers using the
skew-t distribution. The new method is illustrated using the longitudinal development of body mass index in two
data sets. The first data set is from the National Longitudinal Survey of Youth covering ages 12-23 years. Here,
the development is related to an antecedent measuring socioeconomic background. The second data set is from
the Framingham Heart Study covering ages 25-65 years. Here, the development is related to the concurrent event
of treatment for hypertension using a joint growth mixture-survival model. Copyright © 2014 John Wiley &
Sons, Ltd.
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1. Introduction

Growth mixture modeling combines the conventional Laird and Ware [1] random effects modeling with
latent trajectory classes as in finite mixture modeling; see, for example, [2]. Growth mixture modeling
was introduced in Verbeke and LeSaffre [3] and Muthén and Shedden [4] with related developments
in Nagin and Land [5] and Roeder et al. [6]. Following this, many extensions and applications have
been presented such as Lin et al. [7] considering prostate-specific antigen (PSA) biomarker trajectories
with irregularly scheduled observations, Lin et al. [8] adding joint estimation of survival with prostate
cancer, Muthén and Brown [9] considering causal inference in randomized trials of antidepressants with
placebo effects, Muthén and Asparouhov [10] adding general multilevel growth mixture modeling, and
Muthén et al. [11] modeling non-ignorable dropout in antidepressant trials. For overviews of methods
with illustrations by a variety of applications, see [10, 12].

A limiting feature of the aforementioned approaches is the assumption of normally distributed variables
within each latent class. With strongly non-normal outcomes, this means that several latent classes are
required to capture the observed variable distributions. Consider a typical example involving body mass
index (BMI) development over age. BMI is defined as kg/m?, where the normal range is 18 < BMI < 25,
overweight 25 < BMI < 30, and obese > 30. The distribution of BMI at age 15 years for men is given
in Figure 1 using data from the National Longitudinal Survey of Youth (NLSY) with n = 3194 showing
skewness of 1.5 and kurtosis of 3.1. The figure also shows the fitting of a mixture of normal distributions.
The left part of Table I shows the loglikelihood and BIC values for 14 classes using a normal distribution.
Although the four-class solution has a smaller (better) BIC than three classes, one class has less than
1%, and a three-class solution is therefore chosen. The mixture of the three classes is shown by the black
curve in Figure 1 and is seen to fit the observed distribution well.

Being able to relax the assumption of within-class normality has the advantage that a non-normal
observed distribution does not require using more than one class to fit the distribution. For example, with
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Figure 1. Observed and three-class normal fitted distribution of body mass index among 15-year-old men in the
National Longitudinal Survey of Youth.

Table I. Results of fitting mixtures of normal and non-normals for BMI among 15-year old
men in the NLSY.
Normal Skew-t

No. classes  Loglikelihood No. Par’s BIC Loglikelihood  No. Par’s BIC
1 -9321 2 18,658 —8795 4 17,623
2 —8828 5 17,697 —8783 9 17,638
3 —8786 8 17,638

4 —8774 11 17,637

BMI, body mass index; NLSY, National Longitudinal Survey of Youth.

Table II. NLSY data on BMI for ages 12-23 years.

Accelerated longitudinal design - NLSY97
12 13 14 15 16 17 18 19 20 21 22 23

1997 1165 1715 1847 1868 1709 613

1998 104 1592 1671 1727 1739 1400 106

1999 108 1659 1625 1721 1614 1370 65

2000 57 1553 1656 1649 1597 1390 132

2001 66 1543 1615 1602 1582 1324 109

2002 1614 1587 1643 1582 1324 106
2003 112 1497 1600 1582 1564 1283

Totals 1165 1819 3547 5255 6680 7272 8004 7759 6280 4620 2997 1389

NLSY, National Longitudinal Survey of Youth; BMI, body mass index.
Source: Nonnemaker et al. (2009). Youth BMI trajectories: Evidence from the NLSY97, obesity

a strongly skewed distribution, it is generally not of interest to interpret classes that are formed simply
to match the long tail. This relates to the classic debate of whether or not the classes in Figure 1 have
substantive meaning or should merely be seen as a curve-fitting device, which started with Pearson [13],
continued with the Platt—Pickering hypertension debate in the 60s (McLachlan & Peel, pp. 14-17 [2]),
and is still a topic of interest; see, for example, [14, 15]. From this perspective, it is valuable to have
the option of fitting a model that allows within-class non-normality, adding parameters representing the
skewness and the thickness of the tails. The results of fitting such a model to the BMI data are shown
in the right part of Table I, where it is seen that a single-class model obtains the best BIC. Although
having a somewhat lower loglikelihood value than the three-class normal model, this single-class model
is more parsimonious using only four parameters instead of eight (a three-class normal model with equal
variances has a worse BIC): a mean, a variance, a skew parameter, and a degrees of freedom parameter.
This model is discussed in Section 2. The model draws on recent work in a series of papers that use the
skew-t distribution for ‘mixtures of factor analyzers’, that is, mixture models where an exploratory factor
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analysis model is applied to reduce the number of parameters in the class-specific covariance matrices;
see, for example, Lin et al. [16] and [17]. In contrast, the skew-t growth mixture model proposed here
is more closely related to confirmatory factor analysis modeling, where the class-specific covariance
matrices are more parsimonious in line with conventional random effects growth modeling.

This paper illustrates the new method using the longitudinal development of BMI using two data sets.
First, the NLSY data shown in Table II are used, spanning ages 12—-23 years. Here, the BMI development
is related to an antecedent measuring socioeconomic background. Second, data from the Framingham
Heart Study are used for ages 25—-65 years. Here, the BMI development is related to concurrent treatment
for hypertension. For these age ranges, a quadratic growth shape has been found suitable, and Section 2
describes such a growth mixture model. The model is subsequently expanded to jointly estimate survival
related to the latent trajectory classes.

2. Growth mixture modeling with non-normal random effects

Consider the quadratic random effect growth mixture model with outcome Y;, for individual i at time # in
latent class c of the latent class variable C,

Yilc=c = noi + My (a, — ag) + my; (a, — ao) + €, (1

where q, are age-related time scores (f = 1,2, ... T) centered at age a,), the random intercepts and random
slopes are expressed as

Milee = @ + 7, X+ & @)

wherej =0, 1,2, X, is a q-dimensional vector of time-invariant covariates, and the latent class probability
is expressed as the multinomial logistic regression

exp(a. + b X))
Y expla, +b! X)) '

P(C; = c|X)) = 3)

The residuals € and ¢ have zero means and within-class covariance matrices to be defined later. So far,
the literature on growth mixture modeling has been using a normal within-class distribution for both e
and ¢, a specification that has limitations as mentioned in the introduction. For reasons to be described,
it is desirable with growth modeling to let the non-normality in the observed outcomes be a function
of the non-normality of the random effect distribution. In this paper, a normal distribution is therefore
maintained for e, while a skew-t distribution is applied to { = (¢, ¢; &,). Using the notation for the
restricted multivariate skew-t distribution given in [17],

€Ci=c ~rMST(0,¥,,65,,v,), 4)

where in this application 0 is the 3 X 1 vector of zero means for ¢, ¥, is the 3 X 3 within-class covariance
matrix for §, 6, is the 3 X 1 vector of skew parameters for latent class ¢, and v, is a degree of freedom
parameter. The restricted multivariate skew-t distribution can be characterized as follows.

Considering a p-dimensional vector V, the restricted multivariate skew t-distribution rMST (u, X, 8, v)
has the stochastic representation

V=pu+6|Uyl +U,, ®)

where U is p-dimensional vector with a multivariate t-distribution with zero mean, covariance matrix X,
and degree of freedom parameter v. Here, U, is a one-dimensional variable with a standard t-distribution
with mean 0, variance parameter 1, and degrees of freedom parameter v, where |U,| gives rise to a half-
t distribution. The term & |U,| can be thought of as a univariate skewness factor with factor loadings
represented by the skew parameters of & where the skewness is identified as that part of the V distri-
bution not captured by the symmetric part U,. The mean and variance of V for the skew t-distribution
rMST(u, %, 8, v) can be computed as follows:

EVy=p+6—>L. 1Y ©6)

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1041-1058




Statistics

B. MUTHEN AND T. ASPAROUHOV

2

Y (=+668)- F<%) Y 55 (7
v—2 F(%) T

The univariate skewness for a single V variable can be computed as follows:

Cr(2) ()] ()

-6 — -3 v ®)

EoE R ey e

where v = Var(V) is given in the previous formula and the ¢ parameter is the diagonal element of X
corresponding to the univariate variable. These formulas show that the 6 and v parameters affect all
three quantities: the mean, the variance, and the skew. The parameter y affects only the mean, and the ¢
parameters affect the variance covariance and the skew.

It can be shown (see Asparouhov & Muthén [18]) that this specification gives the distribution of the
vector of observations for individual i at the T time points ¥; = (¥}, ..., Y, ..., Y;7)’ conditional on X
and latent class ¢

Var(V) =

Skew(V) = v-3/25\/Z (26 + 30)
T

Y|X ~ rMST(u,, X, 8y, V,), )
where
H.=A(a.+T X), (10)
T.=AY.A+0, (1)
8y, = A8, (12)

where for the quadratic growth model of (1)

1 a —ay, (a;—ay)?

1 ay—ay, (a,— a0)2

A= , 13)

: : ,
L ar_y —ay (ar_y —ag)

the elements of e, and I', are shown in (2) and ©, is the within-class covariance matrix for € =
(e, €, ..., €7), typically specified as diagonal. This is referred to as a wide format, single-level approach
to growth modeling, where elements of A can also be estimated to provide a flexible growth function.
With this skew-t growth mixture model specification, the non-normality of the outcomes Y is generated
by the non-normality of the random effects. The outcome means are a function of the means of the random
effects, which as shown in (6) involves the skew and degrees of freedom parameters.

An alternative specification of a non-normal growth mixture model is to let € assume a skew-t distribu-
tion while keeping ¢ normal (skew-t for both is not identified). This type of model was recently proposed
in Lu and Huang [19]. In this case, however, the skew parameters of 6 would have to be held equal across
time because otherwise, the means for ¥ would not follow the structure imposed by the random effect
means but vary also as a function of the skew and degrees of freedom parameters for €. This time invari-
ance of the skewness is specified in the analysis of Lu and Huang [19]. Time-invariant skewness in the
residuals is a special case of the model proposed earlier as it is the same as applying the skewness only
to the random intercept. In the BMI data to be analyzed here, however, it is necessary to allow skewness
also in the random slopes to capture increasing skewness in BMI over time.

The skew-t distribution encompasses several special cases. Fixing the § skewness parameters to zero
gives the multivariate t-distribution, fixing the v degrees of freedom parameters at a large value such as
10,000 gives a skew-normal distribution, see [17], fixing the skewness parameters to zero and the degrees
of freedom parameters to a large value gives the normal distribution.

e ___________________________________________________________________________________________|
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A survival component can be added to the growth mixture model as follows. Using the standard Cox
proportional hazard model, the hazard function in class c is given by

h.(t) = h()Exp(a,), (14)

where h(t) is the baseline hazard function and Exp(a,) represents the level of proportionality for
the hazard functions between the classes and also captures the effect of the latent class variable
C on the survival variable. The larger the coefficient a, is, the larger the hazard and the worse the
survival is. The baseline hazard function /A(¢) is a non-parametric function as in the standard Cox regres-
sion model. The baseline hazard function is invariant across the classes and thus the class effect is captured
entirely by the coefficients . For identification purposes, &, = 0 in the last class.

2.1. Estimation

The models are estimated by maximum likelihood. Consider the estimation for a single class model. The
log-likelihood can be written explicitly and maximized directly. Using equation (9), the likelihood for a
particular observation is given by

L= 2lp,v(Y’ H, Q)TI(YI/)W v +p)’ (15)
where

Q=3+66, (16)
dY)=(Y - w'Q (Y - p, (17)
q=258"Q (Y- p, (18)

_ v+p
= q\/—v+d(Y), (19)
P2=1-8"Q7's, (20)

and 7, (Y, p, Q) is the multivariate t-distribution density function given by

()
(Y. 1. Q) = @1
(zv)PI2T (g ) [1 + d(Y)/v]0+0)/2

and T (z, v) is the standard univariate t-distribution function with v degrees of freedom.

The derivatives of the log-likelihood can be computed and thus the log-likelihood can be maximized
with a general maximization algorithm such as the quasi-Newton optimization method. The only deriva-
tive that is more complex is the partial derivative of T (x, v) with respect to v. For this derivative, the
method developed in Boik and Robison—Cox [20] is used. Direct maximization appears to work well and
is relatively fast. The standard error (SE) estimates are based on the inverse of the information matrix
as usual with the maximum likelihood (ML) estimator and robust SE can also be computed using the
sandwich estimator.

For the estimation of the general mixture model, the standard EM-algorithm is used as in [4], which
reduces the optimization of the mixture log-likelihood to the maximization of the log-likelihood of the
single-class model at each expectation-maximization (EM) iteration.

Adding the survival component to the growth mixture model, the estimation issues are as follows. The
cumulative hazard H_(¢) function at time ¢ represents the total hazard an individual is exposed to up to
time ¢, given that the individual is in class ¢

H.(t) = / h (x)dx = Exp(a )H(1), 22)
0

- _______________________________________________________________________________________________|
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where H(t) is the cumulative baseline hazard

H(@) = / h(x)dx. (23)
0

The survival function in class c is the probability that the survival variable T is greater than ¢, given
that the individual belongs to class ¢

S(tlc) = P(T > t|C = c¢) = Exp(—H (1)) = Exp(—Exp(a,)H(?)). 24)
The likelihood for the survival variable T is
P(T|C = ¢) = (W(T)Exp(a,.)'~VS(T), (25)

where 6 = 1 if the variable T is censored and zero otherwise.
The likelihood for the joint model for Y and T can be expressed as

PY,T|C) = ZP(C =c)P(Y|C =)P(T|C = o), (26)

where P(Y|C = c) is obtained from the growth mixture model. The estimation of this joint model is
based on the profile likelihood approach; see [21-23]. With this approach, the baseline hazard is fully
saturated, and the baseline hazard parameters are treated as auxiliary parameters. The profile likelihood
is treated as a regular likelihood and is explicitly maximized.

All computations in this paper are carried out by Mplus Version 7.2 (Muthén & Muthén [24]). The
Mplus software implementation is quite general, also in the sense that every parameter can be fixed, free,
held equal to other parameters, or constrained in specific ways.

3. Growth mixture modeling of body mass index from the National Longitudinal
Survey of Youth

This section applies the skew-t quadratic growth mixture model to the BMI development over the ages
12-23 years using the NLSY data shown in Table II. As discussed in, for example, Nonnemaker et al. [25],
large differences in BMI are observed across gender and ethnicity subgroups, and the current analysis
is restricted to black women (n = 1160). Several different within-class distributions are used in the
modeling: normal, t, skew-normal, skew-t with equal skewnesses, and skew-t with unequal skewnesses.
The latter two models differ in letting the skewness parameter be applied to the intercept random effect
only or to both intercept and slopes. The parameterization is as follows for the two key distributions, the
normal and the skew-t with unequal skews. For each class, the normal model uses three random effect
means, six random effects variances/covariances, and one residual variance held equal over time points.
With two classes, this results in 21 parameters, including one class probability parameter. The skew-t
unequal model uses in addition three random effect skewness parameters for each class and one degrees
of freedom parameter for each class. With two classes, this results in 29 parameters, including one class
probability parameter.

Table III shows the results of fitting the five different within-class distributions for varying number of
latent classes. It is seen from the BIC values that four classes are needed with the normal distribution,
three are needed with the t-distribution and the skew-normal distribution, and two are needed with the
two skew-t distributions. The BIC for the t-distribution improves on the BIC for the normal. The skew-
normal BIC does not improve on the t-distribution, while the BIC of the skew-t distributions do. Among
the two skew-t models, allowing for skewness not only for the intercept but also for the two slopes is
preferable according to BIC. It is noteworthy that the four-class normal model has considerably more
parameters and a worse BIC than both of the two-class skew-t models.

The estimated mean growth curves for the two classes of the preferred skew-t solution are shown at the
top of in Figure 2. While starting at the same BMI level at age 12 years, one class of 54% shows a normal

e ___________________________________________________________________________________________|
*Complex survey features of stratification, weights, and clustering are also handled in Mplus.
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Table III. Results of fitting normal, t, skew-normal, and skew-t growth mixture models for BMI in the
NLSY ages 12-23 years for black women.

Normal T
No. classes  Loglikelihood No. Par’s BIC Loglikelihood No. Par’s BIC
1 —17,049 10 34,168 —15,846 11 31,770
2 —15,768 21 31,684 —15,610 23 31,382
3 —15,580 32 31,386 —15,527 35 31,302
4 —-15,505 43 31,314 —15,499 47 31,329
5 —-15,479 54 31,338 —15,484 59 31,384
Skew-normal Skew-t, equal skew

No. classes  Loglikelihood  No. Par’s BIC Loglikelihood  No. Par’s BIC
1 —16,874 13 33,840 —15,664 12 31412
2 —15,708 27 31,606 —15,535 25 31,247
3 —15,608 41 31,506 —15,526 38 31,320
4 —15,751 55 31,889

Skew-t, unequal skew

No. classes  Loglikelihood No. Par’s BIC

1 —15,637 14 31,372
2 -15,510 29 31,225
3 —15,480 44 31,270

BMI, body mass index; NLSY, National Longitudinal Survey of Youth.

development, whereas the other class of 46% shows an escalating development into the overweight and
obese range. The four-class normal solution at the bottom shows the need for extra classes to capture
the strong skewness when within-class normality is specified. The top two classes sum to 40%, which is
similar to the 46% of the escalating class of the two-class skew-t solution. Combining the top two and
bottom two classes, however, does not produce two classes with the same starting point at age 12 years
as is seen for the skew-t solution.

Because of the skewness of the observed BMI distribution, it is of interest to present not only the
estimated mean at each age but also different estimated percentiles. Figure 3 uses the percentiles of the
estimated skew-t density to show that the skewness increases with age.

Figure 4 shows the estimated random intercept distribution for the normally developing class (see top
figure) and the escalating class (bottom figure) of the skew-t solution. Given the choice of time scores, the
random intercept corresponds to the systematic part of the development at age 17 years. It is seen that the
intercept distribution for the escalating class is characterized as an approximate half-t distribution with a
low frequency for BMI values less than 22. Recalling the stochastic representation in (5), this is achieved
by the symmetric part of the random intercept distribution having zero variance. In contrast, the normal
class has a large number with BMI less than 22, while still showing a long right tail.

The estimated skew and degrees of freedom parameters for the intercept (i), linear slope (s), and
quadratic slope (g) are shown in Table IV. It is seen that all three random effects have significant skew
parameters in each of the classes. The bottom of the table also gives the estimated skewness in each of
the classes for these three random effects using (8).

3.1. Adding a covariate and comparing with the normal solution

To gain further understanding of the growth mixture solution, covariates that predict class membership
can be added in line with (3). Such covariates may also have a direct influence on the random effects as in
(2). Mother’s education is an especially powerful predictor of BMI, presumably reflecting both economic
circumstances and eating habits (mother’s education is scored as 1: none, 2: GED, 3: high school diploma,
4: associate/junior college, 5: bachelor’s degree, 6: master’s degree, 7: PhD, 8: professional degree).
Adding this covariate to the growth mixture model, two classes are again preferred by BIC. Appendix A
shows the Mplus input for this model. It is also of interest to compare the two-class skew-t solution with
a normal solution for which four classes are again preferred by BIC.

- _______________________________________________________________________________________________|
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Figure 2. Estimated mean curves for two-class skew-t (top) and four-class normal (bottom) growth mixture
modeling of body mass index in the National Longitudinal Survey of Youth ages 12-23 years for black women.
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Figure 3. Estimated percentiles for the escalating class of body mass index in the National Longitudinal Survey
of Youth ages 12-23 years for black women

Figure 5 shows the estimated multinomial logistic regression curves for the two-class skew-t solution
(top) and the four-class normal solution (bottom). The corresponding mean curves for the two solutions
were given in Figure 2. For the two-class skew-t solution, the probability of membership in the escalat-
ing class is strongly decreased by increasing mother’s education. The four-class normal solution shows
two classes giving such a decrease while one class shows no relationship with mother’s education (in a

e ___________________________________________________________________________________________|
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Figure 4. Random effect distributions for the normal and escalating trajectory classes using a skew-t growth
mixture model of body mass index in the National Longitudinal Survey of Youth ages 12-23 years for
black women.

three-class normal solution, the class with no relationship disappears while the curves for the other three
classes remain the same). It is the highest class at the bottom of Figure 2 for which Figure 5 shows the
less steep decrease in membership probability with increasing mother’s education. Further studies using
additional information would be needed to understand if this class is merely a function of the strong skew-
ness or has a substantive interpretation, for example, in terms of reflecting genetic susceptibility where
mother’s education is a weaker predictor. The two-class skew-t solution is, however, clearly the more
parsimonious model.

4. Growth mixture modeling of body mass index in the Framingham data

The classic Framingham Heart Study (Dawber et al. [26]) provides a second longitudinal data set
with which to explore growth mixture modeling of BMI. With its focus on cardiovascular disease, the
Framingham data contain information on treatment for hypertension, and it is of interest to relate this to
the BMI trajectories. The current analyses use a subset of the data for women ages 25-65 years, result-
ing in a sample size of n = 854. Four repeated measures are available with individually varying ages
of observation.

To capture the individually varying ages of observation, (1) in Section 2 model is modified as

Yilc=c = noi + 1y (@, — ag) + 1 (a;, — ag)’ + € (27

where the random effects specification in (2) is applied to the random intercept #;, but for simplicity
zero, within-class variation is specified for 7, and #,. In this way, the time scores a;, — a, and (a;, — a,)*
are no longer treated as fixed parameters of A but as variables.

- _______________________________________________________________________________________________|
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Table IV. Estimated skew and degrees of free-
dom parameters for the i, s, and q random effects
of the two-class skew-t growth mixture model
for BMI in the NLSY ages 12-23 years for
black women.

Skew and Df parameters

Normal class

Estimate SE Est/SE
i 4.020 0.279 14.408
S -0.875 0.381 —-2.296
q 3.399 1.281 2.653
df 3.855 0.562 6.859

Escalating class

Estimate SE Est/SE
i 6.236 0.343 18.175
S 3.361 0.542 6.204
q —2.746 1.399 -1.963
df 3.516 0.403 8.732

Estimated skewness for the random effects

i S q
Normal class  3.967 —0.989 1.422
Escalating class 6.653 3.437 —1.588
BMI, body mass index; NLSY, National Longitudinal

Survey of Youth.

The top of Table V shows the results of fitting both normal and skew-t growth mixture models. For
the normal case, BIC does not provide a guide in selecting the number of classes, but decreases for 1-5
classes. For skew-t, BIC points to three classes.

The estimated mean curves for the three-class skew-t growth mixture model are shown in Figure 6. In
this age range, two escalating classes are found with 13% and 33% of the subjects, respectively.

4.1. Framingham trajectory classes related to hypertension treatment: joint growth mixture and
survival analysis

Elevated BMI is associated with increased risk of developing heart disease, high blood pressure, stroke,
and diabetes. Framingham data contain data on blood pressure treatment at each measurement occasion.
A survival component for the first treatment can be added to the growth mixture model with survival as
a function of trajectory class. A continuous-time survival approach is used here based on Cox regression
where the latent class variable C is used as a predictor for the survival variable; see [22,27].

Define the time variable T as the age when blood pressure treatment is administered for the first time.
If no such treatment is observed by the end of the fourth wave of the survey, the variable T is considered
censored at the time the last observation is recorded. The latent class variable C explains the correlation
between the BMI developmental trajectory and the blood pressure treatment variable and can be used to
evaluate the effect of the BMI trajectory on the risk of developing high blood pressure.

The bottom of Table V shows the fitting of normal and skew-t models for the joint growth mixture-
survival analysis. For the skew-t model, three classes are preferred by BIC as for the growth mix-
ture model alone, whereas for the normal model, BIC again does not give guidance on the number
of classes.

The three-class skew-t model for the joint growth mixture-survival analysis gives almost the same
class percentages as in the previous growth mixture analysis: 12%, 35%, and 53% for the high, middle,
and low BMI trajectory class, respectively. The estimated values of a, in the survival model of (14)
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Figure 5. Relating latent class membership to mother’s education for two-class skew-t (top) and four-class nor-

mal (bottom) solutions for body mass index in

the National Longitudinal Survey of Youth ages 12-23 years for
black women.

Table V. Results of fitting normal and skew-t growth mixture and survival models for BMI
in the Framingham data.
Growth only
Normal Skew-t
No. classes  Loglikelihood No. Par’s BIC Loglikelihood  No. Par’s BIC
1 —8252 8 16,557 -7771 10 15,611
2 —7954 13 15,995 -7606 17 15,327
3 -7875 18 15,871 -7567 24 15,296
4 -7787 23 15,730 —7547 31 15,304
5 —7743 28 15,674
Growth and survival
Normal Skew-t
No. classes  Loglikelihood No. Par’s BIC Loglikelihood  No. Par’s BIC
1 -10,373 8 20,801 —-9867 10 19,803
2 —10,067 14 20,110 —-9638 18 19,401
3 -9912 20 19,961 -9596 26 19,370
4 —9820 26 19,820 -9569 34 19,372
5 -9797 32 19,814

BMI, body mass index.

Copyright © 2014 John Wiley & Sons, Ltd.
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Figure 6. Estimated mean curves for the three-class skew-t growth mixture model for body mass index in the
Framingham data.
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Figure 7. Estimated hypertension survival curves for the joint three-class skew-t growth mixture-survival model
for BMI in the Framingham data.
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Figure 8. Estimated hypertension survival curves for the joint three- and four-class normal growth mixture-
survival models for BMI in the Framingham data.

are significantly larger for the two highest BMI trajectory classes than the zero value of the reference
class of normal development, and the a, estimates of the two highest classes are significantly differ-
ent from each other. The estimated survival curves for the three BMI trajectory classes are plotted in
Figure 7 as a function of age ranging from 25 to 65 years. It is seen that the three survival curves
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are ordered in the same way as the BMI trajectory classes, with lowest hypertension treatment sur-
vival rate for the highest BMI trajectory class. The age of median survival is estimated as about 6 years
lower for subjects in the middle BMI trajectory class as compared to subjects in the lowest BMI
trajectory class.

For the normal distribution version of the growth mixture-survival analysis, BIC does not give guidance
on the number of classes, but BIC keeps decreasing up to the five classes attempted. The survival curves
for the three-class and four-class models are shown in Figure 8. Going from the lowest to the highest curve
for the three-class model, the class percentages are 6%, 33%, and 61%. The two bottom curves, corre-
sponding to the two highest BMI trajectories, do not, however, have significantly different a, estimates as
is the case for the skew-t curves. Considering four classes, the class percentages are 4%, 6%, 26%, and 64%
going from the lowest to the highest curve. The three bottom curves of the four-class model are not signifi-
cantly different from each other. A conjecture is that the tendency of the normal model to add small classes
to fit the tail of strongly skewed outcomes impedes its ability to fit substantively meaningful classes in
this example.

5. Simulations

To further illustrate the proposed skew-t growth mixture modeling, a small Monte Carlo simulation study
is carried out. Data are generated by a two-class skew-t growth mixture model and analyzed in several
different ways: Using a normal distribution, using a skew-t distribution with equal skews, and using a
skew-t distribution with unequal skews. The focus is on the choice of number of classes using BIC as
well as bias in the parameter estimates.

Data are generated by a growth mixture model with linear growth and eight time points using
parameter values given in the Mplus Monte Carlo simulation input in Appendix C. Table VI shows
the estimates for key parameters using n = 2000 when analyzed by the same model that gener-
ated the data and allowing class-varying skew parameters for both the intercept and slope random
effects, labeled i and s, respectively. Five hundred replications are used, and the results shown
are based on the 498 replications that converged. Biases are small, standard deviations and aver-
age SE agree well, and the 95% coverage is good. Results for n = 1000, not shown here, are
also good.

Table VII refers to analyses based on the same two-class skew-t growth mixture model as afore-
mentioned. The top of Table VII shows the percentage of the replications where a certain number
of classes is favored by BIC. Three different distributions are used for 1-3 latent classes. BIC for
the normal distribution overestimates the number of classes, pointing to three classes 88% of the
time. For the skew-t distribution assuming zero skew for the slope, that is, equal skews for the out-
comes over time, BIC incorrectly points to three classes 23% of the time. Using the correct model
allowing skew for both the intercept and slope, BIC points to the correct number of classes 100% of
the time.

Table VI. Monte Carlo simulation results for key estimates of a two-class
skew-t growth mixture model.
Parameter ~ Population value  Estimate ~ SD SE  95% coverage
Class 1
Mean i 4.00 4.00 0.14 0.15 0.95
Mean s 1.00 1.02 0.15 0.15 0.97
Skew i 2.00 1.98 0.18 0.19 0.96
Skew s 2.00 1.96 021 0.22 0.96
d.f. 5.00 5.08 0.50 0.53 0.94
Class 2
Mean i 0.00 0.01 0.15 0.15 0.94
Mean s 0.00 0.00 0.14 0.15 0.95
Skew i 2.00 1.99 0.36 0.37 0.92
Skew s 2.00 2.01 023 0.25 0.94
d.f. 5.00 5.05 0.50 0.52 0.94
Logit(c=1) 0.00 0.00 0.16 0.17 0.93

SD, standard deviations; SE, standard errors.
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Table VII. Monte Carlo simulation results when analyzing data generated by a two-class skew-t
growth mixture model and analyzed with different distributions and number of classes.

Percent preferred by BIC

Number of classes

Distribution 1 2 3
Normal 0 12 88
Skew-equal 0 77 23
Skew-unequal 0 100 0

Estimated logit (c = 1)

Distribution Population value Estimate SD SE  95% Coverage
Normal, 2¢ 0.00 —1.61" 1.01 0.37 0.00
Skew-equal, 2¢ 0.00 0.462 042 0.18 0.09
Skew-unequal, 2¢ 0.00 0.01 0.16 0.17 0.93
IP(c=1)=0.17
P(c=1)=0.61

The bottom of Table VII shows estimation results when two classes are chosen by the three different
distributions. The focus is on the key parameter of the logit corresponding to the probability of class 1.
It is noteworthy that assuming equal skews over time in the skew-t model gives a large overestimation,
where the population probability of 0.50 is estimated as 0.61. As expected, this misclassification also
leads to strong biases in other parameters.

6. Conclusions

The skew-t growth mixture model has several advantages over normal growth mixture modeling. It can
fit the data considerably better than normal mixtures. It can use a more parsimonious model. It can
reduce the risk of extracting latent classes that are merely due to non-normality of the outcomes. It
can check the stability/reproducibility of a normal mixture solution. It can describe the percentiles of
skewed distributions.

There are, however, several disadvantages with skew-t growth mixture modeling. It provides much
slower computations than normal mixtures especially for large sample sizes, given that computations
need to handle raw data in every step as opposed to using sufficient statistics®. It needs larger sam-
ples, where small class sizes can create problems, although successful analyses can be carried out at
n = 100 — 200. It needs more random starts than normal mixtures to replicate the best loglikelihood
given a typically less smooth likelihood function. It often leads to classification with lower entropy.
Furthermore, it needs continuous variables to provide enough information for the skew and degrees of
freedom parameters.

Apart from computational efficiency, other advantages of normal mixture modeling should not be
overlooked. Normal mixtures can carve out smaller subgroups in the sample that non-normal mixture
modeling might miss, such as tail subgroups with different behaviors. It can handle smaller class sizes,
it may be robust to mild degrees of non-normality, and it can be used as a starting point for non-normal
mixture modeling.

In this paper, the skew-t growth mixture model was extended to continuous-time survival analysis.
Because of the general implementation in the Mplus software, other extensions are available as well.
For example, a survival part can be used to model non-ignorable dropout as in [11], and categorical and
count variables can be included in the model with parameters varying as a function of the latent trajectory
classes for the continuous repeated measures.

e ___________________________________________________________________________________________|

8The National Longitudinal Survey of Youth four-class normal growth mixture model (GMM) used 6% of the time of the two-
class skew-t GMM, and the Framingham three-class normal GMM used 2% of the time of the three-class skew-t GMM. The
skew-t runs took 57 and 13 min, respectively, for the two data analyses. In all cases, 400 randomly perturbed starting values
were used.

e ___________________________________________________________________________________________|
Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1041-1058



Statistics
B. MUTHEN AND T. ASPAROUHOV

- _______________________________________________________________________________________________|
Appendix A

Mplus input for the two-class skew-t growth mixture model for BMI using the NLSY data is shown in
Table Al. In the second line of the MODEL command, the growth model uses i, s, and q to represent
the random effects of intercept, linear slope, and quadratic slope. The random effects influence the BMI
measures at ages 12-23 years with time centered at age 17 years. This is referred to as a wide format,
single-level approach to growth modeling. The latent class variable is referred to as ¢, and ¢, i, s, and q are
regressed on the mother’s education covariate. The i, s, and q covariance matrix is specified as different
in the two classes. The residual variances for the BMI outcomes are held equal across the ages but are
specified as different across the classes.

Table Al. Mplus input for the 2-class skew-t growth mixture model for BMI
related to mother’s education using the NLSY data.

DATA: FILE = nlsy97_clean.dat;

VARIABLE: NAMES =id gender age_1996 age_1997 racel bmil2 bmil3 bmil4
bmil5 bmil6 bmil7 bmil8 bmil9 bmi20 bmi21 bmi22 bmi23 black
hisp mixed c1 ¢2 ¢3 ¢c1_wom c2_wom c3_wom momed par_bmi
biol_bmi bio2_bmi bmi_par currsmkr97 bingedrnk97 mjuse97
cent_msa liv2prnts adopted income hhsize97;

USEVARIABLES = bmil2-bmi23 momed,;
USEOBSERVATIONS = gender EQ -1 AND black EQ 1;
MISSING ARE ALL (9999);
CLASSES = ¢(2);
ANALYSIS: TYPE = MIXTURE;
STARTS =400 80;
DISTRIBUTION = SKEWT;
ESTIMATOR = MLF;

MODEL.: %OVERALL%
isq|bmil2@-.5bmil3@-.4 bmil4@-.3 bmil5@-.2 bmil6@-.1
bmil7@0 bmil8@.1 bmi19@.2 bmi20@.3 bmi2l @ .4
bmi22@.5 bmi23@.6;
¢ ON momed;

i-q ON momed;
Yoc#1%

i-q;

i-q WITH i-q;
bmil2-bmi23 (1);
Joc#2%

i-g;

i-q WITH i-q;
bmil2-bmi23 (2);

OUTPUT: TECH1 TECH4 TECHS RESIDUAL;

PLOT: TYPE = PLOTS3;

SERIES = bmil2-bmi23(s);

BMI, body mass index; NLSY, National Longitudinal Survey of Youth.

Appendix B

Tables B1 and B2 show the Mplus input for the three-class skew-t joint growth mixture-survival modeling
of the Framingham data. The survival variable is referred to as t. The DEFINE command creates the age
variables on the right-hand side of (27). The MODEL command specifies the influence of the random
effect i on the BMI outcomes and how BMI is related to the age variables. The class-specific statements in
Table B2 specify class-varying i variance and means as well as class-varying effects of the age variables
on the BMI outcomes in line with (27). The coefficient a, in (14) is class varying as the default.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1041-1058




Statistics
B. MUTHEN AND T. ASPAROUHOV

Table B1. Mplus input for the three-class skew-t joint growth mixture-survival
modeling of the Framingham data.

DATA: FILE = survskew.dat;
VARIABLE: NAMES = bmil bmi3 bmi5 bmi7 htnrx1 htnrx3 htnrx5 htnrx7 agel
age3 age5 age7 TO ind t;
MISSING = all(999);
USEVARIABLES = bmil bmi3 bmi5 bmi7 T ind cagel cage3 cage5
cage7 cagelq cage3q cageSq cage7q;
SURVIVAL =t;
TIMECENSORED = IND (1 = NOT 0 = RIGHT);
CLASSES =c(3);
DEFINE: cagel = (agel - 50)/10;
cage3 = (age3 - 50)/10;
cage5 = (age5 - 50)/10;
cage7 = (age7 - 50)/10;
cagelq = cagel*cagel;
cage3q = cage3*cage3;
cage5q = cageS*cage5;
cage7q = cage7*cage7;
ANALYSIS: TYPE = MIXTURE;
DISTRIBUTION = SKEWT;
STARTS = 100 40;
MODEL: %OVERALL%
i BY bmil-bmi7@1;
bmil ON cagel;
bmi3 ON cage3;
bmi5 ON cage5;
bmi7 ON cage7;
bmil ON cagelq;
bmi3 ON cage3q;
bmi5 ON cage5q;
bmi7 ON cage7q;
[bmil-bmi7 @0];

Table B2. Mplus input for the three-class skew-t joint growth mixture-survival modeling of the
Framingham data, continued.

Yoc#1%

i

[il;

bmil ON cagel (1);
bmi3 ON cage3 (1);
bmi5 ON cage5 (1);
bmi7 ON cage7 (1);
bmil ON cagelq (2);
bmi3 ON cage3q (2);
bmi5 ON cage5q (2);
bmi7 ON cage7q (2);
YocH2%

i

[il;

bmil ON cagel (3);
bmi3 ON cage3 (3);
bmi5 ON cage5 (3);
bmi7 ON cage7 (3);
bmil ON cagelq (4);
bmi3 ON cage3q (4);
bmi5 ON cage5q (4);
bmi7 ON cage7q (4);
Yoc#3%
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Table B2. Continued.
i
[il;
bmil ON cagel (5);
bmi3 ON cage3 (5);
bmi5 ON cage5 (5);
bmi7 ON cage7 (5);
bmil ON cagelq (6);
bmi3 ON cage3q (6);
bmi5 ON cage5q (6);
bmi7 ON cage7q (6);

Appendix C

Table C1 shows the simulation input uses eight time points and n = 2000 with 500 replications, gener-
ating and analyzing with two latent classes using the skew-t distribution. The MODEL POPULATION
command specifies the data-generating linear growth model with intercept i and slope s. The residual
variances for the outcomes are 0.5 at all time points. The i, s means are 4, 1 and 0, O in classes 1 and
2, respectively. The variances for i and s are 1 and 0.7, respectively, for both classes, and the covariance
is zero for both classes. These parameter values refer to the symmetric part U, of (5). The skew param-

Table C1. Monte Carlo simulation generating and analyzing data using a two-class skew-t
growth mixture model.

TITLE: 2¢ skew-t
MONTECARLO: NAMES =yl-y8;
NOBSERVATIONS = 2000;
NREPS = 500;
GENCLASSES = c(2);
CLASSES =¢(2);
ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = MLR;
DISTRIBUTION = SKEWT;
MODEL POPULATION: %OVERALL%
[c#1*0];
is|yl@0y2@.1y3@.2y4@.3y5@.4y6@0.5y7@0.6 y8@0.7;
y1-y8*.5;
[i*4 s*1];
i*1 s*0.7;
i-s WITH i-s*0;
{i*2};
{s*2};
{df*5};
Yoc#2%
[1*0 s*0];
MODEL: %OVERALL%
[c#1*0];
is|yl@0y2@.1y3@.2y4@.3y5@.4y6@0.5y7@0.6 y8@0.7;
y1-y8*.5;
[i*4 s*1];
i*1 s*0.7;
i-s WITH i-s*0;
{i*2};
{s*2};
{df*5};
Yoc#2%
[1*0 s*0];
i*1 s*0.7;
i-s WITH i-s*0;
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eters are 2 for i and s in both classes, whereas the degrees of freedom parameter is 5 in both classes.
The MODEL command specifies that the analysis model is the same as the data-generating model with
starting values equal to the population values.
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