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TEACHER’S CORNER

How to Use a Monte Carlo Study to
Decide on Sample Size and Determine

Power

Linda K. Muthén
Muthén & Muthén

Los Angeles, California

Bengt O. Muthén
Graduate School of Education & Information Studies

University of California, Los Angeles

A common question asked by researchers is, “What sample size do I need for my
study?” Over the years, several rules of thumb have been proposed. In reality there is
no rule of thumb that applies to all situations. The sample size needed for a study de-
pends on many factors, including the size of the model, distribution of the variables,
amount of missing data, reliability of the variables, and strength of the relations
among the variables. The purpose of this article is to demonstrate how substantive re-
searchers can use a Monte Carlo study to decide on sample size and determine power.
Two models are used as examples, a confirmatory factor analysis (CFA) model and a
growth model. The analyses are carried out using the Mplus program (Muthén &
Muthén, 1998).

A common question asked by researchers is, “What sample size do I need for my
study?” Over the years, several rules of thumb have been proposed, such as 5 to 10
observations per parameter, 50 observations per variable, no less than 100, and so
on. In reality, there is no rule of thumb that applies to all situations. The sample size
needed for a study depends on many factors, including the size of the model, distri-
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bution of the variables, amount of missing data, reliability of the variables, and
strength of the relations among the variables. Although parameter estimates fre-
quently have small bias, standard errors are more sensitive. Standard errors may be
overestimated or underestimated depending on the situation. This affects the esti-
mation of confidence intervals also referred to as coverage. If standard errors are
overestimated, significant effects may be missed. If they are underestimated, sig-
nificant effects may be overstated. Another issue that needs to be considered when
deciding on sample size is power. A sample may be large enough for unbiased pa-
rameter estimates, unbiased standard errors, and good coverage, but it may not be
large enough to detect an important effect in the model.

The purpose of this article is to demonstrate how substantive researchers can
use a Monte Carlo study to decide on sample size and determine power. Two mod-
els are used as examples, a confirmatory factor analysis (CFA) model and a growth
model. The analyses are carried out using the Mplus program (Muthén & Muthén,
1998), which has extensive Monte Carlo facilities. Data generation using Mplus
can include normal data, nonnormal data, missing data, clustering, and mixtures of
populations. Analysis models can include any of the models available in Mplus.
Data generation and analysis models do not need to be the same.

This article focuses on parameter estimates, standard errors, coverage, and
power assuming correctly specified models. Misspecified models can also be stud-
ied in the Mplus Monte Carlo framework but are not included here. Also, it should
be noted that Monte Carlo studies are useful for evaluating the performance of
model fit indexes, but this use is not considered in this article.

METHOD

A common use of Monte Carlo studies is for methodological investigations of the
performance of statistical estimators under various conditions. In these studies,
data are generated and models are estimated, sometimes using more than one esti-
mator. The performance of an estimator is judged by studying parameter estimate
bias, standard error bias, and coverage. A less common use of Monte Carlo studies
is to decide on sample size and determine power in the design of substantive stud-
ies. This use is the focus of this article.

Monte Carlo Study

In Monte Carlo studies, data are generated from a population with hypothesized
parameter values. A large number of samples are drawn, and a model is estimated
for each sample. Parameter values and standard errors are averaged over the sam-
ples. The following criteria are examined: parameter estimate bias, standard error
bias, and coverage.
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Several decisions need to be made to carry out a Monte Carlo study. The first is
the choice of the model to be studied. This choice is driven by the research question
being asked. Once the model is chosen, population values for each parameter of the
model must be selected. These values can be obtained from theory or previous re-
search. Estimates from previous studies are often the best estimates available for
population values in the Monte Carlo study.

Technical considerations in the Monte Carlo study are the number of samples to
be drawn and the seed. The number of samples to be drawn (replications) can be
thought of as the sample size for the Monte Carlo study. The number of replica-
tions should be increased until stability of the results is achieved. In this study,
10,000 replications are used for each analysis to ensure that stability has been
reached. The value of the seed determines the starting point for the random draws
of the samples. More than one seed should be used, and the results for the different
seeds should be checked for stability.

Models to Be Studied

A CFA model and a growth model were selected for study. These models were chosen
because they are often used in practice and are sufficiently different from each other.
CFA models are typically cross-sectional and have only a covariance structure. The
growth model is longitudinal and has both a mean and a covariance structure.

CFA Model

The CFA model that is studied has two factors, each of which has five continuous
factor indicators. The CFA model has 31 free parameters and 24 df. A diagram of
the CFA model is shown in Figure 1. Data are generated using the following popu-
lation values. The factor loadings are 0.8. The residual variances of the factor indi-
cators are 0.36. Factor variances are fixed to one to set the metric of the factors. The
factor correlation is 0.25. All factor loadings are free. These population values are
chosen so that the variances of the factor indicators are one, which makes the pa-
rameter values more easily interpretable. The population values result in a reliabil-
ity of 0.64 for each factor indicator. Reliability is calculated as the ratio of the vari-
ance of the factor indicator explained by the factor to the total variance of the factor
indicator using the following formula,

λ2 ψ / (λ2 ψ + θ) (1)

where λ is the factor loading, ψ is the factor variance, and θ is the residual variance.

The focus of the power investigation in the CFA model is the factor correlation.
This parameter is of particular interest because it represents the correlation between
the two constructs unattenuated by measurement error. The CFA model can also be
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thought of as a longitudinal model with two measurement occasions so that the last
five indicators are repeated measures of the first five indicators. In this case, the fac-
tor correlation can be seen as a measure of stability of the construct over time.

The CFA model is examined under four conditions: (a) normally distributed con-
tinuous factor indicators without missing data, (b) normally distributed continuous
factor indicators with missing data, (c) nonnormal continuous factor indicators with-
outmissingdata,and(d)nonnormalcontinuousfactor indicatorswithmissingdata.

Missing data. In the analyses with missing data, the data are generated such
that all participants have data on y1, y2, y3, y4, and y5, and 50% of the participants
have data on y6, y7, y8, y9, and y10. The patterns of missing data should be speci-
fied to reflect missing data patterns seen in practice. For example, the percentage
of missing data can increase in relation to the number of questions in a survey to re-
flect the likelihood that participants become tired toward the end of a survey and
start skipping questions. Or the percentage of missing data can increase over time
reflecting the likelihood that people will drop out of a study. If a study is designed
such that some participants receive only a subset of the items on a survey or are
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FIGURE 1 CFA model.
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measured only at certain ages, this can also be reflected in the generation of data.
The way missing data are generated for the CFA model is an example of missing
completely at random (Little & Rubin, 1987).

Nonnormal data. In the analyses with nonnormal data, the data are created
using a mixture of two normal subpopulations or classes of individuals. Normal
data are generated for two classes that have different means and variances for the
factor indicators. The combined data are analyzed as though they come from a sin-
gle population. To maintain a similarity between the CFA models without and with
missing data, the parameter values for the factor indicators are chosen so that their
reliabilities are 0.64 using Equation 1.

Thefirst step is togeneratedata for twoclassessuchthat thecombinationof thedata
from the two classes has the desired skewness and kurtosis. This is done by allowing
oneof theclasses to representanoutlyinggroupof individuals thathasdifferentmeans
and variances for the factor indicators. The choice of the proportion of individuals in
the two classes also affects skewness and kurtosis. To ensure that the model for the
combined data is a correctly specified CFA model, skewness and kurtosis in the factor
indicators isachievedbychoosingdifferentmeansandvariances for the factors,notby
manipulating the means and variances of the factor indicators.

For the CFA model with nonnormal data, Class 1, the outlier class, contains
12% of the participants and Class 2 contains the remaining 88%. Only the factor
indicators for the second factor are nonnormal. Therefore, the Class 1 mean for the
second factor is chosen to be 15 and the variance 5, as compared to the Class 2
mean and variance of zero and 1. The resulting population univariate skewness for
variables y6 through y10 is 1.2. The resulting population univariate kurtosis for
variables y6 through y10 ranges from 1.5 to 1.6.

The second step is to run the analysis with one replication and a large sample to
obtain approximate population values for the one class model. In this article, a
sample size of 100,000 is used. Given that factor indicator reliabilities of 0.64 are
desired, the third step is to solve for the population residual variances for the factor
indicators of the second factor using Equation 1 and use those values as the popula-
tion values for data generation.

Growth Model

Two growth models are studied. Both are linear growth models with equidistant
time points for four continuous outcomes. One has a covariate influencing the
intercept and slope growth factors. The growth model without a covariate has 9
free parameters and 5 df. The growth model with a covariate has 11 free parame-
ters and 7 df. Figure 2 shows the diagram for the growth model with the
covariate. Data are generated using the following population values. For the
growth model without a covariate, the mean of the intercept growth factor is 0.0

SAMPLE SIZE AND POWER 603

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 0
5:

09
 1

9 
Fe

br
ua

ry
 2

01
4 



and the mean of the slope growth factor is 0.2. The variance of the intercept
growth factor is 0.5, and the variance of the slope growth factor is 0.1, reflecting
a commonly seen variance ratio. The covariance between the intercept and slope
growth factors is zero. The residual variances of the continuous outcomes are
0.5. This results in R2 values of 0.50 for y1, 0.55 for y2, 0.64 for y3, and 0.74 for
y4 using the following formula,

R2 (yt) = (ψi + xt2 ψs+ 2 xt ψis) / (ψi + xt2 ψs + 2 xt ψis + θt) (2)

where ψi is the variance of the intercept growth factor, xt is the time score at time t,
ψs is the variance of the slope growth factor, ψis is the covariance between intercept
and slope growth factors (set at zero in this case), and θt is the residual variance for
the outcome at time t. Here the xt time scores are chosen as 0, 1, 2, and 3.

In the growth model with a covariate, the intercept and slope growth factors
are regressed on a dichotomous covariate with a 50/50 split, giving the covariate
a mean of 0.5 and a variance of 0.25. This covariate can be thought of as a treat-
ment or sex dummy variable. For the intercept growth factor, the regression co-
efficient is 0.5. The residual variance for the intercept growth factor is chosen as
0.25. This corresponds to an R2 value of 0.20 for the intercept growth factor.

The focus of the power investigation in the growth model is the regression coef-
ficient in the regression of the slope growth factor on the covariate. This parameter
is selected because across-group differences in development over time are the fo-
cus of many longitudinal studies. Regression coefficient values of 0.2 and 0.1 are
chosen to study different effect sizes. A regression coefficient of 0.2 has an effect
size of 0.63, reflecting a medium effect (Cohen, 1969). A slope of 0.1 has an effect
size of 0.32, reflecting a small effect. Here effect size is computed as the ratio of
the difference in the slope means for the two values of the covariate divided by the
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FIGURE 2 Growth model.
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standard deviation of the slope growth factor. The residual variance for the slope
growth factor is chosen as 0.09. This corresponds to an R2 value of 0.10 for the
slope growth factor when the regression coefficient is 0.2, and an R2 of 0.03 when
the regression coefficient is 0.1. Values as low as these are commonly seen in the
prediction of the slope growth factor.

The growth model is examined under five conditions: (a) normally distributed
continuous outcomes without missing data without a covariate, (b) normally dis-
tributed continuous outcomes without missing data with a covariate that has a re-
gression coefficient of 0.2 for the slope growth factor, (c) normally distributed con-
tinuous outcomes with missing data with a covariate that has a regression
coefficient of 0.2 for the slope growth factor, (d) normally distributed continuous
outcomes without missing data with a covariate that has a regression coefficient of
0.1 for the slope growth factor, and (e) normally distributed continuous outcomes
with missing data with a covariate that has a regression coefficient of 0.1 for the
slope growth factor.

Missing data. In the analyses with missing data, the data are generated to
reflect an increase in missing data over time due to attrition. For the second
through the fourth time-points, the probability of missing data is influenced by
the covariate, whereas the first time-point has data missing completely at ran-
dom. For the covariate value of zero, the first measurement occasion has 12%
missing on the outcome, the second has 18% missing, the third has 27% miss-
ing, and the fourth has 50% missing. For the covariate value of one, the first
measurement occasion has 12% missing on the outcome, the second has 38%
missing, the third has 50% missing, and the fourth has 73% missing. The way
missing data are generated for the growth model is an example of missing at ran-
dom (Little & Rubin, 1987).

Model Estimation

Model estimation is carried out in all cases by maximum likelihood under the as-
sumption of normality. For models with nonnormal data, standard errors are com-
puted using a nonnormality robust sandwich estimator. All analyses are done using
the Mplus program. All Mplus inputs used for this article are included in Appendix
A and are available at www.statmodel.com. Complete outputs are also available at
this Web site.

Strategy for Deciding on Sample Size

Several criteria are examined to determine sample size. The first criterion is that
parameter and standard error biases do not exceed 10% for any parameter in the
model. The second criterion is that the standard error bias for the parameter for
which power is being assessed does not exceed 5%. The third criterion is that cov-
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erage remains between 0.91 and 0.98. Once these three conditions are satisfied, the
sample size is chosen to keep power close to 0.80. The value of 0.80 is used be-
cause it is a commonly accepted value for sufficient power.

Appendix B shows partial output from the Mplus analysis for the CFA model
with normally distributed continuous factor indicators without missing data. All
outputs from the analyses in this article are available at the Web site
www.statmodel.com. Following is a description of how the information in the out-
put is used to evaluate the criteria discussed previously.

Parameter bias is evaluated using the information in columns 1 and 2 of the out-
put. The column labeled starting gives the population parameter values. The col-
umn labeled average gives the parameter estimate average over the replications of
the Monte Carlo study. For example, the first number in column 2, 0.7963, is the
average of the factor loading estimates for y1 over 10,000 replications. To deter-
mine its bias, subtract the population value of 0.8 from this number and divide it by
the population value of 0.8. This results in a bias of –0.005, which is negligible.

Standard error bias is evaluated using the information in columns 3 and 4 of the
output. The column labeled SD gives the standard deviation of each parameter esti-
mate over the replications of the Monte Carlo study. This is considered to be the pop-
ulation standard error when the number of replications is large. The column labeled
SE Average gives the average of the estimated standard errors for each parameter es-
timate over the replications of the Monte Carlo study. Standard error bias is calcu-
lated in the same way as parameter estimate bias as described previously.

Coverage is evaluated using the information in column 6 of the output labeled
95% Cover. It gives the proportion of replications for which the 95% confidence
interval contains the true parameter value.

Power is evaluated using the information in column 7 of the output labeled %
Sig Coeff. This column gives the proportion of replications for which the null hy-
pothesis that a parameter is equal to zero is rejected for each parameter at the .05
level (two-tailed test with a critical value of 1.96). The statistical test is the ratio of
the parameter estimate to its standard error, an approximately normally distributed
quantity (z score) in large samples. For parameters with population values different
from zero, this value is an estimate of power, that is, the probability of rejecting the
null hypothesis when it is false. For parameters with population values equal to
zero, this value is an estimate of Type I error, that is, the probability of rejecting the
null hypothesis when it is true.

FINDINGS

CFA Model

The results of the four CFA analyses are found in Table 1. For the simplest CFA
model with normally distributed continuous factor indicators and no missing data,
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a sample size of 150 is needed for power of .81 to reject the hypothesis that the fac-
tor correlation is zero. By adding the complication of missing data, a sample size of
175 is required for power of .81. Considering the CFA model with nonnormal fac-
tor indicators without missing data, a sample size of 265 is needed for a power of
.80. Adding the complication of missing data results in the need for a sample size
of 315 for power of .81.

Growth Model

The results of the five growth model analyses are found in Table 2. For the simplest
growth model without missing data and without a covariate, a sample size of 40 is
needed for power of .81 to reject the hypothesis that the mean of the slope growth
factor is zero.

By adding a dichotomous covariate with population regression coefficient of
0.2 for the regression of the slope growth factor on the covariate, the sample size
requirement to reject the hypothesis that the regression coefficient is zero rises to
150 for a power of .81. By adding the complication of missing data, the sample size
requirement increases to 250 for a power of .80. By eliminating the missing data
complication and changing the population value of the regression coefficient to
0.1, the sample size requirement is 600 for a power of .80. By adding the complica-
tion of missing data to the model with a regression coefficient of 0.1, the sample
size requirement rises to 1,025 for a power of .80.
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TABLE 1
Sample Size Requirements for the Confirmatory Factor Analysis Model

No Missing Missing

Normal 150 175
Nonnormal 265 315

TABLE 2
Sample Size Requirements for the Growth Model

No Missing Missing

No Covariate 40 NA
Regression Coefficient .2 150 250
Regression Coefficient .1 600 1025
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DISCUSSION

This article demonstrated the use of a Monte Carlo study for the purpose of decid-
ing on sample size and determining power. A CFA and a growth model were con-
sidered.

For the CFA model, the influences of nonnormality and missing data on sample
size requirements were studied. Sample size requirements were found to be influ-
enced more by nonnormality than missing data, at least in this situation where data
are missing completely at random. For both normal and nonnormal data, adding
the complication of missing data increased the sample size requirement by approx-
imately 18%. Having both nonnormality and missing data approximately doubled
the sample size requirement.

For the growth model, the influence of missing data, a covariate, and regression
coefficient size on sample size requirements were studied. It was found that the
largest impact on the sample size requirement came from including a small regres-
sion coefficient for the covariate in the model. Reducing the population value of
the regression coefficient from 0.2 to 0.1 increased the sample size requirement ap-
proximately four times both with and without missing data. This reflected a
change in effect size from medium to small. Including missing data in the model
increased the sample size requirement by a factor of approximately 1.7 for both ef-
fect sizes.

The results in this article support the fact that sample size requirements depend
strongly on many factors. As an example, the sample size requirement of 600 for
detecting a small effect size in the growth model is high in contrast to the sample
size requirement of 265 for detecting a small factor correlation in the CFA model.

This article demonstrated how substantive researchers can use a Monte Carlo
study to decide on sample size and determine power. Two models were considered,
and a strategy for deciding on sample size was described. Many variations of the
models and strategy described in this article can also be considered. Variations of
the CFA model that can be considered are factor cross-loadings or residual
covariances. In addition, the number of factors and the number of factor indicators
can be varied. Variations of the growth model that can be considered are different
choices of the R2 value for the slope growth factor and the continuous outcomes,
residual covariances, free time scores, quadratic models, and piecewise models. In
addition, the number of time-points can be varied. Also, if a researcher is interested
in power for only one parameter, it is not necessary to have the strict bias require-
ments for all parameters in the model as suggested in the strategy of this article.

In addition to the models and data complications included in this article, Monte
Carlo studies in Mplus can include investigations of sample size and power in situ-
ations with cluster samples (hierarchical data) and mixtures of unobserved
subpopulations. This allows studies of sample size and power for multilevel CFA
models, three-level growth models, factor mixture models, and growth mixture
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models. It is important to investigate the reduction in power due to cluster sam-
pling and due to considering small subpopulations in mixture models.
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APPENDIX A

Appendix A contains the Mplus input files for the nine analyses in the article. Fol-
lowing is a brief description of the Mplus commands. Details about the input lan-
guage can be found in the Mplus User’s Guide (Muthén & Muthén, 1998). The
TITLE command provides a title for the output. The MONTECARLO command
describes the technical details of the Monte Carlo study. The ANALYSIS com-
mand provides information about the type of analysis to be performed. The
MODEL MONTECARLO command is used to provide the population parameter
values to be used in data generation. The MODEL command describes the model
to be estimated. The OUTPUT command is used to request extra output.

Mplus Input File for the CFA Model With Normally Distributed Continuous
Factor Indicators Without Missing Data

TITLE: cfa1.inp normal, no missing
MONTECARLO: NAMES ARE y1-y10;

NOBSERVATIONS = 150;
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NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
SAVE = cfa1.sav;

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y10*.36;
f1 WITH f2*.25;

MODEL:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y10*.36;
f1 WITH f2*.25;

OUTPUT: TECH9;

Mplus Input File for the CFA Model With Normally Distributed Continuous Fac-
tor Indicators With Missing Data

TITLE: cfa2.inp normal, missing
MONTECARLO: NAMES ARE y1-y10;

NOBSERVATIONS = 175;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
PATMISS = y6 (.5) y7 (.5) y8 (.5) y9 (.5) y10 (.5);
PATPROB = 1;
SAVE = cfa2.sav;

ANALYSIS: TYPE = MIXTURE MISSING;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
f1 BY y1-y5*.8;
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f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y10*.36;
f1 WITH f2*.25;

MODEL:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y10*.36;
f1 WITH f2*.25;

OUTPUT: PATTERNS TECH9;

Mplus Input File for the CFA Model With Nonnormal Continuous Factor Indica-
tors Without Missing Data

TITLE: cfa3.inp non-normal, no missing
MONTECARLO: NAMES ARE y1-y10;

NOBSERVATIONS = 265;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 2;
SAVE = cfa3.sav;

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = MLR;

MODEL MONTECARLO:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y5*.36 y6-y10*9;
f1 WITH f2*.95;
[C#1@-2];

%C#1%

[f1@0 f2@15];
f1@1 f2@5;

%C#2%
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[f1@0 f2@0];
f1@1 f2@1;

MODEL:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*4;
f1@1 f2@1;
y1-y5*.36 y6-y10*9;
f1 WITH f2*.20;
[y6-y10*1.42];

OUTPUT: TECH9;

Mplus Input File for the CFA Model With Nonnormal Continuous Factor Indica-
tors With Missing Data

TITLE: cfa4.inp non-normal, missing
MONTECARLO: NAMES ARE y1-y10;

NOBSERVATIONS = 315;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 2;
PATMISS = y6 (.5) y7 (.5) y8 (.5) y9(.5) y10 (.5);
PATPROB = 1;
SAVE = cfa4.sav;

ANALYSIS: TYPE = MIXTURE MISSING;
ESTIMATOR = MLR;

MODEL MONTECARLO:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*.8;
f1@1 f2@1;
y1-y5*.36 y6-y10*9;
f1 WITH f2*.95;
[C#1@-2];

%C#1%
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[f1@0 f2@15];
f1@1 f2@5;

%C#2%

[f1@0 f2@0];
f1@1 f2@1;

MODEL:
%OVERALL%
f1 BY y1-y5*.8;
f2 BY y6-y10*4;
f1@1 f2@1;
y1-y5*.36 y6-y10*9;
f1 WITH f2*.20;

[y6-y10*1.42];
OUTPUT: PATTERNS TECH9;

Mplus Input File for the Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data Without a Covariate

TITLE: growth1.inp normal, no covariate, no missing
MONTECARLO: NAMES ARE y1-y4;

NOBSERVATIONS = 40;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
SAVE = growth1.sav;
ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.5;
s*.1;
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i WITH s*0;
y1-y4*.5;

%C#1%

[i*0 s*.2];
MODEL:

%OVERALL%
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.5;
s*.1;
i WITH s*0;
y1-y4*.5;

%C#1%
[i*0 s*.2];

OUTPUT: TECH9;

Mplus Input File for the Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data With a Covariate That Has a Regression Coeffi-
cient of 0.2 for the Slope Growth Factor

TITLE: growth2.inp normal, covariate, no missing
MONTECARLO: NAMES ARE y1-y4 x;

CUTPOINTS = x (0);
NOBSERVATIONS = 150;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
SAVE = growth2.sav;

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
[x@0]; x@1;
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
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[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.2;

%C#1%

[i*0 s*.2];
MODEL:

%OVERALL%
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;
i ON x*.5;
s ON x*.2;

%C#1%
[i*0 s*.2];

OUTPUT: TECH9;

Mplus Input File for the Growth Model With Normally Distributed Continuous
Outcomes With Missing Data With a Covariate That Has A Regression Coefficient
of 0.2 for the Slope Growth Factor

TITLE: growth3.inp normal, covariate, missing
MONTECARLO: NAMES ARE y1-y4 x;

CUTPOINTS = x (0);
NOBSERVATIONS = 250;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
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GCLASSES = 1;
MISSING = y1-y4;
SAVE = growth3.sav;
ANALYSIS: TYPE = MIXTURE MISSING;
ESTIMATOR = ML;
MODEL MISSING:
%OVERALL%
[y1@-2 y2@-1.5 y3@-1 y4@0];
y2-y4 ON x@1;

MODEL MONTECARLO:
%OVERALL%
[x@0]; x@1;
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.2;

%C#1%

[i*0 s*.2];
MODEL:

%OVERALL%
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.2;
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%C#1%
[i*0 s*.2];

OUTPUT: TECH9;

Mplus Input File for the Growth Model With Normally Distributed Continuous
Outcomes Without Missing Data With a Covariate That Has a Regression Coeffi-
cient of 0.1 for the Slope Growth Factor

TITLE: growth4.inp normal, covariate, no missing
MONTECARLO: NAMES ARE y1-y4 x;

CUTPOINTS = x (0);
NOBSERVATIONS = 600;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
SAVE = growth4.sav;
ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
[x@0]; x@1;
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.1;

%C#1%

[i*0 s*.2];
MODEL:

%OVERALL%
i BY y1-y4@1;
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s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.1;

%C#1%

[i*0 s*.2];
OUTPUT: TECH9;

Mplus Input File for the Growth Model With Normally Distributed Continuous
Outcomes With Missing Data With a Covariate That Has a Regression Coefficient
of 0.1 for the Slope Growth Factor

TITLE: growth5.inp normal, covariate, missing
MONTECARLO: NAMES ARE y1-y4 x;

CUTPOINTS = x (0);
NOBSERVATIONS = 1025;
NREPS = 10000;
SEED = 53487;
NCLASSES = 1;
GCLASSES = 1;
MISSING = y1-y4;
SAVE = growth5.sav;

ANALYSIS: TYPE = MIXTURE MISSING;
ESTIMATOR = ML;

MODEL MISSING:
%OVERALL%
[y1@-2 y2@-1.5 y3@-1 y4@0];
y2-y4 on x@1;

MODEL MONTECARLO:
%OVERALL%
[x@0]; x@1;
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
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[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.1;

%C#1%

[i*0 s*.2];
MODEL:

%OVERALL%
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.5;
s ON x*.1;

%C#1%

[i*0 s*.2];
OUTPUT: TECH9;
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620

APPENDIX B
Mplus Output Excerpts for the CFA Model With Normally Distributed

Continuous Factor Indicators and No Missing Data

Estimates
SE

Average
95%

Cover
% Sig
CoeffModel Results Starting Average SD MSE

Class 1
F1 BY

Y1 .800 .7963 .0707 .0697 .0707 .949 1.000
Y2 .800 .7981 .0712 .0698 .0712 .942 1.000
Y3 .800 .7962 .0708 .0697 .0708 .946 1.000
Y4 .800 .7975 .0708 .0698 .0708 .944 1.000
Y5 .800 .7971 .0704 .0698 .0704 .947 1.000

F2 BY
Y6 .800 .7959 .0706 .0697 .0707 .945 1.000
Y7 .800 .7961 .0702 .0697 .0702 .950 1.000
Y8 .800 .7950 .0701 .0697 .0701 .945 1.000
Y9 .800 .7969 .0710 .0698 .0710 .946 1.000
Y10 .800 .7968 .0703 .0698 .0703 .946 1.000

F1 WITH
F2 .250 .2497 .0864 .0850 .0864 .942 .812

Residual variances
Y1 .360 .3551 .0523 .0513 .0523 .934 1.000
Y2 .360 .3548 .0523 .0514 .0523 .933 1.000
Y3 .360 .3546 .0529 .0513 .0529 .929 1.000
Y4 .360 .3553 .0525 .0514 .0525 .931 1.000
Y5 .360 .3547 .0526 .0513 .0527 .934 1.000
Y6 .360 .3548 .0516 .0513 .0516 .939 1.000
Y7 .360 .3545 .0524 .0513 .0524 .929 1.000
Y8 .360 .3548 .0520 .0513 .0521 .934 1.000
Y9 .360 .3554 .0524 .0514 .0524 .935 1.000
Y10 .360 .3550 .0525 .0514 .0526 .934 1.000

Variances
F1 1.000 1.0000 .0000 .0000 .0000 1.000 .000
F2 1.000 1.0000 .0000 .0000 .0000 1.000 .000
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