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Latent growth modeling is often conducted using a confirmatory approach whereby specific struc-

tures of individual change (e.g., linear, quadratic, exponential, etc.) are fit to the observed data, the

best fitting model is chosen based on fit statistics and theoretical considerations, and parameters

from this model are interpreted. This confirmatory approach is appropriate when a strong theory

guides the model fitting process. However, this approach is often also used when there is not a

strong theory to guide the model fitting process, which might lead researchers to misrepresent or

miss key change characteristics present in their data. We discuss Tuckerized curves (Tucker, 1958,

1966) as an exploratory way of modeling change processes based on principal components analysis

and propose an exploratory approach to latent growth modeling whereby minimal constraints are

imposed on the structure of within-person change. These methods are applied to longitudinal data

on cortisol response during a controlled experimental manipulation and height changes from early

childhood through adulthood collected from 2 different studies. We highlight the additional insights

gained, some of the benefits, limitations, and potential extensions of the exploratory growth curve

approach and suggest there is much to be gained from using such models to generate new and

potentially more precise theories about change and development.

Keywords: change, cortisol, development, exploratory, growth, physical stature

Latent growth modeling is primarily conducted using a confirmatory modeling approach where

specific functions of time are tested against longitudinal panel data to determine which of the

various shapes of change (e.g., linear, quadratic, exponential, etc.) best represent the within-

person change patterns and between-person differences therein. The widespread adoption,

application, and promotion of this confirmatory approach to latent growth modeling framework

has catapulted the study of change forward (McArdle & Nesselroade, 2003; Preacher, Wichman,

Correspondence should be addressed to Kevin J. Grimm, Department of Psychology, University of California,

Davis, One Shields Avenue, Davis, CA 95616. E-mail: kjgrimm@ucdavis.edu
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EXPLORATORY GROWTH MODELS 569

MacCallum, & Briggs, 2008; Singer & Willett, 2003). Interestingly, looking back at our history,

the foundations of latent growth modeling, especially the original work by Tucker (1958, 1966),

was much more exploratory. The opportunities for discovery inherent in the original exploratory

work might have been lost along the developmental path of growth curve modeling.

We explore the flexibility of the original framework, in terms of the number of components

(factors) underlying the change process and their functional form, and suggest that the flexibility

of the original framework can be integrated with the contemporary implementation of latent

growth curves facilitated by the structural equation modeling (SEM) framework and the recent

work on exploratory structural equation modeling (ESEM; Asparouhov & Muthén, 2009). Our

contention is that exploratory approaches to latent growth modeling yield additional insights

into change processes that might be missed when fitting growth models in the standard

confirmatory approach. In this article, we review both how basic latent growth models are

used to specify confirmatory tests of specific change functions and how Tucker’s (1958, 1966)

original framework was used to identify change functions in a data-driven manner. Building

from these frameworks we then describe a general SEM-based approach to exploratory latent

growth modeling. Finally, using two sets of empirical data characterized by complex within-

person change patterns that are nonlinear in time, we demonstrate how additional insights into

the underlying change processes can emerge from the exploratory modeling approach.

LATENT GROWTH MODELING

In the structural modeling framework, the latent growth model is fit as a common factor model.

This model, with t D 1 to T observed scores, n D 1 to N individuals, and r D 1 to R growth

factors, can be written as

ytn D

R
X

rD1

.œtr ˜rn/ C utn; (1)

where ytn is the observed score at time t for individual n, œtr is the factor loading at time t

for growth factor r , ˜rn is the factor score for growth factor r for individual n, and utn is the

unique score at time t for individual n. In matrix notation, the model can be represented as

yn D ƒ˜n C un; (2)

where yn is a T � 1 vector of the repeatedly measured observed scores for individual n, ƒ is a

T � R matrix of factor loadings defining the growth factors (e.g., intercept & slope), ˜
n

is an

R � 1 vector of latent factor scores (e.g., intercept and slope scores) for individual n, and un

is a T � 1 vector of unique scores for individual n. The common factor scores are written as

deviations from the group mean and specified as

˜n D ’ C Ÿn; (3)

where ’ is an R � 1 vector of latent factor means and Ÿn is an R � 1 vector of mean deviations

for individual n. The expected mean (�) and covariance structure (†) of observed variables
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570 GRIMM ET AL.

are written as

� D ƒ’

† D ƒˆƒ0 C ‚
(4)

where ˆ is an R � R matrix of latent variable covariances and ‚ is a T � T matrix of

uniqueness covariances. Often, an equality constraint is placed on the diagonal elements of ‚

and off-diagonal values are fixed at zero. However, in many situations the equality constraint

on the diagonal elements is not needed for identification (see Grimm & Widaman, 2010).

In research applications of the latent growth model, the elements of ƒ (i.e., œtr ) are

typically fixed to specific values to test how a particular functional (e.g., linear, quadratic,

exponential) form, or shape, of change represents the data. For example, with five equally

spaced measurement occasions and a linear change function ƒ D

2

6

6

6

4

1 0

1 1

1 2

1 3

1 4

3

7

7

7

5

, where the first

column defines an intercept factor that captures the predicted score at the first occasion, and

the second column defines, when set equal to t , a slope factor that captures changes that

progress linearly with respect to time.

The latent growth modeling framework is extremely flexible and able to accommodate many

forms of (nonlinear) change (e.g., Browne & du Toit, 1991; Grimm & Ram, 2009; Grimm,

Ram, & Hamagami, 2011; Ram & Grimm, 2007). In practice, complexities of change are

usually accommodated either by (a) incorporating additional growth factors, or (b) relaxing the

constraints that specify a specific functional form or shape of change. We outline these two

approaches for accommodating the complexities of (nonlinear) change, and refer back to them

later when presenting the exploratory latent growth model.

Additional Growth Factors

Complex functional forms or shapes of within-person change (beyond straight lines) are often

accommodated through inclusion of additional growth factors. For example, quadratic and

higher order polynomial functions can be specified using additional growth factors with factor

loadings equal to t2, t3, t4, and so on. Similarly, spline or multiphase models (Cudeck & Klebe,

2002) can be specified using additional growth factors with nonzero factor loadings within

specific time intervals to model change in specific phases of the change process (Ram & Grimm,

2007). Conceptually, additional growth factors suggests that all individuals’ observed change

trajectories are driven by multiple functions of time (e.g., linear and quadratic), which can

be considered multiple developmental processes. That is, each individual’s changes are driven

by a linear growth factor, a quadratic growth factor, and so on, with person-specific weights

(factor scores) indicating the extent to which each factor contributes to an individual’s change

trajectory. When following typical procedures for fitting of latent growth curves, the number

of growth factors and their functional forms are determined a priori (i.e., mathematically, the

order and elements of ƒ are fixed to specific values and tested against the data).
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EXPLORATORY GROWTH MODELS 571

Relaxing Constraints on Functional Form

Alternatively, complex forms or shapes of within-person change can be accommodated in the

latent growth model by relaxing the constraints on the factor loadings for the slope factor(s).

Instead of forcing the factor loadings to change linearly with respect to time, T-2 factor loadings

can be estimated from the data. This model is often referred to as a latent basis or unstructured

model (McArdle & Epstein, 1987; Meredith & Tisak, 1990). The shape of change (i.e., ƒ)

is latent in that it is estimated from the data. That is, the form of change is not required to

follow a prespecified functional form, but rather is an optimal functional form (alternatively

conceptualized as an optimal rescaling of time) estimated from the data. Conceptually, as with

the additional factor approach, the latent basis growth model suggests that all individuals’

observed within-person changes are driven by the same process (i.e., ƒ is the same for all

persons) and individuals differ only in the magnitude of those changes (person-specific factor

scores). Following usual fitting procedures, the latent basis factor captures as much complexity

as possible in a single interindividual differences factor.

Although rarely done in practice, these two methods for modeling complexity can be

combined within the latent growth model. Specifically, multiple growth factors with relatively

few constraints on the patterns of change can be used to capture rather complex forms of change

(see the multiphase models in Ram & Grimm, 2007). However, even in such applications,

where multiple latent bases are estimated from the data, the number of growth factors is still

specified a priori. Later, we push the combined possibilities a bit further within an explicitly

exploratory framework where both the functional forms and number of factors are not specified

a priori.

Exploratory Forms of Change Modeling

Tucker (1958, 1966) laid the foundations for the latent growth curve model with what he called

generalized learning curves. Meredith and Tisak (1984) brought Tucker’s general approach to

modeling longitudinal data to the SEM framework, which had recently gained popularity with

the development of LISREL. Meredith and Tisak referred to Tucker’s approach as Tuckerized

curves and discussed more data-driven models (e.g., latent basis model) as well as structured

models (e.g., exponential). In this section we review Tucker’s work, and then examine how

modern SEM-based models might be placed in and make use of the original, explicitly

exploratory, framework.

Tuckerized Curves

Following Tucker (1958), the Tuckerized curve model can be written as

ytn D

R
X

rD1

.œtr ˜rn/; (5)

where ytn is the observed score at time t for individual n, œtr is the component loading at time

t for growth factor r , and ˜rn is the score for component r for individual n. The values of œtr
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572 GRIMM ET AL.

capture patterns of change interpreted as generalized learning curves with ˜rn as individual

weights (i.e., scores) indicating the contribution of œtr to individual n’s observed curve. For

example, if two components are retained and individual n has a large value on ˜1n and a zero

value on ˜2n, then individual n has an observed change pattern that is proportional to œt1 (by

amount ˜1n).

The Tuckerized curve equation (Equation 5) is similar to the latent growth equation (Equa-

tion 1) with one exception—there is no uniqueness score. The Tuckerized curve model is

a principal components model (prior to any rotation) and observed scores are completely

accounted for by R components when R D T . As in other applications of principal components

analysis, the solution is often truncated and fewer components (R < T ) are retained and

interpreted. We note explicitly that when working with the truncated solution, the observed

data are not completely explained, and we are left with a complex matrix of sums of squares

and cross-product residuals. This residual matrix can be decomposed into residual means and

correlations as the off-diagonal elements will likely be nonzero, but practically, this matrix is

often set aside.

Most relevant to this project is that the number of components retained in a Tuckerized

curve analysis and their patterns of change captured in œtr are not specified a priori. Instead

the number of components retained is determined by the relative magnitude of eigenvalues of the

sums of squares and cross-products matrix as well as the interpretability of the generalized

learning curves. Thus, the approach outlined by Tucker is completely exploratory in that neither

the number of change components or generalized learning curves nor their form or function

with respect to time are specified a priori—similar to an exploratory factor analysis (EFA;

without Procrustean rotation) model where neither the number of factors nor their structure or

factor loading pattern are specified a priori.

As in EFA there is the question of rotation in Tuckerized curves and from the outset Tucker

(1958, 1966) discussed the possibility of rotating the extracted components to aid interpretation.

He pointed out the inappropriateness of simple structure as a criterion for rotation, and proposed

three alternative criteria: rotation to all positive loadings, positive slopes over time, and, if

possible, rotation to an asymptote. Later, Arbuckle and Friendly (1977) suggested using a

rotation criterion where component loadings were rotated to smooth functions—by minimizing

successive differences between rows in the component loadings matrix. As in EFA, rotation

of Tuckerized curves does not affect model–data fit, only the interpretation of the generalized

learning curves and the individual weights.

Tucker’s approach, often seen as the foundation for latent growth modeling, was purely

exploratory. Interestingly, unlike the historical expansion of ANOVA into the general linear

model, the Tuckerized curves model is not a constrained type of latent growth curve model,

nor can it be implemented within the modern implementations of latent growth curve modeling,

which are often fit in the SEM framework—typically seen as a framework for confirmatory

types of analysis. We seek to understand if and how the modern SEM-based latent growth

curve approach might be adapted backward toward its more exploratory beginnings.

Exploratory Growth Models

In recent years, a number of exploratory change models have emerged that allow for the

discovery of change functions or groups of individuals defined by specific change patterns.
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EXPLORATORY GROWTH MODELS 573

These models rest variously on principal component models (Davison, 2008), profile analy-

sis via multidimensional scaling (Ding, Davison, & Petersen, 2005), k-means cluster analysis

(Brossart, Parker, & Willson, 1998), latent profile analysis (Gibson, 1959), growth mixture

models (Muthén & Shedden, 1999), and latent class growth analysis (Nagin, 1999).

Here, working directly from the Tuckerized curve model, we build an explicitly exploratory

model within the latent growth curve approach (Equations 1–4). Our intent is to see how the ba-

sic elements of Tucker’s original framework can be incorporated and utilized within the modern,

highly accessible and familiar SEM-based modeling framework. The general idea is to allow

for exploration by taking the basic structure of the model in Equations 1 through 4, and build

it up with minimal constraints. In particular, we concentrate on turning ƒ from a completely

specified matrix to one with the absolute minimum number of constraints.

Beginning with a one-factor model (see also McArdle & Epstein, 1987), elements of the

ƒ matrix are freely estimated. The single growth factor has an estimated mean and, for

identification, a variance fixed at 1. The pattern of factor loadings from this model often map

onto the pattern of observed means across time—similar to a one-component Tuckerized curve.

The model can then be expanded iteratively, adding additional factors one at a time. Two-factor,

three-factor, and other models can be specified with additional identification constraints (see

Howe, 1955; McArdle & Cattell, 1994). For example, in a two-factor model one element of ƒ

must be fixed at 0. All other factor loadings are freely estimated. Thus, with five measurement

occasions ƒ D

2

6

6

6

4

œ1;1 0

œ2;1 œ2;2

œ3;1 œ3;2

œ4;1 œ4;2

œ5;1 œ5;2

3

7

7

7

5

. The factors have estimated means, variances fixed at 1, and are

uncorrelated with one another (i.e., ˆ is an identity matrix). Of note, the row of ƒ (i.e., time

point) with the fixed 0 factor loading is arbitrary and does not affect model fit. However, as

is usual in growth modeling, the choice has an effect on the estimated parameters and the

interpretation of the factor loading patterns. Thus, this choice is often driven by substantive

reasoning so that the time point with a fixed 0 factor loading represents a point in time where

the second factor has no influence. In the specification given earlier, the second factor has no

influence at the first occasion.

Although the number of factors can be increased in an iterative fashion, the number of fixed

0 loadings needed for identification increases with each additional factor. For example, for a

three-factor exploratory model with five measurement occasions, ƒ D

2

6

6

6

4

œ1;1 0 0

œ2;1 œ2;2 0

œ3;1 œ3;2 œ3;3

œ4;1 œ4;2 œ4;3

œ5;1 œ5;2 œ5;3

3

7

7

7

5

. In this

specification, the second factor has no influence on the first occasion and the third factor has

no influence at the first or second occasion. Following exploratory practice, additional growth

factors are added one at a time until (a) degrees of freedom are exhausted, (b) the addition

of growth factors does not yield interpretable factor patterns, or (c) convergence issues are

encountered. Factor patterns that are not interpretable tend to have values that vary in a random

fashion across the rows of ƒ (i.e., within a column, across time)—an indication that the factor

is capturing random fluctuations.

Finally, we mention the structure of unique factors or residuals. Because we are working

in a common factor framework, these are not the complex residuals that are obtained in the

Tuckerized curve (truncated principal components) approach. They do have meaningful and
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574 GRIMM ET AL.

interpretable structure. As in current latent growth model specifications, ‚, the matrix of unique

covariances is diagonal and the diagonal elements can be freely estimated or constrained to be

equivalent with respect to time (see Grimm & Widaman, 2010).1

Exploratory Structural Equation Modeling (ESEM)

Recently, Asparouhov and Muthén (2009) introduced the concept of ESEM and incorporated

the EFA model within the general SEM framework. The ESEM framework can be adapted to

aid the specification and estimation of the exploratory growth model. Specifically, the ESEM

framework begins with an unrotated EFA model with a specific number of factors. The factor

loading matrix (ƒ) of this model is specified in the same way as described previously and

then the factors are rotated via various rotation criteria (e.g., Quartimin, Geomin, Target) to

aid interpretation.

The ESEM framework can aid the exploratory growth modeling approach through this

rotation and because the flexibility of the ESEM framework allows for the estimation of factor

means. The available rotations within the ESEM framework, as implemented in Mplus, were not

designed for such models, but allow for the estimation of all factor loadings. Thus, all factors

can impact scores at all time points (zero loadings do not need to be specified). Furthermore,

oblique rotations can be implemented to allow for factor intercorrelations.

Model Fitting

In practice, the model fitting approach for the exploratory growth model is similar to an

approach often taken with growth mixture models. That is, models are fit with an increasing

number of factors until one of the stopping rules (described earlier) is encountered. Models

are compared using global (Comparative Fit Index [CFI], Tucker–Lewis Index [TLI], and root

mean square error of approximation [RMSEA]) and comparative (Bayesian Information Criteria

[BIC], Sample Size Adjusted BIC [SSBIC], and chi-square) fit indexes. From the fitted models,

a model is selected as the best representation of the individual trajectories. From the selected

model, different specifications can be examined by changing the location of fixed zero factor

loadings and by fitting the selected model within the ESEM framework using different rotation

criteria.

1We note that there are at least two alternative ways to specify these same exploratory growth models. One

alternative specification involves fixing a factor loading at 1 for each factor and freeing its variance. This specification

will have the same model fit as the specification described earlier because this is simply a respecification of identification

constraints. And as in the previously described specification, growth factors are uncorrelated. A second alternative

specification involves fixing R � 1 fixed factor loadings to 0 per growth factor and allowing the growth factors to

correlate. Thus, a correlated solution is possible and, in many cases might be more reasonable. However, the trade-off

comes in the form of additional fixed factor loadings—which might also constrain emergent interpretation of factor

loading patterns. This specification leads to models that account for growth within specific phases of time, similar to

spline or multiphase models, because each factor has a large number of 0 factor loadings. Although this is reasonable

in some situations, specifying the model with uncorrelated factors allows for the estimation of more factor loadings

and is closer to the Tuckerized curve approach.
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EXPLORATORY GROWTH MODELS 575

ILLUSTRATIVE EXAMPLES

To examine and demonstrate additional insights into the underlying change processes that can

emerge from the exploratory growth modeling approach, we present two illustrative examples

that make use of longitudinal data characterized both by complex patterns of change that are

nonlinear with respect to time and by substantial interindividual differences in change.

The cortisol data2 (T D 9, N D 34) were collected as part of the MacArthur Successful

Aging Studies during an investigation of interindividual differences in the time course of cortisol

(measured in mmol/1) production and dissipation in response to a controlled intervention

(Seeman et al., 1995; Seeman, Singer, & Charpentier, 1995). Previously, we have used a

variety of latent growth and growth mixture models to describe and analyze these data (Ram &

Grimm, 2007, 2009; Ram, Grimm, Gatzke-Kopp, & Molenaar, 2012; Shiyko, Ram, & Grimm,

2012). A plot of the observed trajectories appears in Figure 1a.

The Berkeley height data (T D 14, N D 127) were collected as part of the Berkeley Growth

and Guidance Studies, with participants’ height (cm) recorded at annual intervals from age 3

to age 17 (except for age 14 recording). These data represent a subset of the data presented

and analyzed using nonlinear growth models in Grimm et al. (2011). A plot of the observed

trajectories for both boys and girls is contained in Figure 1b.

Exploratory Analysis Procedures

Each set of data was examined using both Tuckerized curve and exploratory latent growth

models. Tuckerized curves were fit to the longitudinal data using SAS macros written by

Wood (1992). Procedurally, we (a) obtained the principal components solution; (b) examined

the eigenvalues, mean square ratios (MSRs), and pattern of loadings to select an appropriate

number of components to retain; (c) evaluated different rotated solutions; (d) plotted and exam-

ined the rotated component pattern; and (e) calculated principal component scores and estimated

trajectories for each individual.

Exploratory latent growth models were fit to the longitudinal data using Mplus (scripts

available at first author’s website). Procedurally, we (a) obtained solutions for exploratory

growth models with 1, 2, 3; : : : up to the maximum number of factors, (b) examined the fit

criteria and pattern of loadings to select an appropriate number of factors to retain, (c) fit the

selected model within the ESEM framework using different rotation criteria, (d) selected a

rotation criteria, (e) plotted and examined the rotated factor loading matrix, and (f) estimated

factor scores and examined trajectories for each individual.

We highlight that although conceptualized and presented as a set of step-by-step procedures,

the analysis was, as it often is along the way to final solutions, an iterative process with some

back and forth and rerunning and rethinking of models, solutions, and plots. Further, because

fitting the Tuckerized curves requires complete data, data were limited to participants who

provided data at all occasions. This allowed for across-model comparisons, even though fitting

exploratory growth models in SEM and ESEM can (with full information maximum likelihood

[FIML] estimation) accommodate the incomplete data that were set aside.

2We thank Drs. Marilyn Albert and Teresa Seeman for making the data available to us.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 0
4:

33
 1

1 
N

ov
em

be
r 

20
13

 



576 GRIMM ET AL.

(a)

(b)

FIGURE 1 Observed individual trajectories of (a) cortisol over nine trials and (b) height from age 3 to 17.

RESULTS

The results are presented in two sections—first for the cortisol data and then for the Berkeley

height data. Within each section we chronicle the fitting of Tuckerized curves and exploratory

latent growth models, highlighting what was learned about the underlying change processes that

we had not found in our previous applications of the typical, confirmatory latent growth curve
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EXPLORATORY GROWTH MODELS 577

procedures applied to these data. Although the details of the results might at times seem rather

granular, this level of detail is purposely included to accurately communicate the realities of

conducting exploratory work. We hope that the laborious nature of unconstrained explorations

is both clear and, as we have found, worthwhile. Our conclusion is that models built on the

exploratory underpinnings of the Tuckerized curve have much to offer, and can lead us in

new directions—particularly toward more robust examinations of the timing of development

processes.

Cortisol Trajectories

Tuckerized curves. The Tuckerized curve solution was first obtained and summary infor-

mation is provided in Table 1. To determine the number of components to retain, we examined

the relative magnitude of associated eigenvalues through a scree plot, evaluated the relative size

of the MSRs, and calculated a percentage of variability captured by each component. MSRs are

an approximate F -ratio for determining the number of components. Tucker (1966) noted that

MSRs were upwardly biased compared to the F distribution with small samples and promoted

a relative comparison among MSRs. Lastly, we summed eigenvalues two through nine and

calculated the percentage of this total that components two through nine accounted for. The

sum of the eigenvalues minus the first eigenvalue generally represents total variability because

the first component tracks the mean trajectory; however, the first component does account for

some variability as well. This percentage is referred to as the percentage of variability.

The scree plot for the cortisol data suggested that the fourth component was the beginning of

the scree indicating that a three-component solution was appropriate. The MSRs experienced a

noticeable jump from the third to the fourth components, after which they generally fluctuated

around three. Thus, three components seemed appropriate based on the MSRs, even though

subsequent MSRs were significant if compared with the F distribution. In terms of the

percentage of variablity, three or five components seemed viable given the relative jumps after

these components. Thus, based on all of this information, three components were retained.

TABLE 1

Tuckerized Curve Principal Component Solution Summary Information

Degrees of Freedom

Components Eigenvalue Component Error MSR %

1 65,504 42 264 215.8 —
2 1,138 40 224 8.3 59.7%

3 383 38 186 4.9 20.0%

4 144 36 150 2.5 7.6%
5 115 34 116 3.1 6.0%

6 54 32 84 1.9 2.8%
7 40 30 54 2.2 2.1%
8 26 28 26 3.4 1.4%

9 7 26 0 — 0.4%

Note. Values in bold indicate chosen model. MSR D mean square ratio.
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578 GRIMM ET AL.

After trying different rotations, the first two components were rotated to positive values.

A plot of the rotated component loading patterns is shown in Figure 2a. The first component

mirrors the general change pattern seen in the raw data—a sharp increase in response after

the second measurement and a comparatively small decrease in cortisol response after the

peak at the fifth measurement. This pattern could be considered the cortisol response function

(analogous in concept to a hemodynamic response function) for this sample. The second

(a)

(b)

FIGURE 2 Plot of (a) two rotated component loadings patterns for cortisol based on Tuckerized curve, and

(b) predicted individual trajectories for cortisol changes based on two-component Tuckerized curve.
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EXPLORATORY GROWTH MODELS 579

component pattern has near-zero values for the first four measurement occasions followed by a

steady increase in values across occasions four through nine. This pattern of loadings suggests

that the process captured by the second component was not very active in the early part of

individuals’ cortisol response, the reactivity phase, but captured additional changes in cortisol

during the recovery or dissipation phase. The change pattern displayed by the third component

is similar to the first component; however, the changes are not as sharp and dramatic, indicating

that this component might account for between-person differences in the shape of the overall

cortisol trajectory.

Component scores were then calculated for the three components for all participants. Scores

on Component 1 had a mean of 0.98 and ranged from 0.53 to 1.51, indicating this component

of change contributed similarly to the observed trajectories for all participants (with respect to

direction of change). Scores on Component 2 had a mean of 0.11 and ranged from �1.59 to 1.99

and scores on Component 3 had a mean of .01 and ranged from �2.30 to 1.81, indicating that

participants varied in both the magnitude and direction of the second and third components.

Further examination of the distribution of Component 2 scores indicated that these scores

were distributed in a relatively uniform manner. Some participants had strong positive weights

suggesting a lack of recovery (additional cortisol production), some participants had strong

negative weights indicating substantial recovery (dissipation), and some participants had near

zero values indicating production and dissipation of cortisol as guided by the generalized

learning curve captured by Component 1. Component 3 scores were negatively skewed with

most participants having near 0 or slightly positive values and fewer participants with negative

and strongly negative values. Participants with positive values on this component had more

curved trajectories, whereas participants with negative values had more peaked trajectories.

Figure 2b is a plot of the individual-level predictions from the three-component Tuckerized

curve solution. The individual predicted trajectories in Figure 2b follow the general pattern

of the individual observed trajectories; however the predicted cortisol trajectories appear more

linear than the observed trajectories, particularly between the third and fifth occasions—perhaps

indicating that an important aspect of the process was not captured and more components are

needed.

Exploratory latent growth models. Exploratory latent growth models with one, two, and

three growth factors were fit to the longitudinal cortisol data with an equality constraint on

the diagonal elements of ‚. Fit indexes for these models are reported in Table 2. Based

on absolute fit criteria, none of the exploratory growth models represented the data well,

potentially indicating the need for additional growth factors. However, a four-factor solution

could not be fit because the number of estimated parameters would be greater than the number

of participants. That is, we reached the limits imposed by the available degrees of freedom.

Thus, we explored the three-factor model because it showed superior fit over the one- and

two-factor models.

The three-factor model was fit within the ESEM framework and two rotations were exam-

ined. Both rotations utilized the Geomin criteria—one orthogonal and one oblique. The factor

loading patterns were similar for the two rotations. Thus, the orthogonal rotation was retained

for simplicity. The factor loading patterns from the three-factor model with orthogonal Geomin

rotation are plotted in Figure 3a to display the general change patterns. The pattern displayed
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580 GRIMM ET AL.

TABLE 2

Fit Indexes for Exploratory Latent Growth Models

Factors

¦2

(parms) CFI TLI

RMSEA

[CI] AIC BIC ABIC

Unique

Variance

1 298(11) .33 .44 .42 [.37, .46] 1,570 1,587 1,553 7.01

2 158(20) .67 .65 .33 [.28, .38] 1,448 1,479 1,416 3.23
3 91(28) .83 .76 .27 [.21, .33] 1,397 1,440 1,353 1.89

Note. Values in bold indicate chosen model. CFI D Comparative Fit Index; TLI Tucker–Lewis Index; RMSEA D

root mean squared error of approximation; AIC D Akaike’s Information Criterion; BIC D Bayesian Information

Criterion; ABIC D adjusted Bayesian Information Criterion.

from the growth factor with the greatest mean (Factor 3) mirrored the typical cortisol change

pattern and was similar to the pattern of the first component from the Tuckerized curve. The

pattern of the second growth factor with the second greatest mean (Factor 2) showed near-zero

values for the first four occasions followed by a sharp increase in values—very similar to

the second component from the Tuckerized curve. The factor loading pattern for the factor

with the smallest mean (Factor 1) was similar to the third component of the Tuckerized curve

and was associated with curvature of the cortisol response and diffusion. Means of the three

factors were 0.87, 3.05, and 4.53, respectively. This information, in conjunction with the factor

variances (fixed at 1) indicate all participants had strong positive factor scores for the second

and third factors and most participants had positive factor scores for the first factor. Estimated

factor scores ranged from �0.71 to 3.02 for the first factor, 1.17 to 5.05 for the second factor,

and 2.67 to 7.06 for the third factor. Estimated factor scores were combined with the factor

loading pattern to plot the individual predictions from the three-factor exploratory growth model

in Figure 3b. Comparing Figures 2b and 3b, predictions from the Tuckerized curve and the

exploratory growth model were highly similar.

Summary. The results from fitting Tuckerized curves and exploratory growth models to

the cortisol data suggest that there are at least three important sources of between-person differ-

ences in change. First, there was a more or less typical cortisol response curve—participants’

cortisol levels increased in response to the intervention and subsequently dissipated and this

generalized curve had a strong presence in each participant’s observed trajectory. Second, there

was substantial between-person variation in the dissipation process. Some participants showed

greater dissipation and others showed a lack of dissipation. Third, there were between-person

differences in shape of the cortisol response, which is an interesting new result.

Taking the more traditional (confirmatory) approach to modeling these data, Ram and

Grimm (2007) settled on a three-part multiphase growth model with factors corresponding to

baseline (Occasions 1–2), cortisol response (Occasions 2–5), and dissipation (Occasions 5–9)

phases. Of note, the confirmatory growth model did not include a growth pattern reflecting the

combination of cortisol response and dissipation as was found in the exploratory models (first

component and third factor). Furthermore, the exploratory factor (and component) associated

with dissipation was active (had nonzero values) beginning at Trial 5 as opposed to Trial 6 in the

fitted confirmatory multiphase model. Thus, it appears that the dissipation process began earlier
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EXPLORATORY GROWTH MODELS 581

(a)

(b)

FIGURE 3 Plot of (a) three-factor loading patterns for cortisol based on exploratory growth model, and

(b) predicted individual trajectories for cortisol changes based on three factor exploratory growth model.

than previously modeled. Finally, the three-factor exploratory model generally showed superior

fit (greater CFI, smaller unique variance) than the three-part multiphase model—highlighting

the potential of these exploratory models. Moving from these exploratory models to traditional

confirmatory growth models, we would want to test these sources of individual differences in

future studies of cortisol response.
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582 GRIMM ET AL.

Height Trajectories

Tuckerized curves. Tuckerized curves were fit to the longitudinal height data and sum-

mary information from this model is contained in Table 3. To determine the number of

components to retain we examined the scree plot, MSRs, and percentage of variability. The

scree plot suggested that the fifth component was the beginning of the scree indicating that

a four-component solution was appropriate. The MSRs experienced a sizable jump from the

fourth to the fifth components, indicating that four components were appropriate. In terms of

the percentage of variability, three or four components seemed viable. Thus, based on all of this

information, four components were retained.

The four components were rotated to positive values and a plot of the rotated component

loading patterns for the second, third, and fourth components (first component mirrored the gen-

eral pattern in the data) is contained in Figure 4a. As with the cortisol data, the first component

mirrored the general change pattern of the observed data—a more or less gradual increase in

height between ages 3 and 15 followed by slower increases between ages 15 and 17. The second

through fourth components captured increases during specific phases of development. Processes

underlying the second component had a steady influence on height between ages 3 and 10, were

less active between 11 and 13 years, and had a strong influence between ages 15 and 17. Thus,

it appeared that this component could be characterized as most related to increases in height that

occurred between ages 15 and 17—late adolescence. The third component captured changes in

height between ages 9 and 13—early adolescence; and the fourth component captured gradual

increases between ages 6 and 11 and then sharp increases between ages 12 and 16—possibly

associated with a late pubertal growth spurt. The second through fourth components appeared

to capture different growth spurts during childhood and adolescence. These components might

represent between-person differences in the timing of the pubertal growth spurt whereas the

first component captured general increases in height across the entire age range.

TABLE 3

Height Trajectories Tuckerized Curve Summary Information

Degrees of Freedom

Components Eigenvalue Component Error MSR %

1 34,718,515 140 1,638 30,424.59 —

2 9,181 138 1,500 23.93 68.8%
3 2,473 136 1,364 14.61 18.5%
4 736 134 1,230 7.04 5.5%

5 311 132 1,098 3.98 2.3%
6 223 130 968 3.90 1.7%
7 121 128 840 2.59 0.9%

8 96 126 714 2.59 0.7%
9 59 124 590 1.85 0.4%

10 41 122 468 1.45 0.3%

11 38 120 348 1.56 0.3%
12 30 118 230 1.40 0.2%
13 24 116 114 1.33 0.2%

14 18 114 0 — 0.1%

Note. Values in bold indicate chosen model. MSR D mean square ratio.
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EXPLORATORY GROWTH MODELS 583

(a)

(b)

FIGURE 4 Plot of (a) five rotated component loadings patterns for height based on Tuckerized curve, and

(b) predicted individual trajectories for height changes based on five-component Tuckerized curve.

Component scores were calculated for each of the four components. Overall, component

scores were more or less normally distributed with few outliers. Individual scores for the first

component were all nonzero with a mean of 1.00 and a standard deviation of 0.05. Scores for

the remaining components had near-zero means (.03, .00, and .01) and standard deviations near

1.0. Component intercorrelations were near zero, except for the first and second components,

which were negatively correlated (r D �:61), and the first and fourth components, which were
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584 GRIMM ET AL.

also negatively correlated .r D �:18/. Figure 4b is a plot of the individual predictions from the

four-component Tuckerized curve with rotation to positive values. As can be seen, the predic-

tions appear to closely mirror the observed trajectories.

Exploratory latent growth models. Exploratory latent growth models with 1 through 14

factors were fit to the longitudinal height data (with an equality constraint on the diagonal

elements of ‚). Based on model fit (see Table 4), interpretation of factor loading patterns, and

model convergence, models with four or five growth factors appeared to provide an appropriate

representation of the data. In examining the factor loading pattern for the five-factor solution,

there were two factors with highly similar factor loading patterns and near-zero factor means.

Thus, we selected the four-factor exploratory growth model. The four-factor model was then fit

within the ESEM framework with orthogonal and oblique rotations. The orthogonal rotations

appeared to yield more interpretable factor loading patterns, which are displayed in Figure 5a.

Thus, this solution is discussed.

The first growth factor had the strongest mean (’1 D 24:64) and had a prominent role

in observed scores over the entire age span and generally tracked the mean trajectory. The

factor with the second strongest mean (Factor 3; ’3 D 7:74) had positive values from age 3

through age 6, near-zero values from age 7 through 9, negative values from age 10 through 12,

and then near-zero values after that. Thus, this factor appears to be linked to early positive

changes in height and slowed height changes from ages 10 to 12. The factor with the third

strongest mean (Factor 4; ’4 D 3:15) had near-zero values until age 12 and after age 14. Thus,

this factor appears to be inversely associated with a strong midadolescence growth spurt. The

final factor (Factor 2; ’2 D 0:69) had near-zero values from ages 3 through 13, after which

TABLE 4

Fit Indexes for Exploratory Latent Growth Models

Factors
¦2

(parms) CFI TLI
RMSEA

[CI] AIC BIC ABIC
Unique

Variance

1 3,232(16) .409 .478 .489 [.475, .504] 9,316 9,361 9,311 8.087
2 1,857(30) .666 .658 .396 [.380, .411] 7,970 8,055 7,960 2.736

3 956(43) .834 .801 .302 [.285, .319] 7,094 7,217 7,081 1.215
4 547(55) .909 .870 .244 [.225, .263] 6,709 6,865 6,691 .756

5 368(66) .940 .898 .216 [.196, .237] 6,552 6,740 6,531 .569
6 203(76) .970 .936 .171 [.148, .195] 6,407 6,624 6,383 .420
7 130(85) .982 .951 .149 [.122, .177] 6,352 6,594 6,325 .344

8 60(93) .994 .977 .102 [.068, .136] 6,298 6,563 6,269 .275
9 33(100) .997 .987 .077 [.028, .119] 6,285 6,570 6,254 .238

10 24(106) .998 .986 .081 [.023, .132] 6,288 6,590 6,254 .216

11 12(111) .999 .992 .060 [.000, .129] 6,286 6,602 6,251 .187
12 5(115) 1.000 .994 .052 [.000, .152] 6,288 6,615 6,251 .163
13 0(118) 1.000 1.000 .000 [.000, .171] 6,288 6,624 6,251 .139

14� 0(119) 1.000 1.000 .000 [.000, .000] 6,290 6,629 6,252 .000

Note. Values in bold indicate chosen model. CFI D Comparative Fit Index; TLI Tucker–Lewis Index; RMSEA D

root mean squared error of approximation; AIC D Akaike’s Information Criterion; BIC D Bayesian Information
Criterion; ABIC D adjusted Bayesian Information Criterion.

�Indicates unique variance fixed at 0.000 in this model.
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EXPLORATORY GROWTH MODELS 585

(a)

(b)

FIGURE 5 Plot of (a) four-factor loadings patterns for height based on exploratory growth model, and

(b) predicted individual trajectories for height changes based on the four-factor exploratory growth model.

the factor loadings strongly increased through age 17. Thus, this factor captured additional

growth during late adolescence for some participants and lack of growth for other participants.

Factor scores were estimated from the four-factor model. As expected, distributions of

the estimated factor scores were more or less normal and scores had near zero correlations

(r < j:03j). Estimated factor scores were combined with the factor loading pattern to plot the

individual predictions from the four-factor exploratory growth model in Figure 5b. Comparing
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586 GRIMM ET AL.

Figures 4b and 5b, predictions from the Tuckerized curve and the exploratory growth model

appear highly similar.

Summary. Changes in height during adolescence and into adulthood were characterized by

complex patterns of change and appear to require at least four growth factors (or components) to

capture that complexity. Both the Tuckerized curve and exploratory growth approaches yielded

a dominant growth factor as well as a small set of growth factors and components that captured

changes during specific periods of development. The location (with respect to time) of these

minor factors varied depending on the approach, but nevertheless, phase-specific factors appear

to capture important variability of physical growth.

In previous analyses, Grimm et al. (2011) fit the Preece–Baines model (Preece & Baines,

1978; PB1), a highly structured nonlinear model with five growth factors (two of which were

highly correlated, r D :986) specifically designed to account for human growth. Parameters of

the model map onto specific features of the developmental process, including the timing

of puberty, adult height, height at peak growth velocity, and rates of change before and during

puberty. The exploratory approach taken here yielded a model with fewer growth factors that fit

the data similarly (residual variance for Preece–Baines model fit to the subset of data analyzed

here was .752, whereas the exploratory model was .756). Additionally, the appearance of a fac-

tor associated with growth during early childhood appeared in both the exploratory growth and

Tuckerized curve approaches. The factors might be associated with a prepubertal growth spurt

that is now recognized (e.g., Gasser et al., 1985).

DISCUSSION

The purpose of this article was to examine how the exploratory frameworks that spawned latent

growth curve analysis can be integrated into the contemporary implementation within the SEM

framework. We reviewed how basic latent growth models are used to specify confirmatory tests

of specific change functions and how Tucker’s (1958, 1966) original framework was used to

identify change functions in a more data-driven approach. Building from these frameworks, we

proposed a general SEM-based approach to exploratory latent growth modeling and demon-

strated how the model could be applied to two sets of longitudinal data. Additional insights

into underlying changes were found to emerge from the exploratory approach. Our contention

is that exploratory approaches to latent growth modeling might yield additional insights that

would be missed when fitting standard confirmatory growth.

Exploratory Approaches Facilitating Greater Understanding

In recent years there has been a resurgence of exploratory methods for examining change,

most prominently those making use of finite mixture models. Growth mixture, latent class, and

latent profile models identify subgroups (persons) within the overall sample of observations.

In complement, the exploratory growth modeling procedures reviewed and proposed here

distinguish weighted subtrajectories (occasions) within the overall sample of observations.

Given that both sets of techniques identify components, factors, or latent groupings that facilitate

interpretation and understanding of the observed data and its relation to theory, the SEM-based
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EXPLORATORY GROWTH MODELS 587

exploratory growth modeling and the mixture and latent class procedures fall within the same

zeitgeist.

Applying the SEM-based exploratory growth curve modeling procedures to the cortisol

data, we identified a potentially important set of between-person differences in the transition

from cortisol response to dissipation (around Occasions 4–6). Specifically, results indicated that

we should revisit when the dissipation process began and develop specific hypotheses about

what processes govern the transition between phases and why some individuals transition

earlier than others. Next steps would include formulating a confirmatory model that explicitly

models between-person differences in timing and examine how those differences are related to

other between-person measures. For example, the inclusion of time-invariant predictors (e.g.,

gender, depression; see Seeman et al., 1995) for the resultant components of the exploratory

models would be a potentially fruitful way to square these factors with extant theories regarding

the time course of cortisol response among individuals. Here again, the emergent benefit of the

exploratory approach is in the lack of a priori constraints regarding the shape of trajectories

over time.

Similarly, in applying the exploratory growth curve modeling procedures to the height data,

we identified systematic patterns indicative of an early-childhood growth spurt. Our results

suggest expanding the Preece–Baines model to reexamine the need for an early childhood

growth spurt in addition to the midadolescence growth spurt. More generally, both of our

exploratory analyses highlighted some features of the change process that were overlooked

with the traditional confirmatory approach. Although we do not know how these findings

might generalize across populations and data sets, the results suggest further consideration

of how transient processes might systematically contribute to within-person changes and how

between-person differences in timing of spurts or transitions might be modeled explicitly (see

Grimm et al., 2011; Marceau, Ram, Houts, Grimm, & Susman, 2011). In sum, we conclude

that exploratory models derived from the origins of growth modeling still hold promise for

identifying specific ways in which to expand or build theory—and should be (re) incorporated

into our regular procedures.

Benefits and Limitations

Within the exploratory zeitgeist, the SEM-based exploratory growth model proposed here

complements models based on principal components and profile analysis via multidimensional

scaling (Davison, 2008; Ding et al., 2005). Benefits of these other models include that (a) the

component and scaling scores can be directly computed in an assumption-free manner (i.e.,

no need for normality assumption of between-person differences), (b) the changes need not

follow any prespecified change pattern (see Davison, 2008), (c) substantial flexibility provided

by setups with very few constraints, and (d) the inherent ordering of the relative contribution

of each component or generalized learning curve to the observed change patterns provided by

the natural ordering of principal components (by eigenvalue).

Benefits of the SEM-based exploratory growth model demonstrated here include (a) imple-

mentation within a widely used framework that links directly to typical confirmatory growth

modeling procedures, (b) straightforward and commonly implemented evaluation of model

fit (e.g., RMSEA, CFI), (c) handling of incomplete data using FIML, (d) incorporation of

multivariate measurement models, and (e) modeling of multiple observed and latent groups.
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588 GRIMM ET AL.

The major limitation of the exploratory growth approach is the need to constrain a subset

of factor loadings to equal 0 (or other value) for model identification. Moving to the ESEM

framework allows for rotation, which enables the estimation of all factor loadings at each

measurement occasion and for correlated factors. However, a question remains regarding the

most appropriate types of rotation for these models. Our work suggested orthogonal rotations

provided more interpretable solutions.

Extensions

Overall, we were pleasantly surprised by the findings that emerged from our examination

of how Tuckerized curve and exploratory growth modeling approaches might be applied to

longitudinal data with which we were familiar. We learned something new about each data set

and can search out and develop new theoretical perspectives to subsequent modeling efforts.

As well, we look forward to expanding the reach of the exploratory approach to obtain new

insights from other data. In addition to the substantive explorations, there are a number of areas

where the method itself might be extended and examined further.

Combined exploratory and confirmatory model specifications. Typically growth curve

models include an intercept factor (indicated by all occasions with factor loadings equal to 1).

As well, Davison (2008) and colleagues (Ding et al., 2005) included an intercept term in their

exploratory principal components and profile analysis via multidimensional scaling models.

Intercept terms were included because they map directly onto hypothesized between-person

differences in overall levels or initial levels of ability or response. An intercept term can be

easily included within the exploratory growth framework. For example, a one-factor exploratory

growth model with an intercept factor is equivalent to the latent basis growth model (Meredith &

Tisak, 1990). Fitting exploratory growth models with a latent intercept factor to the longitudinal

cortisol and height data resulted in similar outcomes as those presented here. In particular, we

found that a model with two exploratory growth factors and a latent intercept factor provided a

reasonable representation of the cortisol data. The fit of this model, ¦2 D 99 with 22 estimated

parameters, was superior to the two-factor model without the intercept term and captured

the same change patterns—one factor described the general trend in the data (i.e., rise and

subsequent fall) and the second factor described additional changes during the dissipation phase.

In sum, additional growth factors with specific properties (i.e., substantive interpretations)

can be included into the exploratory growth curve model in a straightforward manner—and

thus simultaneously provide for confirmation and extension of existing descriptions of change

processes.

Rotation. Tucker (1958, 1966) and later Arbuckle and Friendly (1977) discussed rotation

of components in Tuckerized curves. Constraints on specific factor loadings to specific values

(and maintenance of orthogonal factors) might facilitate interpretation of growth factors by

effectively locking down the location of one or more dimensions of change—a Procrustes-like

rotation. Use of nonequality or other pattern-oriented constraints are now easily invoked in

most SEM programs. For example, factor loadings could be constrained to have only positive

values or to change monotonically across occasions. We see that it would be very useful to sys-

tematically outline the sets of constraints that are most appropriate for interpreting exploratory
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solutions in relation to a specific family of change functions (e.g., sigmoids or exponentials).

This would facilitate interpretation within one or more broad theoretical frameworks of change,

still allowing for a wide variety of growth factors to emerge. Furthermore, the rotation criteria

with the ESEM framework should be evaluated to determine which rotations are appropriate

for modeling longitudinal data in this manner.

Subprocesses and subgroups. As noted earlier, there are some parallels between growth

mixture models and the exploratory growth models described here—the former primarily being

used to identify subgroups of persons, and the latter to identify subprocesses that manifest

across occasions. Within a generalized SEM framework, these two lines can be integrated into

explicitly exploratory growth mixture models. Such models would be particularly useful in

developmental contexts where it is expected that there are groups of individuals with different

patterns of change that might result from different subprocesses. Typically, growth models

invoke an approach where every individual follows a pattern of change similar in shape to

the average trend. In the exploratory growth model presented in this article, each growth

factor contributes to each individual’s observed change pattern with different weights (factor or

component scores). Additionally allowing for the presence of latent classes (through a mixture

model), the exploratory models can be used to identify subgroups of individuals that have

categorically different sets of growth factors. In principle, there might be several components

or factors that are simply not relevant for particular subgroups (i.e., they would have zero or very

near-zero scores on those factors). Adding an additional layer of categorical between-person

differences in the manifestation of multiple subprocesses would allow for a substantially broad

set of change patterns that might map more closely onto developmentally oriented theoretical

frameworks (e.g., Baltes, Lindenberger, & Staudinger, 2006; Ford & Lerner, 1992).

Concluding Remarks

The scientific enterprise cycles through formulation of theory-driven hypotheses, empirical

tests with observed data, theory rejection, and subsequent revision of theory (Cattell’s [1966]

inductive-hypothetico-deductive spiral). The precursors of contemporary growth curve modeling

used a primarily exploratory approach to identify patterns of change that might inform the

development of theory-driven hypotheses about the processes that were driving the observed

changes (Tucker, 1958, 1966). The advent and adoption of confirmatory SEM has generated

a plethora of empirical results. Our contention is that we should again seriously consider

how exploratory models for change can be used for hypothesis generation (Davison, 2008) as

opposed to fitting a series of confirmatory models (e.g., linear, quadratic, latent basis) and using

those models to reject a very select set of (usually very simple) hypotheses about change.
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