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Table 1: Comparisons of estimators for categorical factor analysis (+ implies an
advantage and - implies a disadvantage)

Criteria Weighted least Maximum Bayes
squares likelihood

Large number of factors + – +
Large number of variables – + +
Large number of subjects + – –
Small number of subjects – + +
Statistical efficiency – + +
Missing data handling – + +
Test of LRV structure + – +
Ordered polytomous variables + – –
Heywood cases – – +
Zero cells – + +
Residual correlations + – ±

It is instructive to compare the three estimation procedures of weighted least

squares, maximum likelihood, and Bayes from the point of view of their relative

strengths in practice. A summary of the comparisons is given in Table 1. Weighted

least squares estimation is the default in Mplus because of several important

advantages, most notably its computational speed. This does not imply that it

is always the best choice, but it can be a good starting point. Following is a

discussion of the relative merits of the three estimators for the criterion of each

row in Table 1.

The number of factors has little influence on the computations for weighted

least squares. In contrast, maximum-likelihood is at a disadvantage with a large

number of factors because this leads to a large number of dimensions of numerical

integration, which is both time and storage space (memory) consuming. In this
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context, a large number of factors means four or more factors. With four factors

and the default of 15 integration points per dimension, a total of 154 = 50, 625

points are used, leading to slow computations. With exploratory factor analysis,

the Mplus default is to use only 7 integration point per dimension with the

idea that a sufficiently good approximation to the factor pattern is obtained.

With many factors, it may be advantageous to use Monte Carlo integration for

maximum likelihood estimation because in this case the computational work does

not depend on the number of factors. A total of 5000 points typically gives good

results, but in some cases 500 points give a sufficiently good approximation.

Maximum-likelihood and Bayes have the advantage of more easily handling a

large number of variables than weighted least-squares. This is because the weight

matrix of weighted least-squares grows by the power of four with the number

of variables. In this context, a large number of variables means say 50 or more

variables. In contrast, the computational work of maximum-likelihood and Bayes

increases only linearly as a function of the number of variables. Weighted least

squares can be speeded up by using options to not compute χ2 or standard errors,

which are more computationally demanding than getting the point estimates.

The number of subjects has ignorable influence on weighted least squares

estimation. Maximum likelihood estimation is at a potential disadvantage with

a large number of subjects because its computational time is a function of the

product of the number of integration points and the sample size. Maximum

likelihood using Monte Carlo integration is advantageous in such cases. The

number of factors interacts with the sample size in determining the relative

computational burden of maximum likelihood and Bayes. With small to medium-

size samples, the number of factors has much less influence on the Bayes
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computations than on the maximum likelihood computations. With large samples,

say several thousand, the Bayes advantage can be reversed.

A small number of subjects, say less than 200, has a negative impact on the

quality of the weighted least squares tests of model fit and parameter standard

errors. Parameter estimates are less negatively affected. The unweighted least

squares estimator ULSMV can be advantageous to WLSMV in small samples

(Forero et al. 2009). The full-information estimation of maximum likelihood may

be preferable in such cases (Forero & Maydeu-Olivares, 2009). While less explored,

the full-information approach of Bayes may also be preferable to weighted least

squares.

Maximum-likelihood estimation uses all available information in the data and

is optimal from a statistical point of view because it is an efficient estimator,

that is, its parameter estimates have as small standard errors as possible.

Bayesian estimation shares this quality because Bayes and maximum-likelihood

are asymptotically equivalent when non-informative priors are used for Bayes. In

contrast, weighted least-squares uses limited information from only the second-

order moments, that is, bivariate distributions from pairs of items, and ignores

information from higher-order moments. The loss of information may not be

great, however, as indicated for example by Christofferson (1975).

Missing data is handled better by maximum-likelihood and Bayesian estima-

tion than by weighted least squares. The most optimal approach of estimation

under the assumption of missing at random (MAR) is allowed with maximum-

likelihood and Bayesian estimation, but not with weighted least-squares. MAR

allows missingness for a subject to be influenced by the variables that are observed

for the subject. Estimation draws on all available data. In contrast, by using only
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limited information from pairs of variables, weighted least-squares requires a pair-

wise present approach (Asparouhov & Muthén, 2010d). When estimating a LRV

correlation, information is not used for subjects who has missing data on either of

the two variables. Weighted least-squares allows missingness to be a function of

only observed covariates, not observed outcomes. In the factor models discussed

in this chapter, there are no covariates, and weighted least-squares is correct only

under the assumption of missing completely at random (MCAR). MCAR is a

much stronger assumption than MAR. In this way, the simplicity advantage of

using bivariate information is a disadvantage from a missing data point of view.

It is of interest to test the structure on the LRV correlations imposed by

the factor model. The LRV correlations are a relevant target when the normality

assumption for the factors is combined with probit to create a multivariate normal

distribution for the latent response variables. Weighted least squares gives a χ2

test of model fit to the sample LRV correlations. Although this does not test fit

against the data, this is nevertheless a useful way to study the factor structure.

Maximum likelihood does not offer such a test. Bayes offers this type of test using

the approach of posterior predictive checking, where a discrepancy function in the

form of a χ2 test is obtained by u∗ data generated from the estimated model, and

where correlations based on these generated data are compared to those estimated

from the model.

With polytomous variables, weighted least squares estimation is as fast as with

binary variables. With maximum likelihood estimation, polytomous variables lead

to slower computations. This is partly due to optimizing with respect to many

more parameters due to having more threshold parameters. A more critical aspect,

however, is due to data collapsing. With categorical variables, a time-saving
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device is to summarize the raw data in terms of response pattern frequencies.

With binary variables, this collapsed data information is much less extensive than

with polytomous variables. Bayes estimation is considerably slowed down when

moving from binary to polytomous variables. This is for algorithmic reasons due

to the technical necessity of switching from the regular Markov Chain Monte Carlo

approach of Gibbs sampling to Metropolis-Hastings.

Heywood cases, that is, solutions corresponding to negative residual variances,

may occur with binary items even though residual variances are not free

parameters to be estimated. Often, Heywood cases lead to non-convergence,

although milder cases (smaller negative variances) may converge. With weighted

least squares and the Delta parameterization the latent response variable variances

are standardized to one. The latent response variable variance explained by the

factors (the communality) must not exceed one in order for the residual variance to

be obtained as a positive remainder. When it exceeds one, a Heywood case occurs

and a negative residual variance is printed. With the Theta parameterization, the

residual variance is fixed at one and a Heywood case materialize as an exploding

factor loading.

Maximum likelihood estimation likewise uses a fixed residual variance and

Heywood cases materialize as exploding loadings. Bayesian analysis avoids

Heywood cases by considering latent response variables with residual variance

fixed at one.

It is common to observe zero cells in the frequency table with binary variables

that have strong skewness or are observed in small samples, or where both

those conditions hold. In such cases the estimation of tetrachoric correlations is

problematic in that not enough information is available (see Brown & Benedetti,
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1977; Savalei, 2011). With a zero cell in a 2 × 2 table, the tetrachoric correlation

is theoretically either +1 or −1 depending on the position of the zero cell. This

means that sample tetrachorics are not a good summary of the data structure

and therefore fitting the model to these correlations as is done with weighted

least-squares can give distorted parameter estimates. In case of a zero cell, a

common approach is to add 0.5/n to the zero cell, but a better approach is perhaps

to avoid using the correlation, either by deleting a variable, creating one three-

category variable from the non-zero cells of the two binary variables, or switching

to another estimator. Maximum-likelihood estimation and Bayesian analysis may

be more successful in such settings in that the intermediate step of estimating

tetrachorics is avoided and the model fitted directly to the likelihood.

Frequently, there is a need to add residual correlations to the factor model.

The estimators differ with respect to the ease with which this can be done. Under

probit, the latent response variables have a multivariate normal distribution which

has the advantage of making available a correlation parameter for every pair

of latent response variables. This implies that a factor model can be easily

expanded to allow for correlated residuals. This is a strength of weighted least-

squares and Bayesian estimation, where the latent response variables play a part

in the computations. With weighted least squares using EFA, the correlated

residuals can be added to the model using the exploratory structural equation

modeling (ESEM) approach. With Bayes, ESEM is not yet available and

correlated residuals can be added only with confirmatory factor analysis models.

In contrast, with maximum-likelihood estimation, the latent response variables

do not play a part in the computations. Given the conditional probability

curve formulation of maximum-likelihood, any residual correlation violates the
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conditional independence. Under logit, normality of the factors and logistic

conditional probability curves do not lead to a known form for the multivariate

distribution of the latent response variables. In fact, this distribution has

to be expressed by integrating over the factors. Also, a multivariate logistic

distribution with free correlation coefficients does not exist. In this way,

with maximum-likelihood estimation any residual correlation requires that the

numerical integration approach is altered and expanded, for example by including

additional minor factors that represent the residual correlations.
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