
 
UNIVERSITY OF CALIFORNIA 

 
Los Angeles 

 
 
 
 

Mixture Modeling with Behavioral Data 

 

 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Education 

 

by 

 

Shaunna Lynn Clark 

 

 

 

2010 



 

  





 
 
 
 
 
 
 
 
 
 

To my mother, 
 

who always picked me up, dusted me off, and sent me on my way when I fell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iii



TABLE OF CONTENTS 
 

Dedication _______________________________________________________________iii 

List of Tables ____________________________________________________________viii 

List of Figures ____________________________________________________________ x 

Acknowledgments _________________________________________________________xi 

Vita ____________________________________________________________________xiii 

Abstract of the Dissertation ________________________________________________xvi 

Chapter One: Introduction__________________________________________________ 1 

References _____________________________________________________________ 7 

Chapter Two: Relating latent class analysis results to variables not included in the 
analysis _________________________________________________________________ 10 

Background __________________________________________________________ 14 

     Latent Class Analysis ________________________________________________ 14 

          Mean Comparison Testing __________________________________________ 16 

          Most Likely Class Regression________________________________________ 17 

          Probability Regression & Probability-weighted regression _________________ 18 

          Single-step Approach ______________________________________________ 19 

          Pseudo-class Draws _______________________________________________ 20 

          Previous Work ___________________________________________________ 20 

Real Data Examples ____________________________________________________ 22 

     Antisocial Behavior Example __________________________________________ 22 

     Aggression Example _________________________________________________ 26 

Monte Carlo Simulation Study ____________________________________________ 30 

     Data Generation Models ______________________________________________ 30 

 iv



     Data Analysis Models ________________________________________________ 32 

     Simulation Results ___________________________________________________ 33 

          Mean Comparison Simulation Results _________________________________ 33 

          Regression Simulation Results _______________________________________ 35 

Discussion ___________________________________________________________ 41 

     Limitations and Future Directions _______________________________________ 43 

Appendix A: Mplus Code for Chapter 2 _____________________________________ 19 

References ____________________________________________________________ 65 

Chapter Three: Models and Strategies for Factor Mixture Analysis_______________ 68 

Background __________________________________________________________ 70 

     Latent Class Analysis ________________________________________________ 70 

          Class Enumeration in Mixture Models _________________________________ 73 

Factor Analysis ________________________________________________________ 76 

Factor Mixture Model __________________________________________________ 78 

FMM: Model Variations ________________________________________________ 81 

FMM and Measurement Invariance ________________________________________ 84 

FMM: Factor Measurement Structure ______________________________________ 88 

FMM Model Building and Comparison _____________________________________ 90 

Examples _____________________________________________________________ 91 

     Example One: Conduct Disorder ________________________________________ 92 

     Example Two: ADHD ________________________________________________ 98 

Discussion __________________________________________________________ 105 

Appendix B: Mplus Code for Chapter 3 ___________________________________ 122 

References ___________________________________________________________ 131 

 v



Chapter Four: ACE Analysis for Latent Variable Phenotypes __________________ 136 

Background _________________________________________________________ 138 

      Latent Class Analysis ______________________________________________ 138 

Heritability Model: ADCE __________________________________________ 139 

Combining LCA and ACE __________________________________________ 141 

Factor Mixture Model _____________________________________________ 144 

Example ____________________________________________________________ 147 

      Sample Description ________________________________________________ 147 

      Latent Class Analysis ______________________________________________ 149 

      Factor Analysis ___________________________________________________ 151 

      Factor Mixture Model ______________________________________________ 151 

Discussion __________________________________________________________ 153 

Appendix C: Mplus Code for Chapter 4 ___________________________________ 169 

References __________________________________________________________ 180 

Chapter Five: Discussion and Future Directions ______________________________ 184 

Chapter Two _________________________________________________________ 184 

Chapter Three ________________________________________________________ 186 

Chapter Four _________________________________________________________ 188 

Future Research_______________________________________________________ 189 

References ___________________________________________________________ 193 

 

 

 

 

 vi



LIST OF TABLES 

 

Table 2.1: Antisocial beahvior mean comparison results __________________________ 46 

Table 2.2: Antisocial behavior regression results_________________________________ 46 

Table 2.3: Agression mean comparison results  _________________________________ 47 

Table 2.4: Agression behavior regression results ________________________________ 48 

Table 2.5: Monte carlo covariate mean comparison  ______________________________ 50 

Table 2.6: Monte carlo covariate regression results: Logistic regression coefficient = 0 __ 51 

Table 2.7: Monte carlo covariate regression results: Logistic regression coefficient = 0.5 _53 

Table 3.1: Simulated MI Data: Observed vs. estimated mean and within-class residuals _ 108 

Table 3.2: Conduct Disorder example: Model comparison results __________________ 108 

Table 3.3: Conduct disorder example: Factor loadings ___________________________ 109 

Table 3.4: ADHD example: Model comparison results __________________________ 110 

Table 3.5: ADHD example: Factor loadings ___________________________________ 111 

Table 3.6: ADHD example: Pattern response table for two-class, two-factor FMM-3 ___ 113 

Table 4.1: Model fit for latent variable twin models _____________________________ 157 

Table 4.2: Percentage of sample in each latent class by twin ______________________ 157 

 vii



Table 4.3: ACE estimates for latent variable models ____________________________ 158 

Table 4.4: Factor loadings for twin one-factor factor analytic and two-class, one-factor factor    

mixture model solutions ___________________________________________ 159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 viii



LIST OF FIGURES 

 

Figure 2.1: Latent class analysis model diagrams ________________________________ 55 

Figure 2.2: Antisocial behavior data profile plot ________________________________ 56 

Figure 2.3: Aggression data profile plot _______________________________________ 56 

Figure 3.1: Latent class analysis model diagram ________________________________ 116 

Figure 3.2: Factor analysis model diagram ____________________________________ 116 

Figure 3.3: General factor mixture model diagram ______________________________ 117 

Figure 3.4: FMM-1: Diagram and factor distribution plot ________________________ 117 

Figure 3.5: FMM-2: Diagram and factor distribution plot ________________________ 118 

Figure 3.6: FMM-3: Diagram ______________________________________________ 118 

Figure 3.7: Conduct disorder example: Two-class latent class analysis profile plot ____ 119 

Figure 3.8: Conduct disorder example: Three-class latent class analysis profile plot ___ 119 

Figure 3.9: Conduct disorder example: Two-class, one-factor FMM-2 profile plot _____ 120 

Figure 3.10: Conduct disorder example: Two-class, one-factor FMM-2 factor distribution      

plot __________________________________________________________ 120 

Figure 3.11: ADHD example: Four-class latent class analysis profile plot ____________ 121 

 ix



Figure 3.12: ADHD example: Two-class, two-factor FMM-3 profile plot ____________ 121 

Figure 4.1: Twin latent class analysis model diagram ___________________________ 160 

Figure 4.2: ACE model diagram ____________________________________________ 161 

Figure 4.3: Latent class analysis and ACE model diagram ________________________ 162 

Figure 4.4: Twin factor mixture model diagram ________________________________ 163 

Figure 4.5: FMM variation factor distribution __________________________________ 164 

Figure 4.6: Factor mixture model and ACE on factor diagram _____________________ 165 

Figure 4.7: Latent class analysis profile plot ___________________________________ 166 

Figure 4.8: Two-class, one-factor FMM profile plot ____________________________ 167 

Figure 4.9: FMM and ACE on the latent classes diagram ________________________ 168 

 

 

 

 
 
 
 
 
 
 
 
 
 

 x



ACKNOWLEDGEMENTS 

 

My first and primary acknowledgement must go to my dissertation committee, 

especially my advisor and mentor, Bengt Muthén. It has been an honor and a privilege to 

learn from and work with him. Mike Seltzer has been a valuable committee member, 

always providing support when I asked for it. Rashmita Mistry and her social inequalities 

research group gave me an outlet for developing non-technical explanations of my work. 

Susan Smalley reminded me that I know more than I think I do and that I’m the “expert”.  

I would also like to thank two groups for the use of their datasets without out 

which this dissertation would not have been possible. For the use of the FinnTwin12, I 

would like to acknowledge Brian d’Onofrio, Dick Rose, and Rick Viken at the Univeristy 

of Indiana, Bloomington, and Jaakko Kaprio at the University of Helsinki, Finland. I 

would also like to thank Susan Smalley for the use of the LA ADHD dataset.  

There were others, outside those most closely and academically connected to my 

dissertation, that also provided important support during this process. A big thank you 

goes out to Shonali Choudhury for her editing help, cupcake runs, and providing a 

shoulder to cry on. Thanks to Ethan Creech for copy editing and inserting snarky 

comments in my work to help keep me motivated to edit. Thank you to John French for 

always giving me emotional support and shoulder to lean on when things got tough. To 

my TSP family, especially Brisby, I want to thank you for giving me an outlet to vent my 

frustrations. Thank you to my SRM classmates and colleagues, especially Karen Nylund-

Gibson, with whom I have shared my graduate experience. Thank you to the members of 

 xi



PSMGII for their active encouragement and feedback on early versions of this work. 

 I would also like to thank my family, for their encouragement, understanding, and 

support. My mother Nancy has been a best friend and an inspiration. She helped with 

financial and emotional support throughout this process and encouraged me to stick with 

it. Randy has provided continual support and encouragement throughout my education. I 

am also grateful for the companionship of my cat Bogie, who always reminds me that life 

is all about belly rubs and napping. 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xii



VITA 
 

PUBLICATIONS AND PRESENTATIONS 

July 19, 1981 Born, Westlake, California 
  
2003 B.A., Statistics 

University of California, Berkeley 
  
2003-2005 Research Assistant 

Center for Research on Evaluation, Standards, & 
Student Testing (CRESST) 
University of California, Los Angeles 

  
2004 
 
 
2004-2005 

M.A., Education 
University of California, Los Angeles 
 
Research Assistant 
Center for the Assessment and Evaluation of Student 
Learning (CAESL), UCLA 

  
2005 Teaching Assistant/Special Reader 

School of Education and Information Studies, UCLA 
  
2005-2009 Graduate Student Researcher 

School of Education and Information Studies, UCLA 
  
2006 Teaching Assistant/Special Reader 

School of Education and Information Studies, UCLA 
  
2007 Teaching Assistant/Special Reader 

School of Education and Information Studies, UCLA  
  
2008 Applied Psychological Measurement Graduate Student 

Grant 
School of Education and Information Studies, UCLA 
 
 

 
Gearhart, M. & Clark, S. (2006). Developing expertise with classrooms assessment in 
K-12 science. Paper presented at the annual meeting for the Center for Research on 
Evaluation, Standards, & Student Testing (CRESST). 

Gearhart, M., Nagashima, S., Pfotenhauer, J., Clark, S. Schwab, C., Vendlinski, T., 
Osmundson, E., Herman, J., & Bernbaum, D. (2006).  Developing expertise with 

 xiii



classroom assessment in K-12 science: learning to interpret student work.  
Educational Assessment, 11(3&4), 237-263.  

Clark, S. & Muthén, B. (2007). Latent class analysis of non-independent samples. 
Paper presented at the annual meeting of the American Educational Research 
Association. 

Clark, S. & Muthén, B. (2007). The structure of ADHD: An application of growth 
mixture modeling. Paper presented at the annual meeting of the Society for 
Prevention Research. 

Clark, S. & Muthén, B. (2007). How to handle clustered data when deciding on the 
number of classes in a latent class analysis: A Monte Carlo simulation study. Paper 
presented at the annual meeting of the Society for Prevention Research. 

Clark, S. (July 2007). An Introduction to mixture modeling: Applications in 
psychology. 2-day short course presented at the Department of Psychology, 
University of Indiana, Bloomington. 

Boomsma, D., Cacioppo, J., Muthén, B., Asparouhov, T. & Clark, S. (2007). 
Longitudinal genetic analysis for loneliness in Dutch twins. Twin Research and 
Human Genetics, 10, 267-273. 

Muthén, B., Asparouhov, T. & Clark, S. (2008). Multilevel mixture modeling 
applications. Paper presented at the annual Joint Statistical Meeting. 

Muthén, B., Asparouhov, T. & Clark, S. (2008). Multilevel growth mixture 
modeling: examining trajectories of student aggression. Paper presented at the annual 
meeting of the Society for Prevention Research. 

McGough, J.J., Loo, S.K., McCracken, J.T., Dang, J., Clark, S., Nelson, S.F., & 
Smalley, S.L. (2008). The CBCL Pediatric Bipolar Disorder Profile and ADHD: A 
comorbidity study and quantitative trait loci analysis. Journal of the American 
Academy of Child and Adolescent Psychiatry, 47(10), 1151-7. 

Clark, S. & Muthén, B. (2008) When good latent class analyses go bad: Treating 
latent class membership as an observed variable. Paper presented at the annual 
meeting of the Society for Prevention Research. 

 

 
 
 
 
 

 xiv



ABSTRACT OF THE DISSERTATION 
 
 

Mixture Modeling with Behavioral Data 

by 

 

Shaunna Lynn Clark 

Doctor of Philosophy in Education 
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Professor Bengt Muthén, Chair 

 

United States schools and students suffer from problems associated with student 

behavioral disorders. There is a need for innovate statistical methods to analyze data to 

which will help inform the development of new strategies to deal with the issues 

associated with behavioral problems. The three papers in this dissertation focus on 

explicating certain mixture models which have shown promise in analyzing behavioral 

data. An important interest in mixture modeling is the investigation of what types of 

individuals belong to each latent class by relating classes to auxiliary variables.  

The first paper presents results from real data examples and simulations to show how 

various factors, such as sample size, can impact the estimates and standard errors of 

auxiliary variable effects and testing mean equality across classes. Based on the results of 

the examples and simulations, suggestions are made about how to select auxiliary 

variables for a latent class analysis (LCA). The second paper discusses the factor mixture 

model (FMM) which uses a hybrid of both categorical and continuous latent variables. 
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The FMM is a good model for the underlying structure of behavioral disorders because 

the use of both categorical and continuous latent variables allows the structure to be 

simultaneously categorical and dimensional. The use of the FMM in behavioral research 

is not prevalent because there is little research about how the FMM should be applied in 

practice. This paper explores the FMM by studying two real data examples: conduct 

disorder and attention-deficit hyperactivity disorder. Through these examples, this paper 

aims to explain the different formulations of the FMM, the various steps in building a 

FMM, as well as how to decide between a FMM and alternative models. The third paper 

explores of the use of two mixture model as potential phenotypes in ACE analysis: LCA 

and FMM. The use of these models as phenotypes is demonstrated through an example 

concerning conduct disorder in a sample of Finnish twins. A discussion about extending 

the models in this dissertation to be applicable to longitudinal data or include gene by 

environment (GxE) interactions is also presented. 
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Chapter One: Introduction 
 

 
Unobserved heterogeneity presents a problem when analyzing behavioral data 

from randomized control trials (RCTs). Often, data are frequently analyzed as if they are 

obtained from a single, homogenous population, although it is unlikely that all 

individuals in a sample have the same set of parameter values (Muthén, 1989). Treating 

the sample as homogenous, when it is not, may bias the model parameters and impact the 

inferences made about the effectiveness of a treatment. Mixture modeling is one 

technique that can be used to analyze data with unobserved heterogeneity resulting from 

RCTs (Muthén et al., 2002). Mixtures help to model unobserved heterogeneity in a 

population by identifying different groups of individuals within a population. In RCTs, 

mixtures are especially useful because they help to identify groups of individuals for 

whom a treatment is effective. This dissertation will explore specific mixture models and 

their application to behavioral data. 

 United States schools and students suffer from problems associated with student 

behavioral disorders. Examples of behavioral disorders include anti-social behavior, 

mood disorders, and drug and alcohol dependence. These behavioral disorders can have 

negative effects on the student as an individual, and on the student’s classroom and 

school. Students affected with behavioral disorders are more likely to suffer from failing 

grades, attendance problems, school removal, having to repeat grades and feelings of not 

fitting in (Loeber & Farrington, 2000; Lewis et al., 2004) than their unaffected peers. 

Classrooms with affected students can suffer from classroom management issues and can 

have negative effects on the unaffected children in the classroom. Schools have to stretch 
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already limited resources to provide students with behavioral problems with specialized 

treatments and curricula in order to help them learn. There is a need for innovate 

statistical methods to analyze data to better analyze data on students with behavioral 

disorders, which may help overcome the problems stated. 

 One way to study the effectiveness of a treatment or intervention for students that 

are affected by behavioral disorders is a randomized control trial (RCT). In a RCT, 

students or classrooms are randomly assigned into either the intervention condition, 

where they receive treatment, or the control condition, where they do not receive 

treatment. This ensures that both known and unknown confounding factors are evenly 

distributed between the groups. An example of an educational RCT is the Good Behavior 

Game (GBG) study (Kellam et al., 1994). The GBG study applied a universal 

intervention aimed at reducing aggressive-disruptive behavior during first and second 

grade to improve reading and reduce aggression, with outcomes assessed through middle 

school and beyond. 

 One limitation of educational RCTs that look at behavioral outcomes is that they 

typically do not collect any genetic information. There is emerging evidence from both 

quantitative and molecular genetics studies that there are genetic influences on behavioral 

disorders. For example, evidence from twin studies (Fu et al. 2002; Hicks et al., 2004; 

Krueger et al.,  2002; Silberg et al., 2003) point to common genetic influences on both 

antisocial behavior and drug and alcohol dependence. Importantly, a number of genes in 

the dopaminergic system (e.g., DRD4 and DAT1) have been shown to be associated with 

impulsiveness (e.g., Keltikangas-Järvinen et al., 2004) and response inhibition (Cheon et 
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al., 2005; Cornish et al., 2005; Galili-Weisstub et al., 2005), which are both risk factors 

for antisocial behavior and drug abuse/dependence (Gjone & Stevenson, 1997; Goldsmith 

& Lemery, 2000; Tarter et al., 1985).  

 The growing evidence of genetic influences on the development of behavioral 

disorders suggests that genetic factors may contribute to variation in developmental and 

intervention outcomes. One way that they can contribute to variation in outcomes is 

through gene by environment interactions. For example, Tuvblad et al. (2006) found that 

socioeconomic factors moderated genetic and environmental influences on adolescent 

antisocial behavior. Similarly, Caspi et al. (2003) reported that a functional 

polymorphism in the promoter region of the serotonin transporter (5-HT T) gene 

moderated the influence of stressful life events on depression. Collecting genetic 

information can help researchers that conduct educational RCTs better understand the 

effectiveness of their interventions.  

 One educational RCT that is collecting genetic information in their next wave of 

data collection is the GBG study (Ialongo, N., personal communication, August 26, 

2008). Randomized controlled trials, such as the GBG, provide an opportunity to study 

genotype by environment interactions with a minimal amount of confounding between 

genetic and environmental influences given that the participants are randomly assigned to 

intervention conditions. For example, assume that the GBG study finds an association 

between antisocial behaviors and a specific candidate gene(s) or genomic marker(s) 

among the control group participants, but fails to find such an association, or finds a 

significantly weaker one, among intervention participants. The fact that participants were 
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randomly assigned to intervention conditions provides a relatively strong basis for 

inferring that the intervention served as a moderator of gene expression. Put more simply, 

the intervention may have interrupted the effect of that specific gene(s) or genomic 

marker(s) on antisocial behavior.  

This dissertation focuses on explicating certain mixture models and extending 

them to include genetic information in a series of three papers. While the methods used in 

these papers are not currently applied to education data because of the lack of available 

genetic information, they can be applied to this type of data once the data becomes 

available. It is important that the methods used to analyze educational data with genetic 

information be determined ahead of time so that once genetic information becomes 

available researchers are able to analyze the data efficiently. 

Each paper in this dissertation focuses on addressing different issues in the 

application of mixture models to behavioral data. The first paper, titled “Relating latent 

class analysis results to variables not included in the analysis,” investigates how the 

method chosen to incorporate covariates into a mixture model can impact the estimates 

and standard errors in a regression or the results of a mean comparison test. By including 

covariates into an analysis evaluating the effectiveness of an RCT, rival hypotheses, 

which might also explain the results, can be ruled out. Two possible ways of testing the 

effect of covariates are including the covariates as independent variables in a regression 

analysis or conducting a mean difference test. This paper explores the quality of estimates 

and standard errors incurred when researchers use the five regression approaches 

discussed in the paper. Additionally, this study investigates how using most likely class 
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membership in mean comparison testing can potentially distort the test statistic and its 

interpretation. Using Monte Carlo simulations, this study examines how various factors, 

such as the degree to which people are classified correctly into latent classes, can impact 

the estimates and standard errors of auxiliary variable effects and testing mean equality 

across classes. Based on the results of the real data examples and simulations, 

suggestions are made about how to select covariates for an analysis.  

The second paper, titled “Models and strategies for factor mixture analysis: Two 

examples concerning the structure underlying psychological disorders”, uses a factor 

mixture model (FMM) to explore the underlying structure of psychological outcomes. In 

the psychological literature there has been debate about whether the underlying structure 

of psychopathology is categorical or dimensional. This paper discusses the FMM and 

how, through the use of two kinds of latent variables, the FMM models the underlying 

structure to be simultaneously categorical and dimensional. While the conceptualization 

of the FMM has been explained in the literature, the use of the FMM is still not prevalent. 

One reason is that there is little research about how such models should be applied in 

practice and, once a well fitting model is obtained, how it should be interpreted. The 

second paper explicates the FMM by discussing its most general form and how the FMM 

and its interpretation can change based on the amount of measurement invariance in the 

model. How to apply the FMM in practice, including how to decide on the number and 

types of latent variables, detecting the presence of measurement invariance, and 

comparing the FMM to alternative models, is demonstrated through the use of two 

examples on conduct disorder and attention-deficit hyperactivity disorder (ADHD). 
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The third paper, titled “ACE Analysis for Latent Variable Phenotypes”, explores 

how latent variable phenotypes can be used in genetic analyses of behavioral outcomes. 

Two common phenotypes used in behavioral genetics are affection status and a sum score 

of symptom items. While these phenotypes are easy to obtain, they are not without 

limitations. The third paper proposes two different mixture models to use as phenotypes 

in a behavioral genetic analysis to overcome the limitations of traditional phenotypes. 

The first latent variable phenotype is the latent class analysis (LCA) model, which uses a 

categorical latent variable to account for the unobserved heterogeneity in a sample. The 

second latent variable phenotype is the FMM with measurement invariance. This paper 

elucidates the LCA and FMM as phenotypes and shows how they can be combined with 

an ACE model, which decomposes the variance of a phenotype in order to explore how 

much variation is attributable to genes. The use of these models as phenotypes is 

demonstrated through an example concerning conduct disorder in a sample of Finnish 

twins. 
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Chapter Two:  
 

Relating Latent Class Analysis Results to Variables not Included in the Analysis 
 

 
Mixture modeling in the form of latent class analysis and growth mixture 

modeling has become an important tool for researchers (for an overview see Muthén, 

2008). Mixtures help model unobserved heterogeneity in a population by identifying 

different latent classes of individuals based on their observed response pattern. An 

important interest in mixture modeling is the investigation of what types of individuals 

belong to each class by relating classes to covariates, concurrent outcomes, and distal 

outcomes, also known as auxiliary variables. This paper compares techniques for relating 

latent classes to auxiliary variables. 

As a first step in investigating the relationship between latent classes and auxiliary 

variables, many researchers utilize mean comparisons tests, such as t-tests, ANOVAs, or 

chi-square tests, to establish whether a relationship is present. In order to conduct these 

tests, the first step is to estimate the mixture model based only on latent class indicators, 

obtaining each individual’s most likely class membership, with assignment into classes 

being based on the highest probability of being in a given class. Using these assigned 

class memberships, the mean comparison tests can then be performed.  

Regression models are used to further explore the relationship between latent 

classes and auxiliary variables. There are four commonly used regression approaches: 

• Most likely class regression: Regression of most likely class membership 

on the covariates, 
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• Probability regression: Regression of an individual’s logit-transformed 

posterior probability to be in a given class on the covariates, 

• Probability-weighted regression: Regression that is weighted by an 

individual’s posterior probability to be in a given class, 

• Single-step regression: Including the covariates in the analysis while 

forming the latent classes. 

In both the mean- and regression-oriented approaches, a problem with using most 

likely class membership is that class is treated as an exact, observed variable. To illustrate 

this problem, suppose a two-class model and take two individuals, one with a probability 

of 1.0 for belonging to Class 1 and 0.0 for Class 2 and the other with a probability of 0.51 

for belonging to Class 1 and 0.49 for Class 2. Both individuals would be assigned and 

treated as members of Class 1 in the subsequent analyses. But the analyses does not take 

into account that the two individuals have different probabilities of being in the same 

class and instead are treated as if they both have a probability of 1.0 of being in Class 1. 

This will distort estimates because individuals are forced into their most likely latent 

classes. The standard errors will also be incorrect because the analysis does not take into 

account the uncertainty of the classification but treats it as an observed variable. This 

poses a problem because incorrect standard errors can lead to erroneous conclusions 

about the significance of an effect.  

As in the most likely class regression, the first step of the probability and 

probability-weighted regressions is the estimation of the latent class model based only on 

the latent class indicators. In the second step, instead of having assigned class 
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membership as the outcome, the probability regression uses an individual’s logit- 

transformed posterior class probability as the outcome. For the probability-weighted 

regression, the regression of class membership on the covariates is weighted by each 

individual’s posterior probability. Using the probabilities of being in a given class may 

give less bias to regression coefficients but is still problematic because the probabilities 

are estimates and an analysis will not take into account the error associated with those 

estimates. So, the standard errors of a regression between the posterior probabilities and 

an auxiliary variable will be incorrect.  

In the single-step approach, the problem of incorrect estimates and standard errors 

is circumvented because the analysis allows individuals to be fractional members of all 

classes and the latent class variable is not treated as observed. Such an approach, 

however, may be cumbersome when many auxiliary variables are involved because of the 

increased computation time associated with the inclusion of more auxiliary variables. 

Furthermore, a researcher may not always want auxiliary variables to influence the 

determination of class membership because the inclusion of auxiliary variables can 

potentially change the substantive interpretation of the latent classes. 

 A fifth approach, which has recently been put forward, is pseudo-class draws 

(Asparouhouv & Muthén, 2007; Wang et al., 2005). Here, several random draws are 

made from each individual’s posterior probability distribution to determine an 

individual’s class membership. Based on these draws, mean tests and regression 

estimates can be computed. 
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This paper explores the quality of estimates and standard errors incurred when 

researchers use the five regression approaches introduced above. Additionally, this study 

investigates how using most likely class membership in mean comparison testing can 

potentially distort the test statistic and its interpretation. Using Monte Carlo simulations, 

this study also examines how various factors, such as the degree to which people are 

classified correctly into latent classes, can impact the estimates and standard errors of 

auxiliary variables and testing mean equality across classes. Based on the results of the 

real data examples and simulations, suggestions are made about how to select covariates 

for an analysis.  

The first section of this paper introduces the latent class analysis model and 

describes the approaches for examining the relationship between the latent classes and 

auxiliary variables. The next section provides two real data examples to demonstrate the 

problem of treating class membership as an observed variable and also to show how 

incorrect the estimates and standard errors can be when including many auxiliary 

variables. The third section describes the simulation study and its results to confirm the 

results of the real data examples as well as to show the extent of the problem. The final 

section, presents highlighted results, suggests under what conditions it is appropriate to 

use the methods examined, and recommends a process by which to select auxiliary 

variables for an analysis. 
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Background 

Latent Class Analysis Model 

The latent class analysis (LCA) model, introduced by Lazarsfeld and Henry 

(1968), is used to identify subgroups, or classes, of a study population. A diagram of an 

example of a latent class analysis model is shown in Figure 2.1a. There are two major 

concepts depicted in Figure 2.1a, the latent class itself and the observed outcomes or 

items that define the class. These can be seen in Figure 2.1 as the C, and u1-ur, 

respectively. The boxes, u1 to ur, represent the observed response items or outcomes. The 

outcomes in a LCA model can be categorical or continuous, though this paper will 

specifically focus on dichotomous, categorical items. The circle with the letter C in the 

middle is the unordered, categorical latent class variable with K classes. The arrows 

pointing from the latent class variable to the boxes above indicate that those items are 

measuring the latent class variable. This means that class membership is based on the 

observed response pattern of items. An important assumption, called the conditional or 

local independence assumption, implies that the correlation among the observed 

outcomes is explained by the latent class variable. Because of this, there is no residual 

correlation between the items.  

For a LCA model with categorical outcomes, there are two types of model 

parameters: conditional item probabilities and class probabilities. The conditional item 

probabilities are specific to a given class and provide information about the probability 

that an individual in that class will endorse that item. The class probabilities specify the 

relative size of each class, or the proportion of the population that is in a particular class.  
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Consider a LCA model with r observed binary items, u, has a categorical latent 

variable C with K classes (C = k; k = 1, 2, . . ., K). The marginal item probability for item 

uj = 1 is  

1
( 1) ( ) ( 1|

K

j j
k

P u P C k P u C k
=

).= = = = =∑     (1) 

Assuming conditional independence, the joint probability of all the r observed items is 

1 2 1 2
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A product of LCA is the estimated class probabilities for each individual, called posterior 

probabilities, analogous to factor scores in a factor analysis (Muthén 2001). These are 

estimates of 

1 2
1 2

1 2
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r
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P C k P u C k P u C k P u C kP C k u u u
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= = =
= =

= . (3) 

Note that each individual is allowed fractional class membership and may have non-zero 

values for many classes. It is from these probabilities that class membership is assigned. 

An individual is assigned to be a member of a class based on their highest probability of 

being in a given class, even though an individual may have several classes to which they 

are a partial member. Once assigned to a class, an individual is assumed to be a part of 

that class 100%. Therefore, the fractional membership in multiple classes disappears 

when using most likely class membership as an observed variable in subsequent analyses.  

One way to examine how well individuals have been classified is to look at the 

entropy of the latent class model using the following formula: 
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where denotes the estimated posterior probability for individual i in class k. Entropy 

is measured on a zero to one scale with a value of one indicating the individuals are 

perfectly classified into latent classes. Higher values of entropy indicate better 

classification of individuals.  

ikp̂

Mean Comparison Testing. One method to investigate the relationship between 

the latent classes and auxiliary variables is to conduct a mean difference test across the 

classes. This is done by first estimating the latent class model and then classifying people 

into latent classes based on their highest posterior probability of being in a given class. 

These memberships are then used as the groups in the mean comparisons tests, although, 

which test to use depends on the type of covariate.   

If the covariate is continuous and approximately normally distributed, a one-way 

analysis of variance (ANOVA) is appropriate because the test requires a continuous 

outcome and can handle having two or more latent classes. When there are only two class 

means to compare, one could also choose to use a t-test but, with only two classes, the t-

test and the ANOVA are equivalent. One assumption of ANOVA is that being a member 

of one class has no effect on whether an individual is a member of a different class. This 

assumption is incorrect when using latent classes as the group in an ANOVA because if 

an individual is not a member of class one, then they have to be a member of class two. 

Even though the analyses do not meet the assumptions of this test, it is still commonly 
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used by researchers when comparing the mean of an outcome across latent classes. So, it 

is important to investigate the impact of using this test. 

If the covariate is categorical, a chi-square test of equal proportions will test 

whether the frequency of the covariate is the same across all classes. The chi-square test 

can be computed as: 

QP = ∑
=

−K

j j

jj

e
ef

1

2)(
,      (5) 

where fj denotes the frequency of the covariate in class j (or the number of observations 

in class j) for j = 1, 2, . . ., K. Since the null hypothesis specifies equal proportions of the 

total sample size for each class, the expected frequency for each class equals the total 

sample size divided by the number of classes, or: 

Kne j /=  for j = 1, 2, . . ., K.     (6) 

Most Likely Class Regression. In this approach, most likely class membership is 

related to the auxiliary variables. First, the LCA is conducted based on the latent class 

indicators and individuals are assigned to their most likely class. In the second step, the 

membership assignments from the previous step are used as an observed variable in the 

regression. In the covariate case, the assigned membership, m, which can take on values 

from 1 to K, is regressed onto the covariate using a multinomial logistic regression 

where: 
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where αK = 0, βK = 0 so that = 1, implying that the log odds of comparing Class k 

to the last Class K is 

iKK xe βα +

log [P(mi = k | xi) / P(mi = K | xi )] = αk + βk xi .   (8) 

In the case of a distal outcome, the distal outcome is regressed on the assigned 

membership and the type of regression used will depend on the distal outcome variable 

type.  

Probability regression and probability-weighted regression. One way around 

using the assigned class membership, is to use class probabilities. Two ways of 

incorporating class probabilities are discussed in this study. The first method is the 

probability regression in which an individual’s posterior class probability is converted to 

the logistic scale and then regressed on the covariates using a linear regression. The 

probabilities are converted because, on a probability scale, the values can only range 

from 0 to 1, which is not suitable for linear regression. On a logistic scale, the converted 

probabilities can have any value. In the second approach, the regression is weighted by 

each individual’s posterior probability of being in a given class. 

Using the probabilities of being in a given class may give less bias to regression 

coefficients but is still problematic because the probabilities are also estimates and an 

analysis will not take into account the error associated with those estimates. So, the 

standard errors of a regression between the posterior probabilities and an auxiliary 

variable will be incorrect. This poses a problem because incorrect standard errors can 

lead to erroneous conclusions about the significance of an effect.  
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Single-Step Approach. In order to see who is a member of each class, covariates 

can be added to the LCA model. Figure 2.1b shows the diagram of this model. As with 

the plain LCA model, there is a latent class variable, C, and the items that measure the 

latent class variable. What has been added is the box to the left of the latent class 

variable, with the x in the middle, which represents the covariate. There is an arrow 

starting from the covariate box and ending at the latent class variable. This indicates that 

the latent class variable is being regressed on the covariate, x. More specifically, this 

regression is a multinomial logistic regression because the outcome, the latent class 

variable, is categorical with potentially more than two categories.  

LCA with covariates has been considered by Bandeen-Roche et al. (1997), 

Dayton and Macready (1988), Formann (1992), and Heijden et al. (1996). This modeling 

considers a covariate, x, where the probability that individual i, falls in class k of the 

latent class variable C is expressed through multinomial logistic regression as 

k i

s s i
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where αK = 0, γK = 0 so that = 1, implying that the log odds of comparing class k 

to the last class K is 

iKK xe γα +

log [P(Ci = k | xi) / P(Ci = K | xi )] = αk + γk xi .     (10) 

Muthén and Muthén (2000) gave an example of LCA with covariates applied to 

antisocial behavior classes related to age, gender, and ethnicity. 

 Similar to covariates, distal outcomes can be added to the LCA model to see how 

class membership predicts the distal outcome. Here, the latent class variable is an 
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exogenous instead of endogenous variable. This is one method that substantive 

researchers use to investigate the predictive validity of the latent classes. Figure 2.1c 

shows an LCA model with a distal outcome. Again, there is the traditional latent class 

model, but the addition is the box to the right of the latent class variable with a y in the 

middle. This box represents the distal outcome. There is also an arrow pointing from the 

latent class variable to the distal outcome box indicating that the distal outcome is being 

regressed on to the latent class variable. This regression can be linear, logistic, or another 

type of regression depending on the form of the distal outcome. 

Pseudo-class draws. Instead of using assigned class membership, another option 

is to use pseudo-class draws. When doing latent class analysis, every individual has a 

posterior class distribution or, stated differently, every individual has a posterior 

probability of being in each class. The distribution of these probabilities is multinomial 

because there are potentially more than two classes. The draws are made by taking 

random samples from this multinomial distribution. By having multiple random samples, 

individuals are given a chance to change membership to neighboring classes, which gives 

a sense of the variation associated with the distribution. The pseudo-class draws are 

similar to multiple imputation in missing data analysis, except in this case, the latent 

classes are missing. Given the pseudo-class draws, class specific means, variances, mean 

equality tests and regressions can be computed. For a more technical treatment of pseudo-

class draws, see Asparohouv & Muthén (2007) and Wang et al. (2005).  

Previous Work. While many researchers have identified the problem of using 

class membership as an observed variable in an analysis, none have shown how 
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problematic it can be. Hagenaars (1993) points out that because there can be high 

misclassification of individuals into classes, using most likely class assignment can be 

problematic because those individuals that are assigned to the wrong class will skew the 

true relationship between the classes and the external variables. Clogg (1995) also points 

out the dangers of using this strategy and named it the classify-analyze strategy. Nagin 

and Tremblay (2001) show that after individuals are assigned to classes, comparisons can 

be made across the classes on an outcome of interest by inspecting the means of the 

outcome. They continue on to point out that this technique is problematic because there is 

no valid basis for computing the standard errors and therefore confidence intervals or 

hypothesis tests cannot be computed (Roeder et. al. 1999). Heijden et al. (1996) offer that 

one way to avoid the problems of the classify-analyze strategy is to estimate class 

membership and the relationship to external variables all in one step. Heijden also points 

out that there are three advantages to conducting the analyses in one step. First, by doing 

the analyses in one step the classification issue is avoided. Second, it is better to work 

with one model and its model fit than to worry about model fit for two separate models, 

the latent class analysis and the subsequent regression. Finally, it is possible to 

investigate models that have zero degrees of freedom or are unidentified in ordinary 

latent class analysis by using covariates in the analysis.  

 This study shows how much of a problem it is to use class membership as an 

observed variable by demonstrating how distorted the estimates and standard errors of a 

covariate or distal outcome effect can be. It also shows results for a new approach for 

relating latent classes to auxiliary variables, namely using pseudo-class draws. 
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Real Data Examples 

 In this section two real data examples will be discussed to explore how the 

problem of treating assigned class membership as an observed variable is compounded 

when there are multiple auxiliary variables in an analysis. The first example examines 

antisocial behavior in 16-23 year olds. The second example investigates aggressive 

behavior of first grade children in the classroom.  

Antisocial Behavior Example 

The data for this example are the Antisocial Behavior (ASB) data which were 

taken from the National Longitudinal Survey of Youth (NLSY) that is sponsored by the 

Bureau of Labor Statistics. These data are made available to the public by Ohio State 

University. The data were obtained as a multistage probability sample with an over-

sampling of African Americans, Hispanics, and economically disadvantaged non-black 

and non-Hispanics. 

 The ASB data include 17 antisocial behavior items that were collected in 1980 

when respondents were between the ages of 16 and 23. The ASB items assessed the 

frequency of various behaviors during the past year. A sample of 7,326 respondents has 

complete data on the antisocial behavior items and the covariates used in this example. 

For covariates, gender, age and ethnicity will be considered. Gender and ethnicity are 

dichotomous variables with ethnicity being split into two separate variables, Black and 

Hispanic, which are referenced to the predominant ethic group in the sample, White.  

 The data were first analyzed by conducting the LCA and inclusion of the 

covariates in one single step. The next phase was to conduct the other strategies: 
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regressing most likely class membership on the covariates, regressing the class 

probabilities on the covariates, using the class probabilities as weights in a regression, or 

pseudo-class regression. Also, once class membership was established, the mean 

comparison tests were conducted. The results of these analyses can be seen in Table 2.1 

for the mean comparisons and Table 2.2 for the regression. In Table 2.2, there are four 

classes in the analysis, which means that when the latent classes are regressed on the 

covariates a multinomial logistic regression is used. Because of this, the results are in 

terms of logits and the regressions are in reference to the last class which has been set to 

be the largest class. 

 Before discussing the results, it is important to understand the class structure of 

this dataset so it can be understood how using different methods of incorporating 

covariates can affect the overall interpretation. Figure 2.2 shows a class profile plot for 

these data with four classes. The first class, and the smallest class in size, was considered 

to be a high antisocial behavior class because the probability of endorsing almost all of 

the items was high. The second class was considered the person offense class because the 

items that had a high probability of endorsement are items related to aggression against 

another person such as fighting. The third class was considered the drug class because 

only items relating to drugs were highly endorsed. The fourth class, and largest in size, 

was considered the normative class because almost all items had a low probability of 

endorsement, with marijuana use being the only exception. The entropy was 0.74.  

 The results in Table 2.1 suggested that the pseudo-class Wald chi-square and 

equal proportion chi-square yielded similar results. The absolute values of the chi-square 
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statistics were similar across both types of tests, with the equal proportions chi-square test 

yielding higher values. Additionally, the significance of the tests was equivalent across 

all the covariates, though this may be due to chi-square being sensitive to the large 

sample size of this data set. Even though the values and significance of the tests were 

similar across the two methods, the potential for problems becomes apparent. Differences 

between the tests are likely to arise when the tests are close to the borderline of being 

significant. When this occurs it is likely that the equal proportions chi-square will lead 

one to conclude that there are significant differences across the classes because it has 

higher test values, and the pseudo-class Wald chi-square will lead one to conclude that 

there are no differences across the classes. 

 As is shown in Table 2.2, how covariates are incorporated into an analysis can 

affect the interpretation of the relationship between the covariate and the latent class 

variable. Using the assigned class membership, the class probability-weighted regression 

or pseudo-class draws yielded smaller regression estimates and standard errors than 

conducting the analyses in one step. Pseudo-class regression estimates were the furthest 

away from the estimates obtained when including the covariates in the analysis, followed 

by probability-weighted regression. Most likely class membership estimates and standard 

errors came closest to the results from including the covariates in the analysis. 

 In Table 2.2, the results for the probability regression are presented on a 

continuous dependent variable scale while the rest of the table is presented on a logistic 

scale. Because the results in the table were not directly comparable, the comparison 

between the methods will focus on the sign and significance of the regression estimates. 
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In most of the regressions, the sign and significance of the regression estimate were the 

same across all methods. For the regressions of the drug class on gender and the person 

offense class on Hispanic, the sign of the probability regression estimate differed from 

the other methods. Additionally, for the person offense class on Hispanic regression, the 

estimate was significant for the probability regression, but it was insignificant for the 

other methods.  

 One interesting point of difference between the five approaches occurred in the 

case of the regressions of the high class on Black and Hispanic. In these two cases, using 

most likely class membership, probability regression, probability-weighted regression, or 

pseudo-class regression would lead to the conclusion that the estimate was significant 

since the ratio of the estimate to the standard error is greater than 1.96. But, including 

covariates while forming the latent classes leads one to conclude that the estimate was 

insignificant because the ratio of the estimate to the standard error was less than 1.96. 

These two cases highlight the problem associated with underestimated standard errors. 

This also suggests that the standard error difference among the methods is larger than the 

difference in the estimates. 

This example has shown that using assigned class membership regression, the 

class probability-weighted regression, or pseudo-class draw regression underestimates the 

regression effects of the classes on the covariates. The probability regression sometimes 

showed different signs and significance of the regression estimates when compared with 

the other method. The mean comparisons had different values for each test, but the 
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overall significance was the same which may be in part do to chi-square’s sensitivity to 

large sample sizes.  

Aggression Example  

The data for this example come from a randomized preventive field trial 

conducted in Baltimore public schools (Dolan et al., 1993; Ialongo et al., 1999). The 

study applied a universal intervention aimed at reducing aggressive-disruptive behavior 

during first and second grade to improve reading and reduce aggression with outcomes 

assessed through middle school and beyond (Kellam et al., 1994). The outcome variables 

of interest are teacher ratings of each child’s aggressive behavior in classroom. The 

ratings were made using the Teacher’s Observation of Classroom Adaptation Revised 

(TOCA-R) scaling instrument, with 10 items. For simplicity, the items were 

dichotomized with a value of one representing presence of the aggressive behavior and 

zero representing no symptom presence. Information was also collected on concurrent 

and distal outcomes, including school removal and juvenile court records.  

 This example will focus on analyzing the pre-intervention data of Cohort 1 when 

the children entered into the intervention study at the beginning of first grade. In total, 

there were 1,174 children participating in this study. For covariates, gender, ethnicity, 

and treatment condition will be considered. All three covariates are dichotomous with 

gender indicating whether an individual is male, ethnicity indicating whether a child is 

African American, as opposed to Caucasian, and the treatment variable indicating 

whether a child’s classroom was assigned to the treatment or control condition. Since this 

example focuses on a pre-intervention time point and classrooms were assigned to 
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treatment or condition randomly, the relationship between the latent class variable and 

the treatment condition indicator should be non-significant. 

 This analysis was executed similarly to the ASB example. The data was first 

analyzed by conducting the LCA and inclusion of the covariates in a single step. The next 

phase was to conduct the other strategies:  regressing most likely class membership on 

the covariates, regressing the logistic class probabilities on the covariates, conducting a 

class probability-weighted regression, or pseudo-class regression. Also, once class 

membership was established, the mean comparison tests were conducted. As in the 

previous example, the probability regression results are on a different scale and 

comparison of this method to the others will focus on the sign and significance of the 

regression estimate. The results of these analyses can be seen in Table 2.3 for the mean 

comparisons and Table 2.4 for the regression results.  

  A three-class solution was found to fit these data. The profiles for the TOCA data 

can be found in Figure 2.3. The first class had a high average probability of endorsing all 

of the items, so this class is named the high aggression class. The second class had 

moderate endorsement for those items dealing with verbal aggressions and low 

endorsement for the other items so this class is called the verbal aggression class. The 

final class had low endorsement of all items, was the largest percentage of the sample, 

and was named the normative class. The entropy was 0.79. 

 Comparing Table 2.3 to the results seen in the ASB example, a similar pattern 

emerged. When comparing the pseudo-class chi-square results to the equal proportions 

chi-square, the values of the statistics were similar in size with the equal proportions chi-
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square having a higher value. For the gender and race covariates, the significance of the 

test was equivalent across the two statistics and both tests would lead one to conclude 

that the effects of gender and race were significantly different across the classes. For the 

treatment indicator, both tests indicate that there were no significant differences across 

the classes because the p-value associated with both statistics was greater than 0.05.  

 The regression results presented in Table 2.4 showed a similar pattern to what was 

seen in the ASB data example. A comparison of the most likely class membership 

regression, probability-weighted regression, and pseudo-class regression showed that all 

of the methods yielded similar estimates and the standard errors for the regression 

between the classes and the covariate. But, when compared with including covariates 

during the formation of the latent classes, the other three methods tended to produces 

slightly smaller estimates and standard errors. In all cases, except for the regression of the 

verbal Aggression class on Black, the significance of the effect was the same across the 

methods. For the regression of the verbal aggression class on Black, the pseudo-class 

regression was not significant, while the other three methods were significant.  

 When comparing the sign and significance of the probability regression estimate 

to the other methods, Table 2.7 showed that there were differences. For the regressions of 

the verbal class on gender and Black, the estimate from the probability regression was not 

significant, but the estimate was significant for the other methods. The regression of high 

class on treatment condition shows the opposite pattern, where the estimate was 

significant for the probability regression but not for the other methods. Any regression 

with treatment condition as a covariate was not expected to be significant because the 
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data being analyzed are a pre-intervention time point. A significant effect of any class on 

treatment condition would have suggested that randomization did not work. For the 

regression verbal class on gender, the probability estimate had a negative sign while the 

other methods had a positive one.  

 Comparing the two different data examples, there were consistencies in the 

performances of the methods investigated. For the mean comparisons, in both data sets, 

the statistics yielded similar values and led to similar conclusions about the significance 

of the covariate of interest. For the regression results, in the TOCA and ASB data, most 

likely class membership regression, probability-weighted regression, and pseudo-class 

regression performed similarly, but in comparison to including covariates while forming 

the latent classes the other methods tended to underestimate the effect and the standard 

errors. The probability regressions showed a tendency to have different signs and 

significance of the regression coefficients when compared to the other methods. A 

question to ask is under what conditions will these differences that are seen in the 

regression results arise? Potential explanations for the differences between the methods 

are how well individuals are being classified into their latent classes, sample size, and the 

size of the covariate effect. One way to investigate this question is to do a Monte Carlo 

simulation study where the settings of the analysis, such as sample size, entropy, and the 

size of the covariate effect, can be controlled to fully explore potential reasons for 

differences in the methods.  
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Monte Carlo Simulation Study 

One of the main questions of this study is how to select important covariates for 

an analysis. This is investigated by comparing the effectiveness of the mean comparison 

and regression methods described above. One way to conduct these investigations is to do 

a Monte Carlo simulation study where the covariate effect, classification of people into 

latent classes, and model population parameters are known and how to treat latent class 

membership is explored under a variety of different conditions. 

In this study, the sample size was chosen to be 250 and 1,000. The number of 

replications of data generation was chosen to be 500 for all the models since this assures 

sufficient reliability of the summary information.  

For the model population, or the model from which the data is generated, there are 

two possible sources of variation that are examined in this paper: 1) degree to which 

individuals are correctly classified into latent classes, and 2) the strength of the 

relationship between the latent classes and the covariate. Both sources of variation are 

discussed in detail below. 

Data Generation Models 

The overall plan of the simulation was to generate the data using a latent class 

model with a covariate effect. Specifically, data was generated using the model shown in 

Figure 2.1b. Ten items were used in the analyses. All of the items in the analysis were 

chosen to be binary so that the conditional item probabilities, the probability of endorsing 

an item given membership in a specific class, could be used to distinguish among the 
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classes. Also, binary items are common when studying behavioral disorders because they 

can indicate either presence or absence of a symptom.  

When generating latent class models, it is important to specify the number of 

classes in each model and what the class profiles look like.  The number of classes for 

each of the latent class variables was chosen to be two for simplicity. Another key feature 

of latent class models is the class profile or item endorsement profile. One way to 

visually inspect the class profile is to plot the items on the x-axis and the conditional item 

probabilities are on the y-axis. In this study, a complex profile was used in which the two 

class profile cross. In Figure 2.1d, which shows an example of a complex profile, class 

one has high endorsement of the first five items and low endorsement of the last five. 

Class two has the opposite pattern of class one, with low endorsement of the first five 

items and high endorsement of the last five items. 

One hypothesis is that as classification of people into latent classes becomes 

worse (as entropy approaches zero) treating the latent class variable as observed further 

distorts the estimate of the covariate or distal effect and the standard error of that 

parameter. In order to explore this hypothesis, different entropy settings were used in this 

study: perfect, high, medium and low entropy. For the perfect entropy case, the average 

entropy value was 1.0 meaning that people were perfectly classified into latent classes. 

The high entropy had an average value of 0.80 across the replications, which says that 

80% of the time individuals were correctly classified in latent classes. The medium 

entropy case had an average value of 0.60 and the low entropy case had an average value 

of 0.40.  
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Also, the strength of the covariate or distal outcome effect was studied using two 

different settings. In Figure 2.1b, the covariate effect can be seen as the path emanating 

from the covariate x and ending at the latent class variable c. The first setting was to set 

this path to 0.5 indicating that there is a strong, positive relationship. The final setting 

assumes that there is no relationship at all and so the path was set to zero. 

 Overall, there were eight data generation models specified. There were four 

different entropy settings (perfect, almost perfect, high and low) and two different 

covariate effects giving eight data generation models.      

 Data Analysis Models 

 The data was generated using the model specifications that were described above. 

The data were then analyzed using each of the five different regression approaches 

described and once most likely class membership information was obtained, mean 

comparison tests were conducted. The simulation and analysis of the data was carried out 

using the Monte Carlo facilities in Mplus version 5.0 (Muthén & Muthén, 2008). Mplus 

input scripts for each method are presented in the Appendix A for the case where the 

sample size is 1,000 and the entropy is 0.8. 

Two techniques were used to evaluate the mean differences across classes on the 

outcome of interest. The first uses pseudo-class draws to conduct a pseudo-class chi-

square test. The other technique is a t-test which was conducted by classifying individuals 

into their most likely latent class and then comparing mean differences in each class 

using an independent samples t-test. In order to be able to compare the results of the 

pseudo-class chi-square test and the most likely class membership t-test, the value of the 
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t-test was squared in Table 2.5 in order to make the t value asymptotically equivalent to 

χ2. In the real data examples, a chi-square test of equal proportions was compared to the 

pseudo-class chi-square test instead of a t-test because in both real data examples there 

were more than two classes and the covariates were categorical. The presence of only two 

classes and a continuous covariate in the simulation required that a t-test be used.  

As mentioned previously, five different regression approaches were used to analyze the 

data and obtain estimates and standard errors of the covariate or distal outcome effect: 

most likely class membership regression, probability regression, probability-weighted 

regression, pseudo-class regression, and single-step regression.  

Simulation Results 

 This section summarizes results from the simulation study. The results of the 

mean comparison tests are first examined followed by a comparison of the five 

approaches used to incorporate covariates into a latent class analysis.  

Mean Comparison Simulation Results. In some instances, it is not possible to 

include the covariates when conducting the latent class analyses. When this is the case, 

one way to examine differences in covariates is to compare the means across classes. As 

mentioned previously, two techniques were used to investigate which is the best method 

for testing mean equality: pseudo-class chi-square test and a most likely class 

membership t-test. The results for these comparisons are presented in Table 2.5.  

In Table 2.5, the results of the means comparisons are broken down by the size of 

the relationship between the latent classes and the covariate. The top half of the table 

presents results for when there was no relationship between the latent classes and the 
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covariate. Because there was no relationship, it was expected that across all settings the 

tests will not be significantly different from zero. The p-value of the average statistic, 

across all settings, was greater than 0.05 which indicated that the test is not significant, 

which is what was expected. The bottom two rows of this case give an idea of the type I 

error, or when a difference is observed when in truth there is no difference, associated 

with these tests because these rows give the proportion of replications that have a 

significant p-value. Given that the significance level had been set to 5%, it was expected 

that if the test is working properly, 5% of the time the tests will find a significant 

difference when there is none. In the bottom row of the table, the pseudo-class chi-square 

had the proportion of replications giving significant p-values close to zero for nearly all 

the settings examined. This indicated that the test was not performing as it should 

because a 5% error rate was not recovered. For the most likely class membership t-

statistic, the proportion had values from 0.036 to 0.052, which is close to the expected 

value of 0.05.  

  The bottom half of the table is the largest relationship with the class on covariate 

effect being 0.5. This setting showed similar results to what was seen in the real data 

examples with the average value of the statistics being close in size, but with the most 

likely class membership t-value average being larger than the pseudo-class chi-square. 

The difference between the averages of the two statistics increases in size as both the 

entropy and the sample size increases. More importantly, however, was that the decision 

of whether or not the covariate was significantly different across the classes did not 

change across the two methods. Both p-values lead to the conclusion that the covariate 
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was significantly different across the classes. Even though the average p-values for both 

statistics indicated that the covariate was significantly different across the classes, 

comparing the number of replications that had significant p-values (p < 0.5) did show a 

difference. For the smaller sample sizes, the most likely class membership t-statistic 

produced a larger number of significant replications. When the sample size was equal to 

1,000 the number of replications with significant p-values increased when compared with 

the smaller sample size of 250. Additionally, as the entropy increased, the number of 

significant replication approached 500 or 100% of the replications showing significant p-

values. One explanation for these results in the higher sample size was that the pseudo-

class chi-square and the most likely class membership t-statistic, which, when squared, is 

asymptotically equivalent to a chi-square test, were picking up on a chi-square test’s 

sensitivity to large sample sizes and will always conclude that covariate is significantly 

different across the classes.  

The simulation study showed that the pseudo-class chi-square and the most likely 

class membership t-value yielded similar results for the magnitude of their values and the 

significance of the covariate effect. This was similar to what was seen in the real data 

examples.  

Regression Simulation Results. The comparison of the approaches examined in 

this paper was executed by simulating data under a variety of conditions and then 

analyzing the simulated data using all five of the regression approaches: most likely class 

membership regression, probability regression, probability-weighted regression, pseudo-

class regression, and single-step regression. When examining the results it is important to 
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examine the power and mean square error (MSE), in addition to the estimates of the 

coefficient. The power, or the probability of rejecting the null hypothesis when it is false, 

provides an estimate of whether there is enough information in the data to detect a 

covariate effect. The MSE quantifies the amount by which an estimate differs from the 

true value of the regression coefficient. The results of these analyses are displayed in 

Tables 2.6 and 2.7.  

 Table 2.6 displays the results for when the relationship between the latent class 

variable and the covariates is specified to be 0, or no relationship. The table rows are 

broken down into five sections, one for each of the methods used to incorporate 

covariates. The top of the table shows results for when most likely class membership is 

regressed on the covariates. Following that, there are sections for when the class 

probabilities are regressed on the covariates, when posterior class probabilities are used 

as weights in the regression of class membership on the covariates, pseudo-class 

regression, and when covariates are included while the latent classes are formed. The 

single-step regression was placed at the bottom of the table for easier comparisons since 

this was the model from which the data was generated and the other models will be 

compared to. Moving from left to right in the table, the entropy, or the degree to which 

individuals are correctly classified into their latent classes, increases. 

 Starting with the two rightmost columns of the table, where individuals were 

perfectly classified, a comparison of the five methods showed that for this entropy setting 

the methods were equivalent. When there was perfect entropy, every individual had a 

probability of 1.0 of being in their latent class, which means that there was no error 
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involved when classifications were made into most likely latent class. With the pseudo-

class draws, all of the draws were equivalent to one another since there would be no class 

switching because individuals are perfectly classified. 

 Comparing the estimates obtained by the five methods, all of them were able to 

recover the true effect of zero, but when comparing the standard errors of the methods a 

similar pattern to what was seen in the real data examples emerged. When comparing the 

standard errors to including the covariates in the model, the four other methods 

underestimated the standard errors. Standard errors associated with using class 

probabilities as weights were the smallest overall.  

 The methods can be further compared by examining the mean square error 

(MSE), which quantifies the amount by which an estimate differs from the true value of 

the regression coefficient. An MSE value of zero indicates that there is no difference 

between the estimated regression coefficient and its true value. Thus, when comparing 

the MSE of two models, the model with the smallest MSE is interpreted as being the best 

model for explaining the variability in the observations. In Table 2.6, the MSE of each of 

the techniques was close to zero for all settings. When comparing among the techniques, 

for the two smallest entropies, pseudo-class regression and probability-weighted 

regression had the smallest MSEs. When the entropy increases to 0.80, probability 

regression had the smallest MSEs. But, the difference between the probability regression 

MSEs and the next smallest MSEs, from pseudo-class regression, was only 0.005. 

One way of examining how well the parameters and their standard errors were 

being estimated in a simulation study is to look at the coverage. Coverage was defined as 
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the proportion of replications for which the 95% confidence interval contains the 

population parameter value (Muthén & Muthén, 2008). The closer the coverage was to 

one, the better the estimates of the parameters and their standard errors. Coverage was 

high across the methods and in all settings, with the lowest value in the entire table being 

0.938. Probability-weighted regression had slightly smaller coverage values than the 

other methods, but they were still high. 

 In Table 2.6, the last row in each section of the table examines whether the correct 

alpha level is recovered. Because the population value for this table is equal to zero, the 

values in this row are estimates of Type I error, or the probability of rejecting the null 

hypothesis when it is false. If a method is performing correctly, then a value of 0.05 is 

expected based on the 5% significance level that was chosen for this test. For the most 

likely class membership, probability regression, class probability-weighted regression 

and including the covariates in the model, the values in these cells were all close to 0.05 

which shows that these methods are performing as expected. The pseudo-class regression 

cells have values close to zero across all settings indicating that the method was not 

performing as expected. 

 In Table 2.7, where the relationship between the classes and covariates is 0.5, the 

equivalency of the methods that was seen when there was no relationship breaks down as 

the entropy decreases. The most likely class membership, probability, probability-

weighted, and pseudo-class draw estimates were all smaller than the true value of 0.5, 

with the pseudo-class regression and probability-weighted regression having the smallest 

values across all settings. As the entropy settings decrease, the estimates for all four 
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methods get further away from the true value. Including the covariates in the models 

tended to slightly overestimate the true value across the settings with the biggest 

difference occurring for the small sample size and lowest entropy setting. 

 While not as big of a problem as having incorrect parameter estimates, there were 

also differences in the standard errors that each method is obtaining. As the entropy 

decreases, the standard errors for the most likely class membership, probability, class 

probability weighted regression, and pseudo-class regression were underestimated when 

compared with the ones obtained by including the covariates while forming the latent 

classes. Having underestimated standard errors is problematic because it could lead a 

researcher to conclude that an effect is significant when it may not be. The standard 

errors for the pseudo-class regression, while not exactly the same as the ones obtained 

when including the covariates during the formation of the latent classes, were relatively 

close but still underestimated while the standard errors for the probability-weighted 

regression are the most underestimated. 

 In Table 2.7, the MSEs of the each of the methods was relatively close to zero. 

When comparing among the methods, for the highest entropy settings, the methods have 

similar MSEs with probability regression having the highest MSEs and including 

covariates in the model having the smallest. For the lower entropy settings, including 

covariates in the models tended to have the smallest MSEs. 

 For the two highest entropy settings, the coverage was  good with most methods 

and settings having coverage of at least 0.80, except in the probability case where the 

coverage was 0.50 or lower in the high entropy setting. As the entropy decreases, the 
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coverage remained around 0.95 for the case where covariates were included while 

forming the latent classes, which indicated that the parameters and standard errors were 

being estimated well for this method. For the two lower entropy settings, the methods 

using class probabilities had the lowest coverage of all the methods. The pseudo-class 

regression and most likely class membership had similar coverage across the settings, but 

it was still low in the two lowest entropy settings.  

 The last row in each section of Table 2.7, displays the proportion of the 

replications for which the null hypothesis that a parameter is equal to zero is rejected at 

the 0.05 level (two-tailed test with a critical value of 1.96). For parameters with 

population values different from zero, this value is an estimate of power with respect to a 

single parameter, that is, the probability of rejecting the null hypothesis when it is false. 

A proportion of 0.80 or greater is considered to be good power to reject that the 

parameter is zero. For the two highest entropy settings, all of the methods had a high 

proportion of replications for which the null hypothesis is rejected, except for pseudo-

class regression with a sample size of 250 and an entropy setting of 0.80. This exception 

hints at what was seen in the rest of table, which was that pseudo-class regression had 

lower power across most of the settings when compared with the other four methods. 

This was especially noticeable in the smaller sample sizes and lower entropies in first few 

columns. But, as the entropies and sample sizes become smaller, the coverage does 

decrease across all methods. In the first column, with the small sample size and small 

entropy, none of the methods had a high power to reject the null hypothesis. Across all 

settings, probability-weighted regression had the highest power. 
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 The simulation study shed light on the hypotheses. For the mean 

comparison simulations, the results showed that the squared t-test produced higher test 

statistic values than the pseudo-class Wald chi-square test but, the significance of the 

tests was equivalent. For the regression simulation approaches, the results showed that for 

approaches that do not include covariates during the formation of the latent classes, the 

estimates and standard errors were different when compared to including the covariates. 

Further comparisons among the regression methods and recommendations for which 

method to use in practice will be made in the discussion section below. 

Discussion  

 The purpose of this study was to investigate how the different methods for 

treating latent class variables can impact the relationship between the latent classes and 

auxiliary variables. This was investigated by exploring two different real data examples 

that showed similar results when latent class membership was used as the dependent 

variable in a regression analysis. This issue was further investigated by utilizing Monte 

Carlo simulation techniques to explore how changing different settings in an analysis and 

varying the technique by which latent classes were incorporated can impact the estimates 

and standard errors of a regression analysis between latent classes and auxiliary variables. 

 Given the results of the real data examples and the simulation study, the question 

of which method or methods are best to use to incorporate auxiliary variables in an 

analysis arises.  Table 2.6 shows that when there is no relationship between the 

covariates, all five of the regression approaches examined are able to recover the true 

effect of zero and that the effect is not significant. When there is no effect, it does not 
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matter which approach is used, but most researchers will not know ahead of time whether 

or not a covariate will be significant. When there is a relationship between the covariate 

and latent class the question posed becomes more difficult to answer. Across all of the 

settings, including the covariate while forming the latent classes performed the best. The 

method was able to recover the true effect and had high coverage and power in most 

settings. But this method could be problematic to use in many real data analyses because 

the inclusion of many covariates will significantly increase computation time and the 

covariates may potentially influence the formation and interpretation of the latent classes.  

If including the covariates while forming the latent classes is not an option 

because of the reasons stated above, one alternative is to use the most likely class 

membership, but only if the entropy is 0.80 or greater. When the entropy was high, most 

likely class membership was the best performing method in terms of recovering the true 

value used in the simulation study, and had relatively good coverage and power in the 

settings examined. But, when using most likely class membership, researchers need to be 

aware that this method does have the potential for underestimating the standard errors of 

the parameter. Therefore, when deciding on the significance of auxiliary variables, a 

more stringent criterion than the 5% level for deciding on significance should be 

employed. If the entropy is lower than 0.60, it is unclear as to which method is best to 

use. None of the methods were able to recover the true effect and all had various 

problems with underestimated standard errors, coverage and power.  

One issue that arises with latent class analysis, and other mixture models, is how 

to decide on which covariates should be included in an analysis when there are a large 

 42



number of covariates to select from. Based on the results of this study, a strategy for how 

to select covariates is suggested below. The first step is to conduct the latent class 

analysis without any covariates in the model in order to understand the substantive 

interpretation of the latent classes. In the second step, a pseudo-class Wald chi-square test 

is conducted to examine whether a covariate has some impact on the latent classes in 

terms of the mean differences. Next, a pseudo-class regression should be conducted to 

further winnow down the pool of potential covariates. A pseudo-class regression was 

chosen for this step since this method had the highest power to detect covariate effects of 

all the methods examined. Since the pseudo-class regression had biased estimates, as a 

final step, an analysis with the covariates included while forming the latent classes should 

be conducted in order to obtain unbiased estimates of the regression coefficient. 

Limitations and Future Directions 

A major limitation of all simulation studies is the failure of any study to cover all 

possibilities that are seen in real data analysis. In the present study, the simulations only 

considered the impact of one continuous covariate, but in many real data analyses, many 

covariates, of possibly different types, would be included. The simulation study, 

however, was not meant to cover all possible situations that researchers may encounter, 

but instead to point out that researchers need to be conscientious of the magnitude of the 

problem associated when using these different methods. Future work in this area should 

investigate how the addition of multiple covariates and different types and combinations 

of covariates impact the estimates and standard errors obtained by these methods.   
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This paper has considered the impact on estimates and standard errors when class 

membership is used as the outcome in a regression analysis. But this raises the question 

of what happens when class membership is used as a predictor in a regression of a distal 

outcome on class membership. Petras and Masyn (2009) considered this issue in their 

study looking at how to incorporate covariates and distal outcomes in growth mixture 

modeling. In their study, the authors found that treating class membership as an observed 

variable lead to different conclusions when compared with incorporating the distal 

outcome while forming the latent classes. Future work in this area should examine under 

what conditions it is appropriate to treat class membership as an observed variable when 

it is used as a predictor of a distal outcome. 

One aspect that has not been discussed is the comparability of the regression 

models. With most likely class membership, probability regression, probability-weighted 

regression, and pseudo-class draws the covariate is included after the latent class analysis 

has already been conducted. In the single-step method, the covariate was included at the 

same time as the latent class analysis is conducted. By including the covariate with the 

latent class analysis, there is a potential for a direct effect between the covariates and the 

latent class indicators. This direct effect can potentially impact the relationship between 

the covariate and the classes because the covariate effect is partially filtered through the 

relationship between the covariate and the latent class indicators. In the simulation study, 

this was not problematic because the models were specified so that there was no direct 

effect between the covariate and the latent class indicators, but, the potential for direct 
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effects does arise in the real data examples. Nylund and Masyn (2008) are currently 

investigating the impact of mis-specifying direct effects in latent class analyses.  

Despite the limitations discussed, this study is not without its strengths. While 

other authors have discussed the problems with using most likely class membership, this 

is one of the first studies to look at how problematic it can be when used in regression 

and mean comparisons. This study takes other authors’ work one step further by also 

comparing the results using most likely class membership regression to those obtained 

from other methods: probability-weighted regression, probability, pseudo-class draws, 

and including the covariate while the latent classes are formed. This is the first study to 

make suggestions about when it is appropriate to use these techniques in practice. 
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Table 2.1 
 
Antisocial Behavior Mean Comparison Results 
 
  Sex Black Hispanic Age 
Pseudo-Class Chi-Square 287.6 (0) 112.9 (0) 8.49 (0) 101.2 (0) 
Equal Proportions Chi-square 627.4 (0) 122.7 (0) 14.83 (0) 255.5 (0) 

 

 

Table 2.2 
 
Antisocial Behavior Regression Results 
 
 Gender  Age 
  High Person Drug  High Person Drug 

Most Likely Class Regression 
Est. 2.18 0.96 0.25  -0.16 -0.16 0.06 
S.E. 0.11 0.06 0.07  0.02 0.02 0.02 
Est./S.E. 19.4 15.9 3.78  -8.02 -11.1 3.85 
p-value 0 0 0  0 0 0 

Logistic Class Probability Regression 
Est. 2.77 0.35 -0.45  -0.19 -0.18 0.21 
S.E. 0.117 0.084 0.087  0.027 0.019 0.02 
Est./S.E. 23.65 4.22 -5.14  -7.15 -9.48 10.39
p-value 0 0 0  0 0 0 

 Probability-Weighted Regression 
Est. 2.04 0.92 0.24  -0.15 -0.15 0.06 
S.E. 0.1 0.06 0.06  0.012 0.013 0.013
Est./S.E. 20.9 16.9 3.97  -8.28 -11.3 4.35 
p-value 0 0 0  0 0 0 

Pseudo-class Regression 
Est. 1.99 0.86 0.29  -0.14 -0.13 0.05 
S.E. 0.12 0.07 0.07  0.02 0.02 0.02 
Est./S.E. 17.3 11.8 3.97  -6.19 -7.63 3.12 
p-value 0 0 0  0 0 0.002

Single Step Regression 
Est. 2.65 1.42 0.22  -0.22 -0.26 0.08 
S.E. 0.16 0.09 0.1  0.03 0.02 0.21 
Est./S.E. 16.1 15.5 2.14  -8.36 -10.8 3.61 
p-value 0 0 0.03  0 0 0 
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 Black  Hispanic 
  High Person Drug  High Person Drug 

Most Likely Class Regression 
Est. -0.22 0.36 -0.72  -0.32 -0.02 -0.53 
S.E. 0.1 0.07 0.08  0.12 0.08 0.09 
Est./S.E. -2.17 5.35 -8.66  -2.65 -0.24 -5.75 
p-value 0.03 0 0  0.008 0.81 0 

Logistic Class Probability Regression 
Est. -0.53 1.19 -0.91  -0.37 0.42 -0.67 
S.E. 0.134 0.096 0.1  0.158 0.11 0.12 
Est./S.E. -3.96 12.48 -9.11  -2.36 3.66 -5.77 
p-value 0 0 0  0.018 0 0 

 Probability-Weighted Regression 
Est. -0.23 0.36 -0.61  -0.31 -0.02 -0.47 
S.E. 0.096 0.06 0.07  0.11 0.07 0.08 
Est./S.E. -2.41 5.98 -8.69  -2.78 -0.25 -5.81 
p-value 0.02 0 0  0.005 0.8 0 

Pseudo-class Regression 
Est. -0.28 0.33 -0.6  -0.32 -0.01 -0.44 
S.E. 0.11 0.08 0.09  0.13 0.09 0.09 
Est./S.E. -2.45 4.31 -6.79  -2.51 -0.11 -4.47 
p-value 0.014 0 0  0.012 0.92 0 

Single Step Regression 
Est. 0.22 0.84 -0.96  -0.19 0.21 -0.69 
S.E. 0.15 0.12 0.14  0.134 0.12 0.12 
Est./S.E. 0.16 6.94 -7.01  -1.46 1.77 -5.89 
p-value 0.88 0 0  0.145 0.08 0 

 

 
 
 
Table 2.3  
 
Aggression Mean Comparison Results 
    
  Race Gender Treatment 
Pseudo-Class Chi-Square 8.37 (0.02) 42.57 (0) 0.33  (0.85) 
Equal Proportions Chi-Square 13.95(0.001) 45.2 (0) 2.31 (0.32) 
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Table 2.4 
 
Aggression Regression Results 
       
 Gender  Black 
  High Verbal  High Verbal 

Most Likely Class Membership as Outcome 
Est. 1.343 0.347  0.713 0.47 
S.E. 0.199 0.14  0.206 0.154 
Est./S.E. 6.743 2.478  3.457 3.057 
p-value 0 0.013  0.001 0.002 

Logistic Class Probability Regression 
Est. 2.719 -0.265  0.884 0.291 
S.E. 0.356 0.23  0.38 0.246 
Est./S.E. 7.64 -1.15  2.33 1.184 
p-value 0 0.248  0.02 0.236 

 Probability - Weighted Regression 
Est. 1.228 0.339  0.621 0.366 
S.E. 0.17 0.126  0.179 0.135 
Est./S.E. 7.208 2.697  3.469 2.706 
p-value 0 0.007  0.001 0.007 

Pseudo-Class Regression 
Est. 1.199 0.335  0.56 0.313 
S.E. 0.2 0.157  0.21 0.167 
Est./S.E. 5.995 2.142  2.667 1.874 
p-value 0 0.032  0.008 0.061 

Covariates in Model 
Est. 1.52 0.38  0.716 0.442 
S.E. 0.235 0.175  0.229 0.184 
Est./S.E. 6.47 2.174  3.129 2.404 
p-value 0 0.03  0.002 0.016 
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 Treatment 
  High Verbal 

Most Likely Class Membership as Outcome 
Est. -0.005 0.192 
S.E. 0.186 0.139 
Est./S.E. -0.025 1.382 
p-value 0.98 0.167 

Logistic Class Probability Regression 
Est. -0.789 0.063 
S.E. 0.359 0.232 
Est./S.E. -2.19 0.273 
p-value 0.028 0.785 

 Probability - Weighted Regression 
Est. -0.15 0.055 
S.E. 0.167 0.126 
Est./S.E. -0.897 0.434 
p-value 0.37 0.664 

Pseudo-Class Regression 
Est. -0.137 0.035 
S.E. 0.191 0.156 
Est./S.E. -0.718 0.225 
p-value 0.473 0.822 

Covariates in Model 
Est. -0.154 0.096 
S.E. 0.198 0.173 
Est./S.E. -0.779 0.554 
p-value 0.44 0.58 
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Table 2.5  
 
Monte Carlo Covariate Mean Comparison  

 

Entropy 0.4 0.6 
Sample Size 250 1,000 250 1,000 
  Pc Mlcm Pc Mlcm Pc Mlcm Pc Mlcm 

Class on Covariate = 0 
Value 0.353 0.063 0.312 0.001 0.498 0.001 0.52 0.002
S.D. 0.532 0.994 0.411 1.02 0.676 0.967 0.698 0.981
P-value of average stat 0.552 0.083 0.576 0.972 0.48 0.976 0.471 0.964
Average p-value 0.669 0.285 0.674 0.282 0.596 0.287 0.603 0.281
Number rep p < 0.05 1 21 0 26 3 21 1 18 
Proportion rep p < 0.05 0.002 0.042 0 0.052 0.006 0.042 0.002 0.036

Class on Covariate = 0.5 
Value 1.72 2.96 6.39 17.8 5.25 8.01 18.9 32.9 
S.D. 1.55 1.05 2.94 1.04 3.31 1.03 6.62 1.02 
P-value of average stat 0.19 0.085 0.011 0 0.022 0.005 0 0 
Average p-value 0.31 0.136 0.03 0.004 0.081 0.038 0 0 
Number rep p < 0.05 98 195 410 493 302 380 499 500 
Proportion rep p < 0.05 0.196 0.39 0.82 0.986 0.604 0.76 0.998 1 

Note. Pc-Pseudo-class chi-square; Mlcm – Most likely class membership squared t-test. 

 

Entropy 0.8 1.0 
Sample Size 250 1,000 250 1,000 
  Chi Ti Chi Ti Chi Ti Chi Ti 

Class on Covariate = 0 
Value 0.724 0.006 0.704 0.003 0.902 0.006 0.896 0.003
S.D. 1 0.993 0.982 0.981 0.994 0.995 0.953 0.961
P-value of average stat 0.395 0.936 0.401 0.956 0.382 0.941 0.395 0.954
Average p-value 0.544 0.282 0.551 0.282 0.516 0.281 0.524 0.286
Number rep p < 0.05 13 23 12 20 18 18 14 17 
Proportion rep p < 0.05 0.026 0.046 0.024 0.04 0.036 0.036 0.028 0.034

Class on Covariate = 0.5 
Value 9.52 11.4 35.6 45.1 3.8 15.4 58.4 60.1 
S.D. 5.37 1.04 10.2 1.04 16.2 1.06 16.2 1.01 
P-value of average stat 0.002 0.001 0.007 0 0 0 0 0 
Average p-value 0.027 0.017 0 0 0.007 0.006 0 0 
Number rep p < 0.05 437 453 500 500 473 486 500 500 
Proportion rep p < 0.05 0.874 0.906 1 1 0.946 0.972 1 1 
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Table 2.6  
 
Monte Carlo Covariate Regression Results: Logistic Regression Coefficient= 0 
          
N 250 1,000 250 1000 
Entropy 0.4 0.4 0.6 0.6 

Most Likely Class Membership as Outcome 
Est. 0.003 0.002 0.004 0.003 
S.D. 0.143 0.066 0.126 0.063 
S.E. 0.141 0.065 0.129 0.064 
MSE 0.02 0.004 0.016 0.004 
Coverage 0.954 0.938 0.954 0.955 
Est./S.E. 0.021 0.031 0.031 0.047 
Prop Est/ SE > 1.96 0.046 0.062 0.046 0.045 

Class Probability Weighted Regression 
Est. 0.0004 0.003 0.005 0.001 
S.D. 0.105 0.043 0.106 0.052 
S.E. 0.1 0.042 0.106 0.052 
MSE 0.011 0.002 0.011 0.003 
Coverage 0.946 0.932 0.956 0.95 
Est./S.E. 0.004 0.071 0.047 0.019 
Prop Est/ SE > 1.96 0.054 0.068 0.044 0.05 

Pseudo-Class Regression 
Est. 0.0004 0.003 0.005 0.001 
S.D. 0.105 0.043 0.106 0.052 
S.E. 0.167 0.081 0.149 0.074 
MSE 0.011 0.002 0.011 0.003 
Coverage 0.999 0.999 0.994 0.998 
Est./S.E. 0.002 0.037 0.034 0.014 
Prop Est/ SE > 1.96 0 0 0.006 0.002 

Covariates in Model 
Est. 0.01 0.007 0.008 0.003 
S.D. 0.283 0.106 0.164 0.079 
S.E. 0.301 0.107 0.172 0.079 
MSE 0.079 0.011 0.027 0.006 
Coverage 0.952 0.948 0.964 0.952 
Est./S.E. 0.033 0.065 0.047 0.038 
Prop Est/ SE > 1.96 0.048 0.052 0.036 0.048 
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N 250 1000 250 1000 
Entropy 0.8 0.8 1.0 1.0 

Most Likely Class Membership as Outcome 
Est. 0.011 0.003 0.01 0.004 
S.D. 0.128 0.063 0.128 0.061 
S.E. 0.128 0.064 0.128 0.063 
MSE 0.017 0.004 0.017 0.004 
Coverage 0.954 0.95 0.958 0.958 
Est./S.E. 0.086 0.047 0.076 0.0635 
Prop Est/ SE > 1.96 0.046 0.05 0.042 0.042 

Class Probability Weighted Regression 
Est. 0.008 0.002 0.01 0.004 
S.D. 0.118 0.057 0.128 0.0612 
S.E. 0.117 0.058 0.128 0.0634 
MSE 0.014 0.003 0.017 0.004 
Coverage 0.95 0.95 0.958 0.958 
Est./S.E. 0.068 0.034 0.076 0.0635 
Prop Est/ SE > 1.96 0.05 0.05 0.042 0.042 

Pseudo-Class Regression 
Est. 0.008 0.002 0.01 0.004 
S.D. 0.118 0.057 0.128 0.0612 
S.E. 0.139 0.069 0.128 0.0634 
MSE 0.014 0.003 0.017 0.004 
Coverage 0.982 0.978 0.958 0.958 
Est./S.E. 0.058 0.029 0.076 0.0635 
Prop Est/ SE > 1.96 0.018 0.022 0.042 0.042 

Covariates in Model 
Est. 0.009 0.002 0.01 0.004 
S.D. 0.144 0.069 0.128 0.061 
S.E. 0.144 0.07 0.128 0.063 
MSE 0.021 0.005 0.017 0.004 
Coverage 0.952 0.952 0.958 0.958 
Est./S.E. 0.063 0.029 0.076 0.0635 
Prop Est/ SE > 1.96 0.048 0.048 0.042 0.042 
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Table 2.7  
 
Monte Carlo Covariate Regression Results: Logistic Regression Coefficient = 0.5 
          
N 250 1,000 250 1000 
Entropy 0.4 0.4 0.6 0.6 

Most Likely Class Membership as Outcome 
Est. 0.245 0.274 0.371 0.371 
S.D. 0.148 0.069 0.138 0.068 
S.E. 0.143 0.066 0.135 0.067 
MSE 0.088 0.056 0.036 0.021 
Coverage 0.54 0.078 0.812 0.496 
Est./S.E. 1.71 4.15 2.74 5.53 
Prop Est/ SE > 1.96 0.402 0.99 0.774 1 

Class Probability Weighted Regression 
Est. 0.197 0.2 0.326 0.321 
S.D. 0.106 0.045 0.112 0.055 
S.E. 0.099 0.042 0.108 0.053 
MSE 0.103 0.092 0.043 0.035 
Coverage 0.156 0 0.616 0.09 
Est./S.E. 1.99 4.76 3.02 6.06 
Prop Est/ SE > 1.96 0.518 0.998 0.86 1 

Pseudo-Class Regression 
Est. 0.197 0.2 0.326 0.321 
S.D. 0.106 0.045 0.112 0.055 
S.E. 0.176 0.083 0.156 0.077 
MSE 0.103 0.093 0.043 0.035 
Coverage 0.58 0.2 0.856 0.304 
Est./S.E. 1.12 2.41 2.09 4.17 
Prop Est/ SE > 1.96 0.186 0.81 0.578 0.998 

Covariates in Model 
Est. 0.536 0.516 0.521 0.506 
S.D. 0.316 0.122 0.19 0.09 
S.E. 0.346 0.121 0.19 0.088 
MSE 0.101 0.015 0.037 0.008 
Coverage 0.97 0.954 0.96 0.94 
Est./S.E. 1.55 4.26 2.74 5.75 
Prop Est/ SE > 1.96 0.362 0.996 0.81 1 
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N 250 1000 250 1000 
Entropy 0.8 0.8 1.0 1.0 

Most Likely Class Membership as Outcome 
Est. 0.445 0.436 0.518 0.506 
S.D. 0.142 0.07 0.148 0.069 
S.E. 0.137 0.067 0.139 0.069 
MSE 0.023 0.009 0.022 0.005 
Coverage 0.918 0.828 0.952 0.956 
Est./S.E. 3.25 6.51 3.72 7.33 
Prop Est/ SE > 1.96 0.906 1 0.976 1 

Class Probability Weighted Regression 
Est. 0.418 0.409 0.518 0.506 
S.D. 0.13 0.062 0.148 0.069 
S.E. 0.123 0.06 0.139 0.069 
MSE 0.023 0.012 0.022 0.005 
Coverage 0.87 0.664 0.952 0.956 
Est./S.E. 3.39 6.81 3.72 7.33 
Prop Est/ SE > 1.96 0.932 1 0.976 1 

Pseudo-Class Regression 
Est. 0.418 0.409 0.518 0.506 
S.D. 0.131 0.062 0.148 0.069 
S.E. 0.148 0.074 0.139 0.069 
MSE 0.024 0.012 0.022 0.005 
Coverage 0.934 0.792 0.952 0.956 
Est./S.E. 2.82 5.53 3.72 7.33 
Prop Est/ SE > 1.96 0.864 1 0.976 1 

Covariates in Model 
Est. 0.519 0.506 0.518 0.506 
S.D. 0.166 0.079 0.148 0.069 
S.E. 0.159 0.077 0.139 0.069 
MSE 0.028 0.006 0.022 0.005 
Coverage 0.952 0.944 0.952 0.956 
Est./S.E. 3.26 6.57 3.72 7.33 
Prop Est/ SE > 1.96 0.926 1 0.976 1 
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a.  b.  

 
 
Figure 2.1. a. Latent class analysis model diagram. b. Latent class analysis with covariate 
model diagram. c. Latent class analysis with distal outcome model diagram. d. Crossed 
profile plot. 
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Figure 2.2. Antisocial behavior data profile plot. 
 

 
Figure 2.3. TOCA data profile plot. 
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Appendix A: Mplus Code for Chapter 2 

Example Mplus code for the case in Table 2.7 where entropy is high,  

 and the sample size is large. 

 
Input 1: Monte Carlo input to generate data under a latent class model with a covariate 

and analyze the generated data using the same model. 

  Title:    Monte Carlo Settings 

            High entropy = 0.8, Sample size = 1,000, 

           Class on covariate = 0.5 

  Montecarlo: 

   Names are u1-u10 x; !Assigning names to generated variables 

Generate = u1-u10(1);  

! Generating 10 categorical items with one threshold 

      Categorical = u1-u10; ! Specifying which items are categorical 

      Genclasses = c(2); ! Generating 2 classes named c 

      Classes = c1(2); ! Analyzing data with 2 classes called c1 

      Nobservations = 1000; !Sample size of each data set  

      Seed = 86142; ! Specifying seed to be used for random draws 

      Nrep = 500; !Number of data replications 

      Repsave = ALL; !Specifies that all replications will be saved 

      Save = sim*.dat;  

! Naming the files to which the data will be saved. The  

! asterisk is replaced by the replication number. 

  Analysis: Type = Mixture;  

!Specifies that a mixture model will be used 

       Starts = 0; !Specifies the number of random starts 
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  Model Population:  

!Specifying the model from which the data is generated 

      %Overall% 

      [x@0];  ! Setting covariate mean to zero 

x@1; ! Setting covariate variance to zero 

      [c#1*0]; 

      c#1 on x*0.5; !Regression of class on covariate 

      %c#1% !Specifying the class specific item thresholds 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

      %c#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 

  Model:  !Specifying the model by which the data is analyzed 

  %Overall% 

 [c1#1*0]; 

      c1#1 on x*0.5; 

      %c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

  %c1#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 

Output: Tech9;  

!Provides information about the convergence of each replication 
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Input 2: Analyzing data generated in Input 1 with a latent class model in order to be able 

to save class probabilities and most likely class membership. 

Variable: 

Names are u1-u10 x c0; 

Usevariables are u1-u10;  

! Specifies which variables are to be used in the analysis 

      Categorical = u1-u10; 

      Classes = c1(2); 

      Auxiliary = x;  

! Identifies auxiliary variables and includes them when  

! saving data 

Data: File is sim.dat; 

Analysis: 

Type = Mixture; 

      Starts = 0; 

Model: %Overall% 

[c1#1*0]; 

      %c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

      %c1#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 

Output: Tech9; 

Savedata: File is simpp.dat; !Name of file to save data to 

Save = Cprob;  

!Saving class probabilities and membership information 
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Input 3: Taking most likely class membership saved from Input 2 and regressing class 

membership on the covariate x. 

Variable: 

Names are u1-u10 x p1 p2 c0; 

      Usevariables are c0 x; 

      Nominal = c0; !Specify which dependent variable is nominal 

 

Data: File is simpplist.dat; 

!Name of file that contains a list of names of the 

!generated data 

      Type = Montecarlo; 

!Specifies that data are multiple data sets generated using 

!the Monte Carlo option 

Analysis: Algorithm = Integration;  

!Specifies that numerical integration should be used 

Model: c0#1 on x*0.5; ! Regressing class membership on the covariate 

 

Input 4: Taking most likely class probabilities saved from Input 2, converting them to 

the logit scale and regressing them on the covariate x. 

Variable: 

 Names are u1-u10 x p1 p2 c0; 

      Usevariables are x logit; 

 !Uses logit variable created in Define statement below 

Data: File is simpplist.dat; 

Type = Montecarlo; 
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Define: 

 If(p1 lt .00001)then p1 =.00001; 

 If(p1 gt .9999)then p1 = .9999; 

 !Recoding p1 so that values of 0 and 1 will be able to be 

converted to the logit scale 

 logit = log(p1/(1-p1)); 

 !Creating a new variable called logit which converts p1 to logit 

 scale 

Model: logit on x*0.5; !Regressing logit on covariate 

 

Input 5: Taking most likely class probabilities saved from Input 2 and using the 

probabilities as weights in a regression. 

Variable: 

Names are u1-u10 x p1 p2 c0; 

      Usevariables are u1-u10 x p1 p2; 

      Categorical = u1-u10; 

      Classes = c1(2); 

      Training = p1 p2 (probabilities); 

!Specifies which variables contain information about class 

!membership and that the information is the posterior 

!probabilities 

Data: File is simpplist.dat; 

      Type = Montecarlo; 

Analysis: Type = Mixture; 

      Starts = 0; 

Model: %Overall% 

      [c1#1*0]; 
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       c1#1 on x*0.5; 

%c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

%c1#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 

Input 6: Taking data generated from Input 2 and analyzing using a latent class model 

with pseudo-class draws. 

Variable: 

Names are u1-u10 x c0; 

      Usevariables are u1-u10; 

      Categorical = u1-u10; 

      Classes = c1(2); 

      Auxiliary = x(r); 

! Specifies the auxiliary variable and asks for psuedo-

!class regression 

Data: File is simlist.dat; 

Analysis: Type = Mixture; 

      Starts = 0; 

Model: %Overall% 

      [c1#1*0]; 

      %c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

       %c1#2% 
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[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 

 

Input 7: Taking data generated using Input 2 and analyzing with a latent class model 

with the covariates included. 

Variable: 

Names are u1-u10 x c0; 

      Usevariables are u1-u10 x; 

      Categorical = u1-u10; 

      Classes = c1(2); 

Data: File is simlist.dat; 

      Type = Montecarlo; 

Analysis: 

      Type = Mixture; 

      Starts = 0; 

Model: %Overall% 

      [c1#1*0]; 

      c1#1 on x*0.5; 

%c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

   %c1#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 
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Input 8: Taking data saved in Input 2 and analyzing with a latent class model with 

pseudo class draws used to form Wald chi-square tests for mean comparisons. 

Variable: 

Names are u1-u10 x c0; 

 Usevariables = u1-u10; 

 Categorical = u1-u10; 

     Classes = c1(2); 

     Auxiliary = x(e); 

! Specifies the auxiliary variable and asks for psuedo-

!class Wald chi-square test 

 

Data: File = simlist.dat; 

Analysis: Type = Mixture; 

 Starts = 0; 

Model: %Overall% 

 %c1#1% 

[u1$1*1 u2$1*1 u3$1*1 u4$1*1 u5$1*1 u6$1*-1 u7$1*-1 u8$1*-1 

u9$1*-1 u10$1*-1]; 

 %c1#2% 

[u1$1*-1 u2$1*-1 u3$1*-1 u4$1*-1 u5$1*-1 u6$1*1 u7$1*1 u8$1*1 

u9$1*1 u10$1*1]; 
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Chapter Three: Models and strategies for factor mixture analysis: 

Two examples concerning the structure underlying psychological disorders 

 
In recent years there has been a debate in the psychological literature about 

whether the underlying structure of psychological disorders, such as conduct disorder and 

attention-deficit hyperactivity disorder, is categorical or dimensional. In the categorical 

view, psychological disorders are represented by diagnostic categories that indicate 

whether a person is affected or unaffected by a disorder and/or whether a person has a 

specific subtype. This has been the predominant view of psychopathology because it has 

the advantage of meeting clinical needs and the needs of reporting for health care 

planners and insurance companies (Muthén, 2006). Alternatively, psychological disorders 

are considered dimensional in nature and are represented as a continuous distribution, 

with each individual having some amount of the disorder. The advantage of the 

dimensional view is that each disorder can be represented as a quantitative score, or 

scores, which provides a more precise measure of functioning and more power for further 

statistical analyses than categorical outcomes (Muthén, 2006).  

 In the psychometric literature, each of these views has a counterpart. The 

categorical view can be represented by latent class analysis, which models unobserved 

heterogeneity in a sample through the use of categorical latent variables called latent 

classes. In this analysis, individuals are grouped into their most likely class based on their 

observed symptoms so that latent classes can then be interpreted as diagnostic categories 

or subtypes. The problem with latent class analysis, and the categorical approach to 
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psychopathology, is that the categories do not consider the range in severity and 

impairment within and across diagnostic classes. 

 The dimensional view of psychological disorders has its counterpart in factor 

analysis. Here, continuous latent variables, called factors, are used to model the 

correlations among the symptoms. Each of these factors represents an underlying 

dimension of the disorder. One drawback of this approach is that there is, generally, no 

easy way to classify individuals into groups, which, as stated earlier, is currently a 

clinical necessity and required by insurance companies and other reporting agencies. 

One solution to the debate, proposed by Muthén (2006), is the factor mixture 

model (FMM). The FMM uses a hybrid of both categorical and continuous latent 

variables, which allows the underlying structure to be simultaneously categorical and 

dimensional. The structure is considered categorical because the model allows for the 

classification of individuals into diagnostic groups through the use of latent class 

variables. The structure is also considered dimensional because once individuals are 

classified into groups, the FMM allows for variation in the severity of the disorder 

through the use of continuous latent variables. This approach is useful because it does not 

have the limitations of the two conventional representations of psychopathology. 

While the studies that have introduced the factor mixture model to the 

psychological literature have explained the conceptualization of the FMM, the use of the 

FMM is still not prevalent. One reason for this is that even though the concept of the 

FMM has been explained, there is little research about how these models should be 
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applied in practice and, once a well fitting model is obtained, how it should be 

interpreted. This paper seeks to remedy these shortcomings. 

This paper aims to explain the different variations of the FMM including the 

various steps in building a FMM, and how to decide between a FMM and alternative 

models. The FMM will be explored in detail by studying two real data examples: conduct 

disorder and attention-deficit hyperactivity disorder. 

 The first section of this paper explains the latent class, factor analytic, and factor 

mixture models in more technical detail. The second section focuses on the model 

building process and on how to compare among the different types of models. The third 

section presents the real data examples. The final section discusses the utility and 

feasibility of the factor mixture model in practical settings. All analyses in this paper 

were carried out using Mplus V5.1 (Muthén & Muthén, 1998-2008). In order to elucidate 

the factor mixture model, sample inputs for each model variation are available in the 

Appendix B. 

Background 

Latent Class Analysis 

 The latent class analysis (LCA) model, introduced by Lazarsfeld and Henry 

(1968), is used to identify subgroups, or classes, of a study population. A diagram of an 

example of a latent class analysis model is shown in Figure 3.1. There are two major 

concepts depicted in Figure 3.1, the observed outcomes or items that define the class and 

latent class itself. These can be seen in Figure 3.1 as u1-ur, and C, respectively. The 

boxes, u1 to ur, represent the observed response items or outcomes. The outcomes in a 
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LCA model can be categorical, continuous, count, censored, or nominal, though this 

paper will specifically focus on dichotomous, categorical items. The circle with the letter 

C in the middle is the unordered, categorical latent class variable with K classes. The 

arrows pointing from the latent class variable to the boxes above indicate that those items 

are measuring the latent class variable. This means that class membership is based on the 

observed response pattern of items. An important assumption, called the conditional or 

local independence assumption, implies that the correlation among the observed 

outcomes is explained by the latent class variable. Because of this, there is no residual 

correlation between the items.  

For a LCA model with categorical outcomes, there are two types of model 

parameters: conditional item probabilities and class probabilities. The conditional item 

probabilities are specific to a given class and provide information about the probability 

that an individual in that class will endorse a specific item. The class probabilities specify 

the relative size of each class, or the proportion of the population that is in a particular 

class.  

Consider a LCA model with r observed binary items, u, and a categorical latent 

variable C with K classes (C = k; k = 1, 2, . . ., K). The marginal item probability for item 

uj = 1 is  

1
( 1) ( ) ( 1|

K

j j
k

P u P C k P u C k
=

).= = = = =∑     (1) 

Assuming conditional independence, the joint probability of all the r observed items is 

1 2 1 2
1

( , ,..., ) ( ) ( | ) ( | )... ( | ).
K

r r
k

P u u u P C k P u C k P u C k P u C k
=

= = = = =∑   (2) 
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A product of LCA is the estimated class probabilities for each individual, called posterior 

probabilities, which are analogous to factor scores in a factor analysis (Muthén, 2001). 

These are estimates of 

1 2
1 2

1 2

( ) ( | ) ( | )... ( | )( | , ,..., )
( , ,..., )

r
r

r

P C k P u C k P u C k P u C kP C k u u u
P u u u

= = =
= =

= . (3) 

Note that each individual is allowed fractional class membership and may have non-zero 

values for many classes. It is from these probabilities that class membership is assigned. 

An individual is assigned to be a member of a class based on their highest probability of 

being in a given class, even though an individual may have several classes to which they 

are a partial member. Once assigned to a class, an individual is assumed to be a part of 

that class 100%.  

 One potential shortcoming to using LCA to represent psychological disorders is 

the assumption of conditional independence. This implies that all the symptom items are 

statistically independent within a latent class. One way to satisfy the conditional 

independence assumption is to add additional latent classes until the assumption is met. 

There are two possible scenarios that can occur as a result of adding more classes. The 

first is that the added latent classes are reflecting only residual correlations between a 

small number of items, beyond what the latent classes explain. In this sense, the added 

latent classes are not genuine subgroups. FMM is a good alternative for this situation 

because the addition of a factor would account for the residual item correlations and 

reduce the need for a larger number of classes. Using the FMM in this scenario may lead 

to the factor not having all loadings be non-zero. For instance, if there is an extra 
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correlation, beyond what the classes explain, between only two items, then only those 

two item’s loadings would be non-zero. This highlights the flexibility of the factor 

approach. The second scenario is that the additional classes are genuine 

subgroups. FMM might be useful in reducing the number of classes in this scenario if the 

classes are modeling differences in severity.  In this case the factor will account for this 

variation in severity. 

Another implication of the conditional independence assumption is that for each 

item in a class, individuals have the same conditional item probability. This implies that 

all individuals in a class will have the same probability of symptom presence. This is 

problematic because there is often within-class heterogeneity in the form of variation in 

severity which violates the conditional independence assumption (Muthén & 

Asparouhov, 2006). This implies that individuals do not have the same conditional item 

probability in a class. The FMM avoids this through the use of the latent factor. Within-

class, individuals have different factor values which allows for people to vary in their 

conditional item probabilities. 

Class enumeration in mixture models. A well-known problem with mixture 

models is that they tend to converge on local solutions, rather than a global solution 

(McLachlan & Peel, 2000). This is problematic because a local solution may differ 

dramatically from the global solution. The use of multiple sets of randomly generated 

starting values is one way to avoid converging on a local solution (McLachlan & Peel, 

2000). Observing the same maximum likelihood for multiple sets of starting values 

makes it more likely that a global solution has been found. One of the advantages of 
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using Mplus V5.1 (Muthén & Muthén, 1998-2008) is that it has a random starts feature 

that generates a different number of random starting value sets to facilitate in finding the 

global solution.   

 Another known issue with mixture models is the difficulty in deciding on the 

appropriate number of classes, called class enumeration. Despite the various suggestions, 

there is no commonly accepted methodology on how to compare models with differing 

numbers of classes (Nylund, et al. 2007). When considering a plausible set of models it is 

wise to utilize a combination of statistical and substantive model checking (Muthén, 

2003), which is the strategy that is used in this paper. There are two common ways to 

compare models. One is statistical tests of model fit, such as the likelihood ratio test of 

neighboring models. Another is using statistical indicators, such as information criteria. 

The standard chi-square difference test (likelihood ratio test, LRT) cannot be used with 

mixture models because the more restrictive model has its probability parameter for one 

class at zero, which is on the border of the admissible parameter space (Machlan & Peel, 

2000). Two alternatives to using the chi-square difference test are the Vuong-Lo-

Mendell-Rubin test (LMR-LRT; Lo, Mendell, & Rubin, 2001) and the parametric 

bootstrapped LRT (BLRT; McLachlan, 1987). Both of these tests approximate the 

difference in likelihood values between a k- and (k-1)-class model. Each of these tests 

provides a p-value, which indicates whether a (k-1)-class model can be rejected in favor 

of a k-class model. When comparing the p-values of a plausible set of models, one is 

looking for the first time the p-value is non-significant, or greater than 0.05. 
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 Another way of choosing the number of classes is to use information criteria. 

Information criteria, such as the Bayesian Information Criterion (BIC; Schwarz, 1978), 

are based on the best maximum likelihood of a model and different criteria apply 

different penalties for the number of parameters and sample size. Because of the different 

penalties that are applied by each information criterion, they will often point to differing 

numbers of classes. For mixture models with different numbers of classes, the model with 

lowest value of an information criterion is deemed the best fitting model. Nylund et al. 

(2007), which considers the performance of statistics and indices described here, 

recommend using the BIC and LMR to narrow the number of models under consideration 

and then include the BLRT for a smaller set of model comparisons due to the 

computational demands of the BLRT. 

 Besides looking at the statistical comparisons of the models, it is important to also 

understand whether the models make substantive sense and to examine the residuals. One 

way to explore the interpretation of the models is to examine the mean class profile for 

different models. It is also worthwhile to examine the class size and proportion since an 

over-extraction of classes can result in small and non-distinct classes (Masyn et al., in 

press). Another way to explore the interpretation of a FMM is through a pattern response 

table that displays the item response pattern, its frequency, the total number of items 

endorsed, class probabilities, and factor scores broken down by each class. The residuals, 

or the difference between the observed and estimated values, provide further insight into 

whether the model fits the data well. A large number of significant residuals indicates 

that the model does not fit the data well. 
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Factor Analysis 

 In factor analysis (FA), the goal is to investigate common content among the 

items (Lubke & Muthén, 2005) by seeing if items group together on continuous latent 

variables called factors. An example of a FA model can be seen in Figure 3.2. As with the 

latent class model, there is a circle, this time with the letter F in the middle, representing 

the factor. But, the circle in a FA is not an unordered, categorical latent variable like in 

LCA, but instead, a continuous one. Because the latent variable is continuous, there is no 

assumption of different subpopulations of individuals, like in LCA. Instead, it is assumed 

that all individuals in the sample are from the same homogenous population and that 

differences among individuals arise because of differences on the factor. Similar to LCA, 

there are arrows emanating from the factor that point towards the items. This indicates 

that the factors are measured by those combinations of items that people tend to endorse 

together. For example, in the context of ADHD diagnosis, one factor might be measured 

by those symptom items relating Inattentiveness and another might be measured by those 

symptom items relating to Hyperactivity. 

 The factor analytic model with dichotomous items y takes on the following form 

for individual i: 

y*i = τ + Λ ηi + εi ,  

                                        ηi = α + ζi ,          
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and            

        (4) 

where yi are individual i’s responses, which is a p vector of observed outcomes; y*i  is 

individual i’s latent response vector; j is one of the items in a p vector; τ is a p vector of 

measurement thresholds; Λ is a p × m matrix of factor loadings, where m is the number of 

factors; ηi is a m vector of factor scores; ε is p vector of residuals; α is a m vector of the 

intercepts of the factors; ζi is a p vector of residuals which is assumed to be normally 

distributed with mean zero and variance Ψ.  

An important piece of information that results from a FA is the estimated factor 

scores, ηi. The factor scores are estimated from equation 4, after the analysis has been 

conducted. The factor scores of all the individuals in a sample can be thought of as 

forming an approximation to the sample distribution of the factor. The factor score of an 

individual can be used as indication of where that individual is located on the factor, 

relative to the other individuals in the sample. 

One disadvantage of FA is that it does not give a model-based classification of 

individuals, which can be problematic if this is the goal of the analysis. One option would 

be to plot the factor scores and see if there are any natural cut points or thresholds for 

classification. Natural cut points, however, can be hard to find in practice (Muthén, 

2006), especially if there is more than one factor. 

yij =  { 1     if y*ij > 0 
0     otherwise. 
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One advantage of using FA is that it is a widely used technique and so, there are 

many guidelines for how to do factor analysis in practice. For a technical description of 

FA with continuous items see Joreskog (1969) and for a more applied description and a 

guideline for how to do FA in practice see Brown (2006). For information on FA with 

categorical items see Bartholomew and Knott (1999) and Muthén (1989). 

Factor Mixture Model 

 The factor mixture model (FMM) uses a hybrid of latent class and factor analysis 

(Muthén, 2008) and an example of a FMM can be seen in Figure 3.3. The figure shows 

that the FMM is a combination of LCA and FA because there is both a latent class 

variable, the circle with the C in the middle, and a latent continuous factor, the circle with 

the F in the middle. Through the use of these two types of latent variables the FMM 

simultaneously provides both a categorical and dimensional view of psychology. The 

latent class variable allows for the classification of individuals into groups while the 

factor models the severity of the disorder. The factor also yields quantitative scores of the 

disorder in the form of the factor scores. 

 Figure 3.3 shows an added flexibility of the FMM. The solid lines starting from 

the latent variables and ending at the symptom items indicate that the latent variables are 

measured by those symptoms. Additionally, there are dashed lines coming from the latent 

class variable and ending on the line that goes from the factor to the symptom items. This 

indicates that the factor structure of the model can be different in each class. 

 The formulation of the FMM is similar to what was seen in the FA model except 

that all the parameters have the potential to be different across the classes. A factor 
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mixture model for k = 1, 2, . . ., K latent classes with dichotomous items can be specified 

as follows: 

y*ik = τk + Λk ηik + ε ik ,   

ηik = αk + ζik , 

where, 

ζik ~ N(0, Ψk) 

and 

                                                                                (5) 

All of the parameters in the equation above have the same interpretation as the FA model 

presented in equation 4, but now they can be class specific as indicated by the subscript k. 

By allowing all of the parameters to have the potential to be class-specific, the model 

becomes more flexible and allows for several variations that differ in the amount of 

measurement invariance. These variations will be discussed in more detail in the next 

section.  

 The FMM has distinct advantages over LCA and FA that may make it a better 

model to represent psychological disorders. Unlike LCA, the FMM does not need a 

conditional independence assumption given latent class. This suggests that individual 

differences in the severity of a disorder can be explored within a given class. These 

variations within a class are represented by the continuous factors and can be quantified 

by using the factor score for each individual (Lubke & Muthén, 2005; Muthén et al., 

yij =  { 1     if y*ij > 0 
0     otherwise. 
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2006). One disadvantage to FA is that there is no model-based classification of 

individuals. In a FMM, classification is obtained through the latent class variable. 

The latent class and factor analytic models can be seen as special cases of the 

FMM. LCA is a special case of FMM in which the factor covariance matrix is zero. The 

factor analytic model can be thought of as a FMM with one latent class to which every 

individual in the sample belongs.  

 While there has been little research on how to do the FMM in practice, several 

authors have made contributions toward the development of this model. One of the first 

articles is by Yung (1997), which considers a FMM where all of the parameters were 

class-varying. McLachlan and Peel (2000) discuss a FMM where the factor structure is 

exploratory rather than confirmatory. Muthén (2006) and Muthén and Asparouhov (2006) 

consider a FMM using dichotomous outcomes. Muthén (2008) provides an overview of 

the different types factor mixture models and breaks them down into four branches 

depending on the amount of measurement invariance present and whether the factor in 

each model is parametric or not. This paper shows how the FMM variations presented 

map onto the branches presented in the Muthén (2008) article. Muthén (2008) and Masyn 

et al. (in press) discuss longitudinal extensions of FMM. Masyn et al. also position the 

FMM in their dimensional-categorical spectrum which organizes latent variable models 

based on the types and combinations of latent variables used. Kim and Muthén (2008) 

explain how to do two-part FMM to be able to model data with strong floor effects. 

  There have been additional applications of FMMs in genetics and IRT analysis. 

FMM has been applied to genetic contexts by McLachlan, Do, and Ambroise (2004) to  
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micro-array gene expression data and by Muthén, Asparouhov, and Rebollo (2006) to a 

twin heritability study. Mislevy and Verhelst (1990), Mislevy and Wilson (1996), Wilson 

(1998), and Boeck, Wilson, and Acton (2005) applied FMM to IRT studies.  

FMM: Model Variations 

 In this paper, several different variations of the FMM and their interpretations are 

presented. Model presentation will start with the more restrictive models, since the 

interpretations tend to be simpler, and move to less restrictive models, where the 

interpretation can be more complex. The formulas in this section have no link function 

relating y* to y in order to save space. The link function is the same as the one presented 

in equation 5. 

 The first model variation is the latent class factor analytic (LCFA) model. It is 

referred to as FMM-1 and can be formulated as: 

y*ik = τ + Λ ηik+ ε ik,  

                                             ηik = αk ,         (6) 

In this model, the only parameter that changes across classes is the factor mean, which is 

indicated by the subscript k on α. The item thresholds and factor loadings are held 

invariant across classes, suggesting that the disorder is being measured the same way 

across all classes. The factor covariance matrix, Ψ, is fixed at zero, indicating that there 

is no severity in the disorder. Figure 3.4 shows a diagram of this model on the left and on 

the right, an example plot of the factor means versus the frequency of each class. On the 

right, bars are used to mark the factor means instead of a distribution because the factors 

have no variance, which suggests that this model has a non-parametric factor distribution. 
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The height of the bars in the plot represents the percentage of the sample in that class. 

This plot suggests that the only difference between individuals arises due to having 

different amounts of the disorder and that there are only a set number of amounts that 

individuals can have, which are the number of classes. In the model diagram on the left, 

the latent class variable points to the factor, and not directly to the items, indicating that 

class membership is based on each individual’s location on the factor. Because this 

variation has measurement invariance and non-parametric factor distributions, FMM-1 is 

representative of Branch 2 in Muthén (2008). 

 The second model variation is the FMM-2, also called a mixture factor analysis. 

The FMM-2 is similar to the FMM-1 except that instead of setting the factor variances 

and covariances to zero, they are now freely estimated in each of the classes. The 

formulation for the second model is: 

y*ik = τ + Λ ηik + ε ik, 

ηik = αk + ζik , 

where, 

                                      ζik ~ N(0, Ψk).                                    (7) 

Figure 3.5, similar to Figure 3.4, shows a model diagram on the left and a plot of the 

factor means versus the frequency on the right. On the right, the classes are now 

represented as distributions, rather than bars as in FMM-1, because the factors have 

variance. This indicates that there are many possible amounts of the disorder an 

individual can have. The model diagram on the left is almost the same as for the FMM-1 

except that there is now an arrow pointing into the latent factor which indicates a residual 
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so that the within-class factor variance is now being modeled. One variation of the FMM-

2 is to allow the factor variances to be freely estimated, but held equal across classes. 

Because this model variation has measurement invariance and parametric factor 

distributions, FMM-2 is representative of Branch 1 in Muthén (2008). 

 In the third model variation, FMM-3, the factor loadings and factor covariance 

matrix are invariant, while the item thresholds are allowed to change across classes. The 

formulation for the FMM-3 is: 

y*ik = τk + Λ ηik + ε ik , 

ηik = ζi , 

where, 

       ζik ~ N(0, Ψ).                (8) 

 Also, the factor mean is set to zero for identification purposes and so does not appear in 

the equations above. The factor mean is set to zero in the remaining model variations. 

Figure 3.6, which shows the model diagram for the FMM-3, is different than the previous 

two model diagrams because the arrows starting from the latent class variable now point 

to the items rather than the factor. This shows that the item thresholds are changing 

across classes, which implies that the classes are now based on the responses to those 

items rather than the factor, as was seen in the previous two models. In FMM-3, and the 

remaining FMM variations, some or all the measurement parameters are non-invariant 

and the factor distribution is parametric, so FMM-3 through -5 fit into Branch 3 in the 

Muthén (2008) paper. 
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 The fourth model variation, FMM-4, is the same as the third model except that the 

factor covariance matrix is now allowed to change across the classes. Having different 

factor variation across the classes implies that there are different amounts of severity 

within each class. For example, a class that can be thought of as “Unaffected” might have 

less variance because individuals are showing none to almost no symptoms while a class 

that is “Affected” might have more variation because individuals might have a greater 

range of symptoms. The formulation for the fourth model is: 

y*ik = τk + Λ ηik+ ε ik ,  

ηik = ζik , 

where, 

       ζik ~ N(0, Ψk).     (9) 

 The fifth model, FMM-5, is the least restrictive model in terms of invariance of 

the parameters. The item thresholds, factor loadings, and factor covariance matrix are all 

allowed to vary across classes. The formulation for the fifth model is:  

y*ik = τk + Λk ηik + ε ik ,  

ηik = ζik , 

where, 

ζik ~ N(0, Ψk).    (10) 

FMM and Measurement Invariance (MI) 

 The FMM variations presented above differ in terms of how much measurement 

invariance (MI) is present. The amount of MI can have important implications for how a 
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FMM is interpreted, specifically whether or not the same factors are being measured in 

each latent class. There are many definitions of MI, but this paper will use Meredith’s 

(1993) definition of strong factorial invariance which requires equality of factor loadings, 

λ, and thresholds, τ, across classes because strong factorial invariance is often considered 

to be sufficient for the comparison of subpopulations (Little, 1997; Widaman & Reise, 

1997). For a further discussion about different definitions of MI and how they apply to 

FMMs see Lubke and Muthén (2005). 

 In strong factorial invariance, the factor loadings and thresholds of an item must 

be held equal across latent classes. If the factor loadings, which are slopes in the 

regression of the observed variable on the factors, are non-invariant in the latent classes, 

then a unit increase in the factor score does not result in the same increase of the 

dependent variable in the different classes. This differential increase can suggest one of 

two things. The first is that if there are many items with large differences in their factor 

loadings between classes, then each class has a different underlying factor. The second is 

if there are relatively few items with differences in their factor loadings between classes, 

then those items with differential loadings function differently in each class. If the item 

thresholds, which are negative intercepts in the regression of observed variables on the 

factor, are not equal across latent classes then one latent class scores consistently higher 

or lower than the others, independent of scores on the factor. This suggests that observed 

differences between classes are not entirely due to differences in the factor. 

 In FMM-1 and -2, the factor loadings and item thresholds are invariant across 

classes, suggesting that the interpretation of the factor remains the same in each class or, 
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put another way, the  factor retains the same meaning at both the low and high values in 

the population. In these two variations, the latent classes are used to model the non-

normality of the factor in the population. For FMM-1, Figure 3.4, which plots the factor 

distribution on the right side of the figure, shows that the factor is categorical with each 

latent class representing a category. For FMM-2, Figure 3.5, which also plots the factor 

distribution, shows that the factor is continuous, but non-normal. The factor in a FMM-2 

is a mixture of normal distributions located at different points on the factor distribution, 

and each normal distribution is a latent class. 

 In FMM-3 and -4, the item thresholds are non-invariant, while in FMM-5 both the 

item thresholds and the factor loadings are non-invariant. In these model variations, 

because there is a violation of strong factorial invariance, the same factor does not apply 

to the whole population.  Instead, there is a different factor, with a different 

interpretation, in each latent class. The implication of this is that there are several 

populations, represented by the latent classes, each with their own distributions.    

 In practice, FMM-1 and -2 often do not fit real data well because the specification 

of invariant factor loadings and thresholds are likely to be too restrictive for certain items. 

In these two models, the factor loadings influence both the item mean, which changes 

over classes for an item j as a function of  τj+ λj*αk , and the item correlation between 

item j and item l within class which is λj*ψ* λl. Item means are not likely to change 

over classes as function of τj+ λj*αk, but instead change as a function of τjk. It is unlikely 

that αk is the only parameter that creates changes across classes in item means for these 

two models. Furthermore, it is because the factor loading has a connection between both 
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the item mean changes over classes and the item correlation within-class that FMM-1 and 

-2 seldom fit real data well. 

  Even though FMM-1 and -2 may not fit real data well, partial MI is possible. 

Items which violate measurement invariance may be pinpointed using one of three 

possible methods. To demonstrate these methods, a simulated data set with six 

continuous items, y1-y6, is used. The data generating model was specified so that one 

item’s thresholds, y5, were non-invariant across classes. The remaining thresholds for the 

other five items were invariant. The data were specified so that a FMM-2 was the data 

generating model, but with the factor variance structure equal across classes. One way to 

possibly identify a non-invariant item is to compare the estimated and observed item 

means. If an item was non-invariant then the observed and estimated means would be 

different from one another. In Table 3.1, which shows the observed and estimated means 

for each item from an FMM-2 in the top two rows of the table, the observed and 

estimated means are equivalent for each item. This is because mixture models, like 

FMMs, do a good job of fitting first and second order moments (means and variances), 

making the comparison of observed and estimated means an unsuitable method for 

detecting threshold non-invariance. A second way to identify these items is to examine 

the within-class residuals for each item’s mean from a FMM-1 or -2. An item that is non-

invariant may have a larger residual than items that are invariant. In Table 3.1, all of the 

items have small residuals which are close to zero, including y5. This suggests that 

examining the within-class residuals for each item’s mean is not the best method for 

identifying threshold non-invariance. 
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 A third way to detect non-invariance is to conduct a series of analyses in which 

one item’s thresholds are held invariant and the thresholds for the rest of the items freely 

vary across the classes1. Using the model constraint feature in Mplus, a test of whether 

the difference between the items whose thresholds are allowed to vary is significantly 

different from zero can be conducted (See Appendix B for example Mplus code). If the 

test is significant, those item thresholds should be considered non-invariant and if the test 

is non-significant, the item thresholds should be invariant. Once this is performed with 

each item’s thresholds being held equal across classes, a tally can be made of the number 

of times each item’s threshold difference test is significant. The more times an item has a 

significant difference test, the more likely it is that item should have freely varying item 

thresholds. For the simulated data, y5 had 5 significant difference tests while the 

remaining items had zero significant difference tests suggesting that item y5 should be 

non-invariant across classes and the other items should be invariant. Based on these 

results, a partial MI model with y5 non-invariant and the remaining items invariant 

should be compared to the original model, FMM-2. This strategy will be demonstrated in 

the attention-deficit hyperactivity disorder example. 

FMM: Factor Measurement Structure 

 Similar to FA, FMMs can have two possible factor measurement structures: 

confirmatory and exploratory. As in confirmatory FA, confirmatory FMMs utilize 

substantive theory to define factors that are measured only by specific symptom items, 

with the factor having no influence on the remaining items. This results in what is 

                                                 
1 We thank Tihomir Asparouhov for suggesting this approach. 
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referred to in the FA literature as a simple measurement structure. Confirmatory FMM 

has the advantage of encouraging researchers to formalize their measurement hypothesis 

by having latent variables that are grounded in substantive theory, which can often lead to 

more parsimonious models (Asparouhov & Muthén, 2009). There are, however, 

disadvantages to using a simple measurement structure including fixing small cross-

loadings to zero when a simple structure is used. Ignoring these cross-loadings may force 

a researcher to specify a more parsimonious model for the data than is necessary, which 

can lead to poor model fit (Asparouhov & Muthén, 2009). 

An alternative to a confirmatory factor structure is an exploratory structure, where 

the number of factors and the relationships between the factors and the symptom items do 

not need to be specified a priori. Asparouhov & Muthén (2009) suggest using an 

exploratory structure in structural equation models when limited measurement knowledge 

is available or a more complex measurement structure is needed. An exploratory structure 

can be applied to a FMM using the Type = Mixture EFA option in Mplus V5.1 (Muthén 

& Muthén, 1998-2008). Using this option not only provides rotated factor solutions, but 

also standard errors for all rotated parameters and overall tests of model fit.  

In this paper, all of the FMMs presented used a confirmatory structure that was 

guided by a priori substantive reasoning as to the number of factors and relationships 

between the factors and the symptom items. Given that a mixture was found to be a 

reasonable fit to the data in the examples, an exploratory structure was also fit to the data 

to examine if the presence of mixtures would change the number of factors or the factor 

structure since the presence of mixtures may call for a simpler factor measurement 
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structure. In the examples presented in this paper, the presence of mixtures did not 

change the factor structure or the number of factors. In order to demonstrate the use of 

the exploratory structure in FMMs, however, it was applied to the second example. 

FMM Model Building and Comparison 

 Because FMMs are relatively new to the literature there is a dearth of writing 

about the steps to build a FMM, but general guidelines for how do them are offered in 

several papers (Muthén, 2006; Muthén & Asparouhov, 2006; Muthén, Asparouhov, & 

Rebollo, 2006). In each of these articles, the authors analyze their data using LCA, FA, 

and FMMs and then compare the fit among these three types. None of these articles 

provide instruction on how to construct the FMMs. Specifically, no information is given 

on how to decide on the number of classes and factors or how to pick among the different 

variations of the FMM. 

 A suggested strategy is to first fit LCA models with increasing number of classes 

and FA models with increasing number of factors. The next step is to fit a FMM with two 

classes and one factor, and in subsequent models increase the number of classes. After 

this, the number of factors would be increased to two, and the classes would once again 

be increased in subsequent models. This pattern of increasing the number of classes and 

then the number of factors would be repeated. The question arises: at what point does one 

stop increasing the number of classes and factors? In several papers we have reviewed, 

the strategy to decide on the number of classes and factors has been to take the best 

fitting number of classes from a LCA and the best fitting number of factors from a FA 

and combine them to form a FMM. After this is complete, no further investigation is 
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conducted to see if there is a need for a smaller number of classes and factors. This 

practice is highly discouraged because having both factors and classes in the model may 

reduce the need for a greater number of classes and factors. For example, if a LCA 

solution has many classes that are parallel to one another, which is thought to model 

severity, then adding one factor will likely reduce the need for the same number of 

classes because the factor will now model the severity. Instead, it is suggested that the 

number of classes from the best fitting LCA model and the number of factors from the 

best fitting FA model be the end point of combinations of classes and factors in model 

building. The strategy described above should be applied to all of the FMM variations. 

Once this is complete, the best FMM model for the data will be selected. Each of the 

examples will apply the strategy outlined above for model building. 

 Once a best fitting FMM has been selected, it is important to compare this model 

to the best fitting LCA and FA models to see if a more parsimonious solution can provide 

a better fit and explanation of the data. This is similar to the “best” candidate approach 

outlined for the Dimensional-Categorical spectrum in Masyn et al. (in press). Similar to 

deciding on the number of classes in a mixture analysis, the LLRT cannot be used for 

comparing among the different model types. Model comparison will be based on 

information criteria, with the lowest value indicating the best fitting model type, and 

substantive interpretation.  

Examples 

 In the following section, two examples are explored to illustrate the model 

building and comparison strategies described above and to aid in understanding the 
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substantive interpretation of the FMM. Each example will begin with a brief description 

of the data, followed by model building and comparison of latent class, factor analytic, 

and factor mixture models.  

Example One: Conduct Disorder 

The first example examines the underlying structure of conduct disorder (CD) in 

interview data from a population-based sample of Finnish twins modestly enriched for 

familial alcoholism risk. The study, called FinnTwin12 (FT12; Rose et al., 2004), is 

longitudinal, but data for this illustration are from the first follow-up at age 14. In total, 

there were 1786 children in the study with about an equal number of boys and girls. The 

analysis focused on interview reports of thirteen dichotomous symptom items measuring 

CD that are from the Child Semi-Structured Assessment for the Genetics of Alcoholism, 

Adolescent version (C-SSAGA-A). The C-SSAGA-A is a polydiagnostic instrument that 

was developed by the Collaborative Study on the Genetics of Alcoholism (COGA; 

Kuperman et al., 2001). Because data from co-twins cannot be considered independent 

observations, the relatedness of the twins was handled by correcting the standard errors 

using the Type = Complex option in Mplus. The Type = Complex option use a sandwich 

estimator to obtain standard errors which take into account the non-independence of the 

twins.  

In order to obtain a diagnosis of CD, three or more symptoms must be present. In 

this sample, 56% of children reported no symptom presence while 12% of the sample 

reported having three or more symptoms present and, therefore, met criteria for a CD 

diagnosis. Symptom presence ranged from 0.1% (Has ever been suspended from school) 
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to 25% of the sample (Is physically cruel to animals). For a more extensive description of 

the interviewed sample and analysis of CD in these 14 year-old Finnish twins see Rose et 

al. (2004). 

According to Table 3.2, which displays model fit and comparison statistics for 

this example, the LCA model with the lowest BIC was the two-class model, followed by 

the three-class model. The first time the LMR p-value was non-significant, or greater 

than 0.05, was for the four-class model, which suggested that the three-class model was 

the best fitting model. 

Since, the BIC and LMR p-value have indicated that the two- and three-class 

models were potential candidates for the “best” LCA model, the BLRT p-value and 

substantive interpretation of these two solutions were examined to help decide between 

them. The zero p-value of the BLRT for the three-class model indicated that a three-class 

model should be chosen over a two-class model. Figure 3.7 shows the item profile plot 

for the two-class solution. Class One, 78% of the sample, has low symptom presence as 

indicated by low item endorsement probabilities. Because of the large size of the class 

and low symptom presence, this can be considered the “unaffected” or asymptomatic 

class. Class Two, 22% of the sample, is defined by the items relating to suspension, lying, 

and truancy; with the other items have relatively low probabilities of symptom 

endorsement, 0.30 or lower.  

Figure 3.8 shows the item profile plot for the three-class solution. As in two-class 

solution, there is one class that has low item endorsement across all items. This class is 

slightly smaller than the asymptomatic class from the two-class solution, 69%, because 
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some of the individuals were absorbed into the two remaining classes. Supporting this 

idea are the lower endorsement probabilities of the suspension and truancy symptom 

items in the unaffected class. The class that was defined by the suspension, lying and 

truancy items in the two-class solution has now been split into two classes in the three-

class solution. The first of these classes is similar to the one in the two-class solution with 

high probabilities of endorsing the suspension and lying items, but the probability of 

endorsing truancy item has drastically decreased. The probability of endorsing other 

symptoms items is relatively low in this class. Potentially, some individuals in this class 

may meet criteria for a CD diagnosis. The second of these classes, 5% of the sample, still 

has high probabilities of suspension and lying, but also has high probabilities of running 

away, property destruction, forcing someone to participate in sexual activities, and 

starting fights. This class can be thought of as those individuals that are likely to meet 

criteria for CD. Given that there is a substantive interpretation and reasoning for each of 

the three classes and the BLRT p-value points toward the three-class model, it was 

selected as the “best” LCA model for this data. 

 For the FA models, an exploratory FA was first conducted, then based on the 

results, a series of confirmatory FA models were explored. The results of the exploratory 

FA suggested two possible factor solutions. The first is a one-factor solution in which the 

factor is defined by all thirteen CD items. The second is a two-factor solution with one 

factor being defined by the symptom items relating to expulsion from school, cruelty to 

animals, and use of a weapon when fighting and the second factor being defined by the 

remaining items. Potential solutions with more than two factors had the additional factors 
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being solely defined by one symptom item which lead to the solution being deemed not 

appropriate. When comparing the fit results of the one-and two-factor confirmatory 

models in Table 3.2, the log-likelihood is identical, but the one-factor model has one less 

parameter than the two-factor model, making it more parsimonious. This means that the 

BIC is lower for the one-factor model than the two-factor model. The factor solution for 

the two-factor model had several items on the second factor that did not load highly 

suggesting that there was no need for an additional factor. Since the one-factor model is 

more parsimonious, has a lower BIC value, and there are low loadings on the second 

factor in the two-factor solution, the one-factor solution was chosen as the “best” FA 

model for the data. 

 The bottom part of Table 3.2 presents results for the FMMs. Models with one 

factor and one to three classes were fit to the data, based on the results of FA and LCA. 

In Table 3.2, the FMM with the lowest BIC value is the two-class, one-factor FMM-2, 

with a value of 9284. But, for this model the LMR p-value is greater than 0.05, which 

indicates that a one-class, one-factor model should be chosen over this model. The next 

lowest BIC value in the table is 9374, which is 90 points higher than the lowest BIC 

value. This BIC value occurs for two models, with additional models having BIC values 

that are not much higher. For these FMMs, the LMR p-value is less than 0.05, which 

indicated that the two-class FMM should be chosen over the one-class model. Because 

there was no agreement of which model was the “best” FMM based on the BIC and the 

LMR p-value, the BLRT p-value was examined in the four models with the lowest BICs. 

In these four FMMs, the BLRT p-value was lower than 0.05 indicating that a two-class 
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FMM should be chosen over a one-class solution. Based on these results, the two-class, 

one-factor FMM-2 is chosen as the “best” candidate FMM. It has the lowest BIC and the 

substantive interpretation of the model made the most sense.  

In Figure 3.9, which shows the item profile plot of the two-class, one-factor 

FMM-2 at the mean of the factor, there are two classes. The first and largest class, 57% 

of the sample, is the lowest line on the profile plot, with almost all items having low 

probabilities of symptom endorsement. Individuals in this class are likely to never have 

any symptoms of CD. While this class is similar in its interpretation to the lowest class in 

the three-class LCA, the percentage of individuals in the low class differs between the 

two solutions suggesting that the latent classes from a LCA and a FMM are not the same. 

Also, the probabilities of item endorsement are lower, almost zero, in the FMM and the 

class proportion in the FMM is similar to the proportion of individuals in the sample that 

do not endorse any items, which suggests that the low class in the FMM solution may be 

a true asymptomatic class. The second class, 43% of the sample, has slightly elevated 

probabilities of endorsing the symptom items related to suspension, lying, and truancy, 

but these probabilities are still small. This class is similar to the second class in the three-

class LCA solution, but with smaller item endorsement probabilities and a larger class 

proportion. Notice that there are bands around the second class showing what the item 

endorsement probabilities are if an individual is one standard deviation away from the 

factor mean. The first class does not have bands around the item profile because the 

factor variance in this class was non-significant. The bands around the factor mean of the 

second class give an idea of the variability within each class. For example, for the 
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symptom item relating to suspension there is a great range of endorsement (0.20 to 0.70) 

once an individual is one standard deviation away from the factor mean. But, for the 

symptom item relating to expulsion, there is little variation in this item’s probability of 

endorsement as evidence by the bands being very close to the factor mean for that item.  

Comparing the factor loadings of the FMM and FA solutions, shown in Table 3.3, 

suggests that while the factors are similar in interpretation, they are not equivalent. Table 

3.3, presents the unstandardized and standardized factor loadings. The factor loadings 

were standardized to take into account differences in the factor variance across models in 

order to be able to compare the loadings. The FMM-2 had class invariant factor loadings, 

hence the unstandardized factor loadings are the same in each class. But, the factor 

variances are non-invariant in a FMM-2, so the standardized factor loadings are also 

different in each class. Comparing the loadings from each class in the FMM-2 to the 

loadings from the FA solution, the loadings in class two are lower than the loadings in the 

FA solution while the class one loadings are higher. This suggests that the factor, which 

is considered the severity, has more influence in class one, the asymptomatic class. The 

higher loadings in class one also indicate that the with-in class correlation among the 

items is higher in class one. Note also that the items relating to suspension from school, 

fire starting, and truancy have the highest loadings in both solutions suggesting that these 

items are important in both solutions. 

 Now that the “best” candidate model has been selected for each of the three model 

types, LCA, FA, and FMA, a comparison can be made among these “best” candidate 

models to see which one best describes the data. One way to decide between the models 
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is to examine the BIC for the lowest value. For this data, the two-class, one-factor FMM-

2 has the lowest BIC. Another way to decide between the models is to examine what each 

model implies about the underlying structure of CD in this population. The three-class 

LCA model implies that the underlying structure of CD is categorical with three 

categories, which are the three-classes in the solution. 

The one-factor FA solution implies that the underlying distribution of CD is 

continuous and normally distributed. The two-class, one-factor FMM-2 also implies that 

there is one underlying continuous factor of CD because of the class invariant item 

thresholds and factor loadings. But, unlike the one-factor FA, the distribution of the 

factor in FMM-2 is non-normal. The distribution of the factor in the FMM-2, shown in 

Figure 3.10, is a bi-modal distribution with a small peak at about 0 and a taller peak at 

about 6.5. It is these peaks and the distributions around them that form the mixtures in the 

FMM-2 solution. The first latent class is the small peak at the bottom of the plot with the 

wide distribution around it. The second class is the normal distribution further up in the 

plot. By having two latent classes, the FMM can model the non-normality of the factor 

more precisely than a FA can. Based on the results of the BIC and comparing what each 

model implies about the underlying structure of CD, the “best” model for this data is the 

two-class, one-factor FMM-2 because it models the non-normality of CD better than the 

other models.  

Example Two: Attention-Deficit Hyperactivity Disorder (ADHD) 

  The second data set originated from the Los Angeles ADHD study (Smalley et al., 

2000). Unlike the previous example, which was a population sample, the LA ADHD data 
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contain only children who have been diagnosed as being affected with ADHD. In total, 

there were 994 individuals in the sample, with about seventy percent of the sample being 

male. Ages in the sample ranged from 4 to 18 with a mean age of 10.47 (SD = 3.18). 

Many of the children in the study had an affected sibling who also participated; the 

relatedness of the siblings was handled by correcting the standard errors using the Type = 

Complex option in Mplus, as described in the previous example.  

In this sample, ADHD was measured using the Schedule for Affective Disorders 

and Schizophrenia for School-Age Children – Present and Lifetime version (K-SADS-

PL; Kaufman et al., 1997). This diagnostic instrument has 18 symptom items measuring 

ADHD, with nine symptom items measuring Inattention and nine symptom items 

measuring Hyperactivity\Impulsivity. Symptom presence ranged from 54.3% (Difficulty 

playing quietly) to 96.2% (Difficulty sustaining attention on tasks\play). There were three 

possible diagnoses of ADHD: predominantly Inattentive, predominantly Hyperactive, or 

Combined (both Inattentive and Hyperactive). A diagnosis of predominantly Inattentive 

is given to individuals having six or more symptoms from the Inattentive scale. A 

diagnosis of predominantly Hyperactive is given to individuals having six or more 

symptoms from the Hyperactive scale. An individual is considered to have Combined 

ADHD if he/she met criteria for both the predominantly Inattentive and predominantly 

Hyperactive. In this sample, 31% of individuals were predominantly Inattentive, 5% were 

predominantly Hyperactive, and 64% were Combined. 

The LCA of this example was conducted by fitting one- through five-class models 

to the data. The results for this example can be seen in Table 3.4. The lowest value of the 
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BIC occurred for the four-class model. Because the LMR p-values for the all of the 

models were less than 0.05, that LMR was inconclusive as to which is the best LCA 

model. 

 Since, the BIC indicated that the four-class model was the best model and the 

LMR was inconclusive, the BLRT p-values were examined for the three- through five-

class solutions. In Table 3.4, the first time the BLRT p-value was non-significant, or 

greater than 0.05, was for the five-class model which suggested that a four-class model 

should be chosen. Since both the BIC and BLRT have indicated that the four-class 

solution is the best LCA model for the data, it was chosen as the best LCA model. The 

four-class model profile plot is presented in Figure 3.11. Class one had high probabilities 

of item endorsement for the inattentive items and low probabilities of endorsement for 

the hyperactivity items, suggesting that this class can be considered a predominantly 

inattentive class. The second and smallest class, 15% of the sample, had a high 

probability of endorsement for the Hyperactivity and Inattention items with the exception 

of items that were related to working memory. The second class can be considered a 

hyperactive class with good working memory. The third class, which comprised 44% of 

the sample and had a high probability of endorsement for both the Inattention and 

Hyperactivity items, can be considered a combined class. The fourth class also had high 

probabilities of item endorsement for all the Inattention items, but had moderate to high 

endorsement probabilities for only those Hyperactivity items related to Impulsiveness.  

 For the FA models, an exploratory FA was first conducted, then based on the 

results, a series of confirmatory FA models were explored. The results of the exploratory 
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FA suggested two possible solutions, which are shown in Table 3.5. The first was a two-

factor solution with one factor defined by all nine symptom items on the Inattention scale 

and the second factor defined by all nine items of the Hyperactivity scale. The second 

potential solution had four factors, with the first being defined by five items on the 

Inattention scale related to dreaminess or not paying attention. The second was defined 

by three symptom items on the Inattention scale relating to working memory (ex: Often 

loses things, Forgetful in daily activities). The third factor was defined by five symptom 

items on the Hyperactivity scale and the fourth factor was defined by the remaining four 

symptom items on the Hyperactivity scale that were related to Impulsivity (ex: Blurts out 

answers). The model statistics for the two- and four-factor confirmatory solutions are 

found in Table 3.4. When comparing the two models, the four-factor model had the 

lowest BIC by 172 points. A LLRT also suggested that the four-factor model fit the data 

better than a two-factor model, χ2(5) = 206,  p < .0001. The results of the BIC and the 

LLRT both suggested that a four-factor model fit the data better than a two-factor model, 

so the four-factor model was chosen as the “best” candidate model for the FA model. 

 For the FMM, the results of the LCA and FA suggested that FMMs with a 

maximum of four-classes and four-factors should be fit to the data. Because a large 

number of factors are computationally intensive to fit with the already complicated 

FMMs, the fitting of models stopped at models with two factors. For this example, 

FMMs with both a confirmatory and exploratory measurement structure of the factors 

were explored. The confirmatory FMMs are at the top of Table 3.4 and the exploratory 

FMMs are at the bottom of the table. 
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In Table 3.4, when comparing the FMMs with confirmatory measurement 

structures to those with exploratory ones, the models with a confirmatory structure 

outperformed those with an exploratory one. This occurred for two possible reasons. The 

first is that in Mplus, models with an exploratory structure are assumed to have non-

invariant factor loadings and item thresholds, and a non-invariant factor covariance 

structure, like the FMM-5. In this example, the best fitting model was a FMM-3 which 

has invariant factor loadings. By forcing a FMM-5 onto data which has FMM-3 as the 

best fitting model, there were a large number of unnecessary parameters which were non-

significant, including a large number of non-significant cross loadings on the factors. The 

second reason why the exploratory FMMs did not perform as well in this example is that 

there was a clean, simple structure in these particular items.  

The results of the FMMs in Table 3.4 suggested that a two-class, one-factor, 

FMM-4 fit the data the best. This model had the lowest BIC value by 100 points and the 

LMR p-value and BLRT p-value were both close to zero, which indicated that a two-

class model should be chosen over a one-class model. While this model fit the data “best” 

according to statistical indicators, a closer inspection of the model revealed that it was not 

appropriate. Even though the factors in the two classes do not have the same 

interpretation due to class-varying threshold values, the factor loadings, shown in Table 

3.5, for the inattention items are small and non-significant when compared with the 

hyperactivity item loadings. This suggested that the model was only measuring the 

hyperactivity construct and not inattention, which is a vital part of ADHD.  Further 

inspection of all the one-factor FMMs revealed this limitation. Because of this, the next 
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“best” fitting model, the two-class, two-factor FMM-3, was explored. In this model, the 

first factor was defined by the inattention items only and second factor was defined by 

the hyperactivity items only. All of the item loadings were significant, see Table 3.5. In 

Figure 3.12, which shows the item profile plot for this solution, the first class, 33% of the 

sample, had a high probability of endorsing the inattention items, and high probability of 

endorsing the hyperactivity items related to impulsiveness. The second class, 67% of the 

sample, is similar to a Combination class because of the high probability of endorsing 

both hyperactivity and inattention items.  

One way to help ease the interpretation of FMMs is to use a pattern response table 

where the symptom response pattern, symptom endorsement total, factor scores, and class 

probabilities are displayed by latent class. In Table 3.6, which displays the pattern 

response table for the ten most frequent response patterns in each class for the two-class, 

two-factor FMM-3, both classes have a high symptom endorsement totals for the 

inattention items as indicated by the column labeled Inat. total, but class one generally 

has lower hyperactivity symptom endorsement than class two as indicated by the 

Hyperactivity symptom endorsement column. This supports the interpretation that the 

second class is similar to a Combined ADHD class because individuals in the second 

class have high endorsement of both inattentive and hyperactive items. 

 In the two-class, two-factor FMM-3, the thresholds are non-invariant, but there is 

a possibility for partial invariance. This example demonstrates the strategy, which was 

outlined in a previous section, of how to explore if there is a need for partial threshold 

invariance. A series of analyses were performed, one for each of the 18 items, in which 
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one item’s thresholds were constrained to be equal across classes and the rest free. A tally 

was then made of the number of times each item’s difference test was significant. The 

items with the highest number of times their threshold difference test was significant are: 

Motor (9), Seated (8), Fidgets (8), Runs (8), Attention (7), and Instruct (7). Based on the 

results of the tally, a new model was run where the items mentioned above had freely 

estimated thresholds in each class and the remaining items had thresholds that were held 

invariant. Table 3.4 shows the model fits results for this model in the last line of the table. 

The BIC for this partially invariant model is only one point lower than the non-invariant 

two-class, two-factor FMM-3, but the partially invariant model has 12 fewer parameters 

making it a more parsimonious model.  

Comparing the BIC values of the “best” fitting LCA, FA, and FMM located in 

Table 3.4, the four-factor FA has the lowest BIC value by 100 points. This example 

highlights that though the FMM is a powerful and flexible model, it does not always 

provide the best fit for the data.  One possible reason the FMM did not fit as well as the 

four-factor FA model is that this is a sample of only affected children so there was not 

much variation in symptom endorsement because the individuals had to endorse a high 

number of symptoms to be included in this sample. This is contrary to what was seen in 

the previous example where the FMM was the “best” model for the data. Lubke et al. 

(2007) applied LCA, FA, and FMM to a population sample in order to investigate the 

structure of ADHD and found that a FMM fit the data the best. 
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Discussion 

 This paper builds upon the work of previous research on factor mixture models in 

order to explicate how to conduct a factor mixture analysis in practice. This paper 

discusses several different variations of the FMM and what each suggests about the 

structure underlying psychological disorders. Steps for building a FMM, including how 

to decide on the number of classes and factors, and how to compare the factor mixture to 

other appropriate models, are also discussed. 

 The two examples examining the underlying structure of CD and ADHD shed 

light on some issues and challenges that arise when conducting a factor mixture analysis. 

The first example, which investigated the underlying structure of conduct disorder in a 

sample of Finnish twins, showed how difficult it can be to decide between a FMM and 

other appropriate models, such as the FA and LCA models. There is often no clear 

“winner” based on statistical tests and indicators. The decision between different types of 

models must be made based on what each model implies about the underlying structure 

and whether that can be justified substantively. This example also highlights how FMM 

can be used to model a non-normal, continuous factor. 

 In the second example, which explored the underlying structure of ADHD in a 

sample of affected children and adolescents, several issues arose. First, the “best” fitting 

FMM according to statistical tests and indicators may not always make substantive sense, 

which suggests models should always be checked for their interpretability. Second, 

despite the flexibility of the FMM, it is not always the best fitting or most appropriate 

model for the data. Researchers need to consider whether the FMM is appropriate for 
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their data and what the FMM they are using implies about the underlying structure. Third, 

despite the advances in computational technology in recent years, more complicated 

FMMs with large numbers of classes and factors can still be difficult to process. In this 

example, the results of the FA suggested that FMMs should be fit with up to four factors. 

But once the FMMs were increased to four factors, the computational demands of the 

model were too heavy to run the models. This example also demonstrated how to 

investigate if there is a need for partial measurement invariance in a factor mixture 

model. 

 The two examples have shown that despite the work that has been done with the 

FMM, there are still avenues for further study. One area for further study is how and 

when to incorporate covariates or other auxiliary variables into a FMM. Lubke and 

Muthén (2005) describe different ways that a covariate can influence the latent classes 

and factors, but not at what point in the analysis covariates should be included or what 

method should be used to incorporate them. Another area for the further study is the 

performance of statistical tests and indicators in correctly identifying the correct 

combination of latent classes and factors. Nylund et al. (2007) have begun this work by 

investigating a single case with dichotomous items, but this paper only focused on the 

correct identification of the number of classes with no focus on identifying the number of 

factors. Lubke and Neale (2006, in press) have conducted simulation studies exploring 

the use of statistical indicators to identify the presence of measurement invariance in 

FMMs. 
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 Even though there are some areas that need to be explored further, the FMM is 

still an important analytic tool for conceptualizing the structure underlying psychological 

disorders. Using the FMM, does not force the conceptualization to be either categorical 

or continuous, as previous notions have suggested. Instead the FMM allows for the 

underlying structure to be modeled as both so that one can simultaneously classify 

individuals into groups and have an estimate of the severity within those groups. 
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Table 3.1  
 
Simulated MI Data: Observed vs. Estimated Mean and Within-Class Residuals 
 
   Item y1 y2 y3 y4 y5 y6 
Observed Mean 0.948 0.784 0.755 0.729 1.721 0.74 
Estimated Mean 0.948 0.784 0.755 0.729 1.721 0.74 
Class 1 Residual 0.00 -0.01 -0.02 -0.01 0.04 -0.01 
Class 2 Residual 0.00 0.01 0.02 0.01 -0.04 0.02 

 

Table 3.2 
 
Conduct Disorder Example: Model Comparison Results (n =1758) 
            

LMR  
Model 

Log-
likelihood  Par. BIC p-value 

BLRT    
p-value 

Latent Class Analysis 
One-Class -5018 13 10062   
Two-Class -4586 27 9374 0 0 
Three-Class -4540 41 9387 0.033 0 
Four-Class -4524 55 9460 0.095  
Five-Class -4513 69 9543 0.132  

Factor Analysis 
One-Factor -4561 26 9317   
Two-Factors -4561 27 9324   

Factor Mixture Analysis 
2-Class, 1-Factor      
  FMM-1 -4586 27 9374 0 0 
  FMM-2 -4537 28 9284 0.235 0.04 
  FMM-3 -4357 40 9374 0.006 0 
  FMM-4 -4536 41 9379 0.029 0 
  FMM-5 -4526 53 9449 1  
3-Class, 1-Factor      
  FMM-1 -4540 41 9387 0.034  
  FMM-2 *     
  FMM-3 -4524 54 9452 0.527  
  FMM-4 -4523 55 9481 0  
  FMM-5 -4496* 81 9600 1   

Note. * Log-likelihood not replicated. 
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Table 3.3 
 
Conduct Disorder Example: Unstandardized and Standardized Factor Loadings  
 
Loadings Unstandardized  Standardized 
Model FA FMM  FA FMM 
Number of 
Factors 1 Factor 

2-Class, 1-Factor 
FMM-2  1 Factor 

2-Class, 1-Factor 
FMM-2 

  Class 1 Class 2   Class 1 Class 2 
Items              
Suspend 0.90 0.90 0.90  1.81 4.41 1.07 
Expelled 0.68 0.47 0.47  1.36 2.31 0.56 
Stolen 0.49 0.36 0.36  0.99 1.75 0.42 
Runaway 0.61 0.47 0.47  1.22 2.31 0.56 
Lie 0.72 0.64 0.64  1.45 3.13 0.76 
Fire 0.96 0.81 0.81  1.92 3.95 0.96 
Truant 1.00 1.00 1.00  2.01 4.88 1.18 
Property 0.59 0.44 0.44  1.18 2.17 0.53 
Animal 0.67 0.42 0.42  1.34 2.06 0.50 
Sexual 0.53 0.4 0.4  1.07 1.97 0.48 
Fights 0.61 0.5 0.5  1.23 2.44 0.59 
Weapon 0.36 0.26 0.26  0.72 1.25 0.30 
Stolen 0.72 0.57 0.57  1.45 2.79 0.68 
Factor 
Variance 4.03 23.8* 1.40        

Note. * Insignificant at the 5% level. 
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Table 3.4 
 
ADHD Example: Model Comparison Results (n = 994) 
 

LMR  
Model 

Log-
likelihood  Par. BIC p-value 

BLRT    
p-value 

Latent Class Analysis 
One-Class -8378 18 16879   
Two-Class -7534 37 15323 0  
Three-Class -7320 56 15025 0 0 
Four-Class -7214 75 14944 0.016 0 
Five-Class -7155 94 14956 0.026 1 

Factor Analysis 
One-Factor -7448 36 15143   
Two-Factors -7232 37 14719   
Four-Factors -7129 42 14547   

Factor Mixture Analysis - Confirmatory 
2-Class, 1-Factor      
  FMM-1 -7534 37 15323 0  
  FMM-2 -7423 39 15115 0  
  FMM-3 -7217 55 14813 0  
  FMM-4 -7217 56 14547 0 0 
  FMM-5 -7161 73 14823 0  
3-Class, 1-Factor      
  FMM-1 -7451 39 15170 0  
  FMM-2 -7417 42 15123 0.002  
  FMM-3 -7135 74 14780 0.083  
  FMM-4 -7135 76 14792 0.164  
  FMM-5 -7072 110 14901 0.461   
2-Class, 2-Factor      
  FMM-1 -7534 38 15330 0  
  FMM-2 -7191 45 14691 0.339  
  FMM-3 -7131 56 14647 0.015  
  FMM-4 -7124 59 14655 0.535  
  FMM-5 -7090 75 14695 0.004  
3-Class, 2-Factor      
  FMM-1 -7338 40 14952 0  
  FMM-2 -7211 49 14659 0.004  
  FMM-3 -7080 75 14675 1  
  FMM-4 -7067 81 14691 0.015  
  FMM-5 -7038 113 14852 0.011  
2-Class, 2-Factor 
 Partial MI -7171 44 14646     

Factor Mixture Analysis - Exploratory 
2-Class,1-Factor -7165 73 14833   
2-Class, 2-Factor -7044 107 14824   
2-Class, 3-Factor -7001 139 14958   
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2-Class, 4-Factor  **      
3-Class, 1-Factor -7065 110 14886   
3-Class, 2-Factor -6979 161 15064   
3-Class, 3-Factor **     
3-Class, 4-Factor **         

Note. ** Heywood case. 
 

Table 3.5 
 
ADHD Example: Factor Loadings 

Model FA 
Number of 
Factors 2 4 

  
Factor 

1 
Factor 

2 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Items             
Attention 0.98  1    
Distract 0.65  0.68    
Mistake 0.53  0.36    
Listen 0.65  0.52    
Instruct 0.86  0.71    
Organization 0.73   0.34   
Avoid 0.41  0.27    
Loses 1   1   
Forget 0.95     0.46     
Seated  0.63   0.58  
Fidget  0.66   0.62  
Runs  0.91   0.84  
Quiet  0.46   0.38  
Blurt  0.53    0.80 
Turn  0.59    0.78 
Interrupt  0.59    1 
Talk  0.38    0.51 
Motor   1     1   
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Model FMM-4: 2 Class FMM-3: 2 Class 
Number of 
Factors 1 2 
  Factor 1 Factor1 Factor2 
Items       
Attention -0.02* 0.97  
Distract 0.02* 0.62  
Mistake -0.13* 0.40  
Listen 0.08* 0.52  
Instruct -0.06* 0.75  
Organization -0.12* 0.61  
Avoid -0.01* 0.32  
Loses -0.19* 1  
Forget -0.22* 0.76   
Seated 0.61  0.61 
Fidget 0.63  0.65 
Runs 0.91  0.88 
Quiet 0.45  0.48 
Blurt 0.50  0.73 
Turn 0.57  0.67 
Interrupt 0.55  0.95 
Talk 0.37  0.50 
Motor 1   1 

Note. * Insignificant at the 5% level. 
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Table 3.6 
 
ADHD Example: Pattern Response Table for Two-Class, Two-Factor FMM-3. 
 
           
Freq. Inattention Items 

  A
ttn

. 

D
is

tra
ct

 

M
is

ta
ke

 

Li
st

en
 

In
st

ru
ct

 

O
rg

an
. 

A
vo

id
 

Lo
se

s 

Fo
rg

et
 

In
at

. T
ot

al
 

Class One 
14 1 1 1 1 1 1 1 1 1 9 
9 1 1 1 1 1 1 1 1 1 9 
6 1 1 1 1 1 1 1 1 1 9 
5 1 1 1 1 1 1 1 1 1 9 
5 1 1 1 1 1 1 1 1 1 9 
4 1 1 1 1 1 1 1 1 1 9 
4 1 1 1 1 1 1 1 1 1 9 
4 1 1 1 1 1 1 1 1 1 9 
4 1 1 1 1 1 1 1 1 1 9 
4 1 1 1 1 1 1 1 1 1 9 

Class Two 
122 1 1 1 1 1 1 1 1 1 9 
22 1 1 1 1 1 1 1 1 1 9 
18 1 1 1 1 1 1 0 1 1 8 
16 1 1 1 1 1 1 1 1 1 9 
15 1 1 1 1 1 1 1 1 1 9 
11 1 1 1 1 1 1 1 1 1 9 
8 1 1 1 1 1 1 1 1 1 9 
8 1 1 1 1 1 1 1 0 1 8 
7 1 1 1 1 1 1 1 1 1 9 
7 1 1 1 1 1 0 1 1 1 8 
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Freq. Hyperactivity Items 

  Se
at

ed
 

Fi
dg

et
 

R
un

s 

Q
ui

et
 

B
lu

rt 

Tu
rn

 

In
te

r. 

Ta
lk

 

M
ot

or
 

H
yp

er
. T

ot
al

 

Class One 
14 0 0 0 0 0 0 0 0 0 0 
9 1 1 0 0 1 1 1 1 0 6 
6 1 1 1 1 1 1 1 1 0 8 
5 1 1 1 0 1 1 1 1 0 7 
5 0 1 0 0 0 0 1 1 0 3 
4 1 1 0 1 1 1 1 1 0 7 
4 0 0 0 0 0 0 1 0 0 1 
4 0 0 0 0 0 0 0 1 0 1 
4 0 0 0 0 1 0 1 0 0 2 
4 1 1 0 1 1 0 1 1 0 6 

Class Two 
122 1 1 1 1 1 1 1 1 1 9 
22 1 1 1 0 1 1 1 1 1 8 
18 1 1 1 1 1 1 1 1 1 9 
16 1 1 1 1 1 0 1 1 1 8 
15 1 1 1 0 1 1 1 0 1 7 
11 1 1 1 1 1 1 1 0 1 8 
8 1 1 1 1 0 1 1 1 1 8 
8 1 1 1 1 1 1 1 1 1 9 
7 1 1 1 0 0 1 1 1 1 7 
7 1 1 1 1 1 1 1 1 1 9 
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Freq.   Factor Score 
Class 
Probs. 

  Ite
m

 T
ot

al
 

Fa
ct

or
 1

 

Fa
ct

or
 2

 

C
la

ss
1 

C
la

ss
 2

 

Class One 
14 9 1.22 -5.13 0.58 0.42
9 15 1.5 0.38 0.85 0.15
6 17 1.59 2.08 0.62 0.38
5 16 1.55 1.43 0.61 0.39
5 12 1.38 -1.91 0.77 0.23
4 16 1.53 0.94 0.85 0.15
4 10 1.3 -3.39 0.9 0.1 
4 10 1.27 -4.1 0.77 0.23
4 11 1.35 -2.41 0.97 0.03
4 15 1.48 0.16 0.76 0.25

Class Two 
122 18 1.65 2.84 0.18 0.82
22 17 1.57 1.4 0.2 0.8 
18 18 0.65 2.78 0.23 0.78
16 17 1.55 0.96 0.12 0.88
15 16 1.52 0.39 0.07 0.93
11 17 1.57 1.35 0.07 0.93
8 17 1.54 0.84 0.05 0.95
8 18 -0.92 2.7 0.03 0.97
7 16 1.5 0.02 0.05 0.95
7 17 -0.11 2.74 0.05 0.95
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Figure 3.1. Latent Class Analysis Model Diagram. 
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Figure 3.2. Factor Analysis Model Diagram. 
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Figure 3.3. General Factor Mixture Model Diagram. 
 
 

α α α2 3 40

Frequency

Factor

 m s Ite

 
 
Figure 3.4. Factor Mixture Model-1: Diagram and Factor Distribution Plot. 
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Figure 3.5. Factor Mixture Model-2: Diagram and Factor Distribution Plot. 
 
 
 

 
 
Figure 3.6. Factor Mixture Model-3: Diagram. 
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Figure 3 7. Conduct Disorder Example: Two-class Latent Class Analysis Profile Plot. 

 
Figure 3.8. Conduct Disorder Example: Three-class Latent Class Analysis Profile Plot. 
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Figure 3.9. Conduct Disorder Example: Two-class, One-Factor FMM-2 Profile Plot. 
 
 

 
Figure 3.10. CD Example: Two-class, One-factor FMM-2 Factor Distribution Plot. 
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Figure 3.11. ADHD Example: Four-class Latent Class Analysis Profile Plot.  
 

 
Figure 3.12. ADHD Example: Two-class, Two-factor FMM-3 Profile Plot. 
 
 

 121



Appendix B: Mplus Code for Chapter 2 

Example Mplus Input and Model Statements for Factor Mixture Model Variations 

 

Input 1a: Factor Mixture Model 1 (FMM-1) 

- Estimating both factor means in each class. 

- Two-classes, two-factors. 

- Class invariant thresholds (τ), class invariant factor loadings (λ), factor 

covariance matrix is equal to zero (ψ = 0), class varying factor means (αk). 

Data: File is example.dat;  ! This is how to comment out text. 

Variable: 

Names are u1-u6; !List of variables in dataset. 

Usevariables are u1-u6;  

! Specifies which variables are to be used in the analysis. 

Categorical = u1-u6;  

! Specifies which dependent variable is categorical. 

Classes = c(2); ! Defines a latent class variable called c with two  

    !classes. 

Analysis: 

Type = Mixture; !Specifies doing a mixture analysis. 

      Starts = 100 10;  

! Specifies total number of random starts and number of 

! final stage iterations. 

 Process = 2 (STARTS);  

! Specifies that 2 processors are to be used in analysis 

! and that random starts are to be spread out on the  
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! multiple processors. 

Model:  

 %Overall% ! Specifies that model below will be applied to both  

    ! latent classes. 

f1 by u1-u3; ! Defining a factor called f1 which is  

 !measured by items u1 to u3. 

f2 by u4-u6; 

f1-f2@0; ! Fixing factor variance at zero. 

f1 with f2 @0; ! Fixing covariance between f1 and f2 at 

zero; 

 %c#1% ! Indicates statements below apply to class 1 only. 

 [u1$1-u6$1] (1-6); 

 %c#2%  

[u1$1-u6$1] (1-6); ! Number in parentheses indicates fixing  

 !the threshold of this item to be the  

 !same in class 1 and class 2. 

- By default, the last class will have the factor mean fixed to zero, and because there 

is a factor loading fixed at one, a factor mean for a different class can be estimated as 

well. 

 

Input 1b: Factor Mixture Model 1 (FMM-1) 

- Three-classes, one-factor. 

- Estimating all factor loadings. 

- Class invariant thresholds (τ), class invariant factor loadings (λ), factor 

covariance matrix is equal to zero (ψ = 0), class varying factor means (αk). 
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Model: %Overall% 

f1 by u1-u3*;  !* indicates that all factor loadings are to 

       ! be freely estimated. 

f1@0; 

 %c#1% 

       [f1*]; !* indicates the factor mean is freely estimated. 

       [u1$1-u6$1] (1-6); 

 %c#2% 

  [f1@1]; !Fixing factor mean at one. 

  [u1$1-u6$1] (1-6); 

%c#3% 

 [u1$1-u6$1] (1-6); 

- By default the last class will have the factor mean fixed to zero. Because all of the 

factor loadings are freely estimated, at least one of the factor means must be fixed for 

model identification. Here, class 2 has the factor mean set to one. 

 

Input 2: Factor Mixture Model 2 (FMM-2) 

- Two-classes, two-factors. 

- Class invariant thresholds (τ), class invariant factor loadings (λ), class varying 

factor covariance matrix (ψk), class varying factor means (αk). 

Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

f1-f2@0;  
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f1 with f2 @0; 

%c#1% 

f1-f2; 

[f1-f2@0]; 

[u1$1-u6$1] (1-6);  

%c#2% 

f1-f2; 

[f1-f2*]; 

[u1$1-u6$1] (1-6); 

 

 Input 3: Factor Mixture Model 3 (FMM-3) 

- Two-classes, two-factors. 

- Class varying thresholds (τk), class invariant factor loadings (λ), class 

invariant factor covariance matrix (ψ), factor means fixed at zero (αk = 0). 

Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

    f1 - f2; 

       f1 with f2; 

      [f1-f2@0]; 

   %c#1% 

       [u1$1-u6$1]; 

      %c#2% 

       [u1$1-u6$1]; 

 

 Input 4: Factor Mixture Model 4 (FMM-4) 
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- Two-classes, two-factors. 

- Class varying thresholds (τk), class invariant factor loadings (λ), class varying 

factor covariance matrix (ψk), factor means fixed at zero (αk = 0). 

Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

[f1-f2@0]; 

%c#1% 

f1-f2; 

f1 with f2; 

[u1$1-u6$1]; 

%c#2% 

f1-f2*; 

f1 with f2; 

[u1$1-u6$1]; 

 

Input 5: Factor Mixture Model 5 (FMM-5) 

- Two-classes, two-factors. 

- Class varying thresholds (τk), class varying factor loadings (λk), class varying 

factor covariance matrix (ψk), factor means fixed at zero (αk = 0). 

Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

[f1-f2@0]; 

%c#1% 
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f1 by u2-u3; 

f2 by u3-u6; 

f1-f2; 

f1 with f2; 

[u1$1-u6$1]; 

%c#2% 

f1 by u2-u3; 

f2 by u5-u6; 

f1-f2; 

f1 with f2; 

[u1$1-u6$1]; 

-The overall statement (%Overall%) defines the factors and in the class specific 

statements (%c#1%, %c#2%) there is what looks like another definition of the factor, but 

this is not defining the factors. This allows the loadings to be freely estimated in both 

classes. Note that the in the class specific statement, the factor definition starts with the 

second item and not the first. This is because in the overall statement where the factor is 

first defined Mplus defaults to fixing the loading of the first item to one. Since the 

loading of the first item is already fixed, it does not need to be set to be freely estimated 

in the class specific statement so the class specific statements begins with the second 

item. 

 

Input 6: MI Investigation Example 

- Two-classes, one-factor. 

- Class invariant threshold anchor item: u1. 

 127



Model:     %Overall% 

      f1 by u1 – u6; 

      f1; 

      [f1@0]; 

%c#1% 

[u1$1]  (1); 

[u2$1]  (p1_2); 

[u3$1]  (p1_3); 

[u4$1]  (p1_4); 

[u5$1]  (p1_5); 

[u6$1]  (p1_6); 

%c#2% 

[u1$1]  (1); 

[u2$1]  (p2_2); 

[u3$1]  (p2_3); 

[u4$1]  (p2_4); 

[u5$1]  (p2_5); 

[u6$1]  (p2_6); 

 

Model Constraint: New(difi1 difi2 difi3 difi4 difi5 difi6); 

difi1= p2_1 - p1_1; 

difi2= p2_2 - p1_2; 

difi3= p2_3 - p1_3; 

difi4= p2_4 - p1_4; 

difi5= p2_5 - p1_5; 

difi6= p2_6 - p1_6; 
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Note: All of the example inputs and model statements above used dichotomous items, but 

factor mixture modeling can be conducted with other types of items as well with slight 

adjustments to the code above. Taking Input 4 as an example, the code can be adjusted 

for polytomous item by mentioning all the thresholds in the items. In the example below, 

the code has been adjusted for use with trichotomous items. 

 

Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

[f1-f2@0]; 

%c#1% 

f1-f2; 

f1 with f2; 

[u1$1-u6$1]; 

[u1$2-u6$2]; ! Mentioning second threshold of trichotomous 

item. 

  %c#2% 

f1-f2*; 

f1 with f2; 

[u1$1-u6$1]; 

[u1$2-u6$2]; 

 

Also using Input 4 as an example, the code can be adjusted for continuous items by 

mentioning the mean of the items, rather than threshold. 
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Model: %Overall% 

f1 by u1-u3; 

f2 by u4-u6; 

[f1-f2@0]; 

%c#1% 

f1-f2; 

f1 with f2; 

[u1-u6]; ! Setting mean of items to be different across 

classes. 

  %c#2% 

f1-f2*; 

f1 with f2; 

[u1-u6]; 
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Chapter Four: ACE Analysis for Latent Variable Phenotypes 

 
Two common phenotypes used in behavioral genetics are diagnostic status and a 

sum score of symptom items. While these phenotypes are easy to obtain, they are not 

without limitations. Using diagnostic status may impose an arbitrary categorization and 

often results in misclassification (Dwyer, 1996). Using a sum score implies that each item 

has equal importance in phenotype definition, which may not always be true. For 

example, in conduct disorder, the presence of those items pertaining to more severe 

behaviors, such as physical violence against animals or sexual violence against other 

individuals, might be more important in defining the conduct disorder phenotype than 

more commonly occurring symptoms. And while differential weights can be used, an 

empirical basis for such weights may be difficult to obtain.  

An alternative to using diagnostic status or sum scores as phenotypes are models 

that use latent variables, which have distinct advantages over commonly observed 

phenotypes. One key advantage is that more pieces of information can be used to inform 

phenotype definition. For example, all the symptom items in a diagnostic instrument can 

be used to form the latent variable rather than having to rely on a single sum score of the 

symptoms. A second advantage is that because multiple pieces of information are used, 

measurement error associated with the phenotype is reduced. 

The use of latent variables as phenotypes in behavior genetic analyses is not new. 

There is a long standing tradition of using the factor, or latent continuous variable, from a 

factor analysis (FA) as a phenotype. But using a factor from a FA model can be 
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problematic if the construct of interest is thought to be categorical or if the phenotype is 

non-normal, which may occur when the outcome of interest is rare or infrequent. 

This paper explores two latent variable phenotypes that overcome the limitations 

of observed phenotypes. The first latent variable phenotype is the latent class analysis 

(LCA) model, which uses a categorical latent variable to account for the unobserved 

heterogeneity in a sample. Unlike typical observed categorical phenotypes that use 

arbitrary cut-points to divide a construct into categories (e.g., using the number of 

symptoms present to define diagnostic status), LCA uses a model-based classification 

system. This paper explores a combination of the LCA and ACE models which uses the 

latent class variable as the phenotype, as suggested, but not explored in Muthén and 

Muthén (2005) and Muthén et al. (2006). 

The second latent variable phenotype is the factor mixture model (FMM) with 

measurement invariance. The FMM uses a hybrid of continuous and categorical latent 

variables. In a FMM, the latent categorical variable is used to model the non-normality in 

the latent factor by accounting for different heterogeneous sub-populations in a sample 

that may have different values of the factor. This paper explores different options for the 

placement of the ACE model and discusses what impact the placement of the ACE model 

within the FMM has on the interpretation and heritability of the phenotype. 

This paper aims to elucidate the LCA and FMM as phenotypes and to show how 

they can be combined with an ACE model to explore genetic variance. The application of 

these models as phenotypes is demonstrated through an example concerning conduct 

disorder in a sample of Finnish adolescent twins. 
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 This paper begins with an introduction to LCA and FMM, and the combination of 

these models with an ACE model. The next section introduces the data used in the 

example and discusses how the LCA and FMMs were fit to the data. The final sections 

discuss the heritability results and further extensions of these models. 

Background 

Latent Class Analysis (LCA) 

Instead of using an observed categorical phenotype, which has the limitations 

mentioned above, an alternative is to use a latent categorical phenotype, specifically the 

LCA model. LCA, introduced by Lazarsfeld and Henry (1968), is used to identify 

subgroups, or classes, of a study population. A model diagram of a twin LCA model is 

shown in Figure 4.1. There are two major concepts depicted in Figure 4.1, the observed 

outcomes or items that define the class and latent class itself. These can be seen in Figure 

4.1 as ua1-uar and ub1-ubr, and Ca and Cb, respectively. The boxes, ua1-uar and ub1-ubr, 

represent the observed response items or outcomes for twin A and twin B, respectively. 

The outcomes in a LCA model can be categorical, continuous, count, censored, or 

nominal; this paper will focus specifically on dichotomous, categorical items. The circles 

with the letter C in the middle are the unordered, categorical latent class variables with K 

classes. Each twin has an individualized latent class variable. The arrows pointing from 

the latent class variable to the boxes below indicate that those items are measuring the 

latent class variable. This means that class membership is based on the observed response 

pattern of items. An important assumption, called the conditional or local independence 

 138



assumption, implies that the correlation among the observed outcomes is explained by the 

latent class variable. Because of this, there is no residual correlation between the items.  

For a LCA model with categorical outcomes, there are two types of model 

parameters: conditional item probabilities and class probabilities. The conditional item 

probabilities are specific to a given class and provide information about the probability 

that an individual in that class will endorse a specific item. The class probabilities specify 

the relative size of each class, or the proportion of the population that is in a particular 

class. For more information on LCA see Hagenaars and McCutcheon (2002) and Muthén 

(2001). 

Heritability Model: ADCE 

 Figure 4.2 shows an example of the univariate genetic model that is applied in 

this paper: the phenotype for each twin is represented by a box with the label pA for twin 

A and pB for twin B. The variance of the phenotype is partitioned into the additive 

genetic variance (A), dominant genetic factors (interaction of genetic effects at the same 

locus) (D), common environmental variance (C), and unique environmental variance (E) 

(Neale & Cardon, 1992). 

 The double-headed arrow between the A components for the twins implies that 

the A component is correlated in twins. In MZ twins, their gene influences (A and D) 

correlate 1.0 because MZ twins are genetically identical. In DZ twins, the additive gene 

influences correlate 0.5 because, like ordinary siblings, they share half of their 

segregating genes, on average. The genetic effects due to dominance are correlated 0.25 

in DZ twins. 
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  The common environment component (C) refers to all environmental influences 

that make the twins more similar to one another irrespective of zygosity. Examples of 

common environment are attending the same school and growing up in the same 

household. Common environment effects are suggested by DZ twin correlations that 

exceed half of the MZ twin correlation. In the model shown, only C is given, but this 

could be replaced by D. Dominant genetic effects are suggested by DZ twin correlations 

that are smaller than half of the MZ twin correlation. Models with both C and D cannot 

be estimated in data with only MZ and DZ twins. Usually, an assumption is made that the 

common environment correlates 1.0 between twin pairs of both types, which is shown in 

Figure 4.2, with the additional assumption that mating is random for the trait in question. 

 Unique environmental effects (E) refer to all environmental influences that make 

the twins less similar. Examples of this include friends or activities that are not shared by 

the twins. The E variance component is uncorrelated between twins and also includes 

measurement error. 

 Heritability, or the proportion of variation in the phenotype attributable to 

genetics, can be calculated as: 

h2 = a2 / (a2 + c2 + e2), 

where a, c, and e are the path values that appear in Figure 4.1. 

 In order to determine heritability for phenotypes that are binary or ordinal, one 

can use the liability threshold model (Neale and Cardon, 1992). This model assumes that 

there is an underlying, latent continuous variable, called the liability, which models how 

susceptible individuals are to developing a disorder (Thurstone, 1927; Wright, 1934; 

 140



Falconer, 1965). The distribution of the liability can be divided based on the thresholds in 

the categorical variable so that, in the case of a diagnostic status phenotype for example, 

once an individual has more liability than the threshold, that individual is considered to 

be affected by the disorder. Prescott (2004) presented a version of this model where the 

categorical phenotype was transformed into a latent, continuous variable through the use 

of a probit link function. When using a categorical phenotype, the E variance component 

generally cannot be estimated directly from the model. In Prescott’s case, the total 

variance of the phenotype was specified to be one, so the E component could be 

calculated as one minus the sum of the other sources of variation. 

 Combining LCA and ACE. The idea of using a latent class model in behavioral 

genetics is not new. Eaves et al. (1993) and Rasmussen et al. (2002), among many others, 

use LCA to identify categorical phenotypes. But, this paper is among the first to take 

steps towards combining the LCA and ACE models. 

One option for combining the LCA and ACE models, which is most commonly 

used in practice by behavioral geneticists, is a three-step ad hoc method. Described by 

Muthén et al. (2006), the first step is to estimate the LCA model parameters, and the 

second step is to assign individuals into their most likely latent class based on the 

posterior probabilities of class membership. The third, and final step, is to use the 

observed, categorical variable of assigned class membership as the phenotype in a 

liability threshold model version of ACE analysis. But using this method will likely result 

in biased parameter estimates and underestimated standard errors because the 

classification of individuals into their most likely latent class ignores the fractional class 
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membership suggested by the posterior probabilities and also treats the classification as 

free of any sampling error (Clark and Muthén, 2009). The method this paper proposes 

avoids this issue by performing a single-step analysis which uses the latent class variable 

as the phenotype instead of most likely class membership. 

In this paper, the LCA and ACE models are combined using a liability threshold 

model, which assumes that class membership is due to one underlying liability. Figure 

4.3, which displays the model diagram for the LCA and ACE combination model, shows 

that there are two latent class variables, Ca and Cb, one for each twin. Note that all 

parameters in the LCA are held equal across twins to ensure that the latent classes are 

being measured the same way and to ensure that there is no difference between twin A 

and twin B. This includes the conditional item and class probabilities. The class 

probabilities are restricted so that the table of joint latent class probabilities for the two 

twins is symmetric and have the same marginal probabilities (Muthén et al., 2006). Also 

note that Cb does not influence twin A’s items and vice versa. The latent class variables, 

Ca and Cb, are transformed into continuous latent variables, C*a and C*b, using equation 

3 below. The variance of C*a and C*b is then decomposed.  

The formulation of this model is composed of two pieces: the measurement or 

LCA model and the liability threshold model. Consider a LCA model with r observed 

binary items, u, and a categorical latent variable C with K classes (c = k; k = 1, 2, . . ., K). 

The marginal item probability for item q, individual i, and twin pair j for uijq = 1 is: 

1
( 1) ( ) ( 1|

K

ijq ij ijq ij
k

P u P C k P u C k
=

).= = = = =∑              (1) 
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Assuming conditional independence, the joint probability of all the r observed items is 

1 2 1 2
1

( , ,..., ) ( ) ( | ) ( | )... ( | ).
K

ij i j i j r ij ij ij ij ij ijr ij
k

P u u u P C k P u C k P u C k P u C k
=

= = = = =∑  (2) 

 In order to connect the liability threshold model to the LCA model, the latent 

class variable is related to the liability through the function below such that: 

                                                                                (3) 

where τ is the threshold on the liability above which an individual is considered affected 

by the disorder. The liability is then represented as the following sum, as in the classic 

ACE model: 

                                           C*ij = aAij + cCij + eEij ,                                            (4) 

Where C*ij is the transformed latent continuous variable version of the categorical latent 

variable C, and, Aij, Cij, and Eij  are the latent additive genetic, shared environment, and 

unshared environment components. Note that both the latent class variable and the shared 

environment component are denoted by the letter C by convention in the mixture 

modeling and behavioral genetics literatures, respectively. In this paper, the latent class 

variable, C, is italicized while the share environment component, C, is not. Similar to the 

Prescott model, the E component cannot be directly estimated, but because equation 3 is 

used it is considered to be equal to π2 / 3.  

Because a liability threshold model is applied to the latent class variable, only 

solutions with two classes or three or more ordered classes can be used. One way to 

Cijq  =  { 1     if C*ijq > τiq 
0     otherwise, 
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examine whether the classes are ordered is to plot the mean item endorsement probability 

for each class and examine if the profiles are parallel to one another. If they are parallel, 

then the classes can be considered ordered.  

Factor Mixture Model 

A categorical outcome is not always the best representation of a phenotype 

because it implies that within a category, everyone is phenotypically equivalent, which 

may not always be true. For example, if the categories are affected or not affected by a 

disorder, the label of “affected” can mask a great range of severity and impairment in 

those individuals within that category. So, behavioral geneticists often use quantitative 

phenotypes to model these differences. One quantitative phenotype that is commonly 

used is the latent factor from a factor analysis (FA).  

But, the FA model makes a strong normality assumption which may be violated 

when studying rare or infrequent outcomes. When the factor is non-normal, one 

alternative is a non-parametric representation of the factor which uses latent categorical 

variables to represent the non-normality of the factor. Called a factor mixture model 

(FMM; Muthén, 2008), an example of this model for twins is shown in Figure 4.4. The 

boxes at the bottom of the model diagram are the r dichotomous symptom items for each 

twin. Above this are circles that represent the latent variables: the latent class variable, 

the circle with the C in the middle, and a latent continuous factor, the circle with the η in 

the middle. Similar to twin LCA, each twin has individualized latent continuous and 

latent categorical variables as indicated by the subscripts a and b. In this variation of the 

FMM, the factor loadings and item thresholds are invariant or equal across classes. This 
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suggests that the interpretation of the factor remains the same in each class or, put another 

way, the same factor runs through the entire population. Because the factor loadings and 

item thresholds are invariant, differences in the latent classes arise due to differences on 

the factor in each class, specifically the factor mean and variance. It is these differences 

in factor mean and variance in each class that give rise to the non-parametric 

representation of the factor. 

There are two variations of the FMM shown in Figure 4.5 which differ based on 

whether the factor variance is zero or variant across classes. For the first variation, called 

FMM-1 (Clark and Muthén et al., 2009), Figure 4.5a shows that the factor distribution is 

categorical, because the factor variance is set to zero. In Figure 4.5a, each latent class 

represents a category of the factor. For the second variation, called FMM-2 (Clark and 

Muthén et al., 2009), Figure 4.5b shows that the factor distribution is continuous, but 

non-normal. The factor in the second variation is a mixture of normal distributions 

located at different points on the factor distribution. Each normal distribution is a latent 

class. For more information about these variations and the FMM see Clark & Muthén et 

al. (2009). 

 One way to combine the FMM and ACE model is shown in Figure 4.6. Because 

the measurement invariance ensures that the factor is being measured the same way 

throughout the population, the ACE model is on the factor. Additionally, the FMM is 

restricted so that the latent class variable is measured the same way across both twins. 

Similar to the LCA and ACE combination, Cb and ηB do not influence twin A’s items and 

vice versa. The formulation of this model for binary outcomes can be broken down into 
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two parts: the measurement model (FMM) and the ACE model. A general representation 

of a FMM with measurement invariant factor loadings and item thresholds for k = 1, 2, . . 

., K latent classes with binary items can be specified as follows: 

u*ijk = τ + Λ ηijk + ε ik, 

ηijk = αjk + ζijk , 

where, 

                                                ζik ~ N(0, Ψjk),                                                   (5) 

And 

                                                          (6)       

w ui are individual i’s responses in twin pair  j

                        

here , which is a p vector of observed 

tor; 

 

quations 

mulized as 

outcomes; u*i  is individual i’s latent response vector; q is one of the items in a p vec

τ is a p vector of measurement thresholds; Λ is a p × m matrix of factor loadings, where 

m is the number of factors; ηi is a m vector of factor scores; ε is p vector of residuals; α is

a m vector of the intercepts of the factors; ζi is a p vector of residuals which is assumed to 

be normally distributed with mean zero and variance Ψ.  In the formulation above the 

only parameters that are varying across twins are the factor mean, α, and factor 

covariance matrix, Ψ, as indicated by the subscript j on these parameters in the e

above. 

 The ACE can be for

uijq =  { 0     otherwise. 
1     if u*ijq > 0 
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ηij = aAij + cCij + eEij ,   (7) 

where Aij, Cij, and Eij  are the latent ad

 

 This example explores the heritability of conduct disorder in sample of adolescent 

 

 

iption 

onsiders conduct disorder (CD) in a subsample of a population-

based s t 

ple 

s in the study with about an equal 

number of boys and girls. Zygosity was determined using a well-validated questionnaire 

ditive genetic, shared environment, and unshared 

environment components. Alternative methods for combining the FMM and ACE when

there is no measurement invariance are presented in the discussion section below. 

Example 

Finnish twins. Also, this example demonstrates the use of latent variables as phenotypes 

in an ACE analysis. LCA, FA, and FMM interpretations are presented without making a 

distinction between MZ and DZ twins. All analyses were conducted in Mplus (Muthén &

Muthén, 1998-2008) using special features which will be available in the forthcoming 

version six of the program. Example Mplus inputs for these models are available in the

Appendix C. 

Sample Descr

This example c

tudy of Finnish twins, called the FinnTwin12 (FT12; Kaprio et al., 2002; Rose e

al., 2001). The original study consisted of five consecutive birth cohorts (1983-1987) of 

twins identified in Finland’s Central Population Registry. From this epidemiological 

sample, a subset of families of twins was selected for an intensive study. This subsam

was moderately enriched to include more twins with familial alcoholism risk and is 

described in detail elsewhere (Rose et al., 2004). 

In the subsample, there were 893 twin pair

 147



comple d 

irs 

. 

tom 

 which come from the Child Semi-Structured Assessment for the 

Genetic

ics 

 the 

e 

rted no symptom presence while 12% of the sample 

reporte

 

ted by both twins at base-line, as described elsewhere (Kaprio et al., 1995) an

confirmed by genetic marker data in may pairs. Thirty-eight percent of the twin pairs 

were monozygotic, while the other sixty-two percent were dizygotic. Same-sex twin pa

comprised seventy percent of the sample, while the remaining thirty were opposite-sex

For the purposes of introducing these new and already complicated methods, this paper 

will focus on sex-invariant models, but the methods shown can be applied to sex-

limitation models. 

These analyses focused on interview reports of thirteen dichotomous symp

items measuring CD

s of Alcoholism, Adolescent version (C-SSAGA-A). The C-SSAGA-A is a 

polydiagnostic instrument that was developed by the Collaborative Study on the Genet

of Alcoholism (COGA; Kuperman et al., 2001). The data for this illustration are from

first follow-up when the twins were 14 years old. In the analyses presented below, one 

item pertaining to whether the individual had ever been physically cruel to animals was 

excluded from the analysis because the lack of individuals endorsing the item led to ther

being zero variance for the item. 

In order to obtain a diagnosis of CD, three or more symptoms must be present. In 

this sample, 56% of children repo

d having three or more symptoms present and, therefore, met criteria for a CD 

diagnosis. Symptom presence ranged from 0.1% (Is physically cruel to animals) to 25%

(Has ever been suspended from school). For a more extensive description of the 

interviewed sample and analysis of CD in these Finnish twins see Rose et al. (2004). 
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Clark and Muthén et al. (2009) fit LCA, FA, and FMM models to these data igno

dependency of the twins. 

Latent Class Analysis 

A three-class twin 

ring the 

LCA was chosen based on the log likelihood, number of 

n Information Criteria (BIC) (See Table 4.1). The item profile 

plots, w

 

el, 

or 

probab n 

ined by the 

-

on, there is one class that has low item endorsement across all items. This 

parameters, and Bayesia

hich display the estimated item probabilities for a given class, are shown in 

Figure 4.7a and 4.7b for the two- and three-class solutions. The item profile plot for the

three-class solution (Figure 4.7b) shows that the profiles of the classes are not parall

which suggests that the classes are not ordered. This means that the three-class solution 

cannot be used in an ACE analysis, and instead the two-class solution should be used. F

pedagogical purposes, both the two- and three-class solution will be interpreted. 

The item profile plot for the two-class solution is shown in Figure 4.7a. Class 

One, 74%, has low symptom presence as indicated by low item endorsement 

ilities. Because of the large size of the class and low symptom presence, this ca

be considered the “unaffected” or asymptomatic class. Class Two, 26%, is def

items relating to suspension, lying, and truancy; with the other items have relatively low 

probabilities of symptom endorsement, 0.30 or lower. Table 4.2a shows the percentage of 

the sample in each class by twin for the two-class solution. Note that concordance, twins 

in the same pair being in the same class, is high at about 98% in MZ twins and 80% in 

DZ twins. 

Figure 4.8b shows the item profile plot for the three-class solution. As in the two

class soluti
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class is

e 

 two 

 the 

, 

of these 

e of the 

 CD data. The results are presented in Table 4.3. Both the A and C 

parame is 

, with a 

 slightly smaller than the asymptomatic class from the two-class solution, 63%, 

because some of the individuals were absorbed into the two remaining classes. 

Supporting this idea are the lower endorsement probabilities of the suspension and 

truancy symptom items in the unaffected class. The class that was defined by th

suspension, lying and truancy items in the two-class solution has now been split into

classes in the three-class solution. The first of these classes is similar to the one in

two-class solution with high probabilities of endorsing the suspension and lying items, 

but the probability of endorsing the truancy item has drastically decreased. The 

probability of endorsing other symptoms items is relatively low in this class. Potentially

some individuals in this class may meet criteria for a CD diagnosis. The second 

classes, 4.7% of the sample, still has high probabilities of suspension and lying, but also 

has high probabilities of running away, property destruction, forcing someone to 

participate in sexual activities, and starting fights. This class can be thought of as those 

individuals that are likely to meet criteria for CD. Table 4.2b shows the percentag

sample in each class by twin for the three-class solution. As in the two-class solution, 

class agreement is high with about 97% of MZ twins and 72% of DZ twins being in the 

same class. 

An ACE model with two classes, similar to the model presented in Figure 4.3, 

was fit to the

ters are significant and the E parameter is π2/3 because the latent class variable 

transformed into a latent factor using equation 3. The heritability estimate is 0.79
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95% confidence interval of 0.783 to 0.797, which indicates that about seventy-nine 

percent of the variation in the phenotype is due to genetic influences. 

Factor Analysis 

 Twin FA models were fit to the CD data. It was found that one factor was 

l. 

alue 

n 

common factor ACE model was also fit to this data. The results of this model 

t. 

 

odel 

 applied to the CD data. It was found that two classes and one 

 

sufficient to fit the data. Table 4.1 shows the resulting log likelihood for this mode

When compared to the twin LCA models, the one-factor FA model has a lower BIC v

which suggests that the twin FA model outperforms the twin LCA solutions. Table 4.4 

displays the factor loadings for the one-factor model. All of the items have significant 

loadings on the factor with the exception of the item pertaining to use of a weapon whe

fighting. 

 A 

are shown in Table 4.3. Compared to the LCA and ACE model, the FA and ACE model 

has a higher log likelihood and a lower BIC value. In the ACE portion of the FA and 

ACE model, both the A and E estimates were significant, while the C estimate was no

The heritability was estimated at 0.84, with a 95% confidence interval of 0.831 to 0.849,

which suggests that over four-fifths of the variance in the phenotype can be explained by 

genetic variance. 

Factor Mixture M

 A twin FMM was

factor were sufficient to fit the data. Table 4.1 shows the resulting log likelihood for this

model. The FMM outperforms the two-class LCA model because both the log likelihood 

is higher and the  BIC is lower for adding relatively few parameters, but when compared 
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to the three-class LCA model only the BIC was better in the FMM solution. A 

comparison of the FMM solution to the FA solution shows that the FMM soluti

higher log likelihood, but the FA solution has a lower BIC value because it has six fewe

parameters. 

Figur

on has 

r 

e 4.8 shows the item profile plot for the two-class, one-factor FMM solution. 

Note th

s 

ies of 

 loadings of the twin FMM and FA solutions, shown in 

Table 4

. The 

 

at the profile plot displays the item endorsement probabilities at the mean of the 

factor. If an individual is not at the mean of the factor, the item endorsement probabilitie

will vary from what is shown in the plot. The first and largest class, 92.7%, is the lowest 

line on the profile plot, with almost all items having low probabilities of symptom 

endorsement. The second class, 7.3% of the sample, has slightly elevated probabilit

endorsing the symptom items related to suspension, lying, and truancy, but these 

probabilities are still small.  

Comparing the factor

.4, suggests that while the factors are similar in interpretation, they are not 

equivalent. Table 4.4, presents the unstandardized and standardized factor loadings

factor loadings were standardized to take into account differences in the factor variance 

across models in order to be able to compare the loadings. The FMM had class invariant 

factor loadings, hence the unstandardized factor loadings are the same in each class. But, 

the factor variances are non-invariant, so the standardized factor loadings are different in 

each class. Comparing the loadings from each class in the FMM solution to the loadings 

from the FA solution, the loadings in class two are lower than the loadings in the FA 

solution while the class one loadings are higher. This suggests that the factor, which is
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considered the severity, has more influence in class one, the asymptomatic class. The 

higher loadings in class one also indicate that the with-in class correlation among the 

items is higher in class one. Note also that the items relating to suspension from schoo

fire starting, and truancy have the highest loadings in both solutions suggesting that these

items are important in both the FA and FMM solutions. 

A two-class, one-factor FMM with an ACE mode

l, 

 

l on the latent factor, similar to 

Figure 

ons 

ith 

 

, 

o zero. 

8, 

Discussion 

 This article presented two laten dels for modeling phenotypic 

variation. The first model applied a liability threshold model to the classes in a LCA. The 

4.6, was fit to the CD data. The results of this model are shown in Table 4.3. 

Comparing the FMM solution to the FA and LCA solutions, the FMM and FA soluti

have the same log likelihood, which are both higher than the LCA solution. When 

comparing the log likelihood of different solutions, one is looking for the solution w

the highest value. But, the FA solution has a lower BIC value because it has three fewer

parameters than the FMM solution. When comparing the BIC values of different solution

the solution with the lowest BIC is regarded as the best model. In the FMM solution, both 

the A and C parameters were significantly different from zero. The E parameter, 

however, was not significantly different from zero and was estimated to be close t

This may be due to the high item agreement between twins in the same pair. The 

heritability was estimated at 0.85, with a 95% confidence interval of 0.842 to 0.85

which indicates that about eighty-five percent of the variation in the phenotype is 

attributable to genetic variation. 

t variable mo
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second model applied an ACE model to the latent factor in a FMM with invariance

measurement parameters to model a non-normal latent factor. Both of these models, and 

a FA and ACE model were applied to CD data in a sample of adolescent Finnish twins 

and all models yielded heritability estimates greater than 0.70. 

In the FMM and ACE combination model presented in this paper, it was assume

that the measurement parameters, the factor loadings and item t

 of the 

d 

hresholds, were invariant 

across c

 

d 

C*a and 

 

lasses, assuring that the factor was being measured the same way throughout the 

sample. But, the requirement of invariant measurement parameters is often too restrictive 

for certain items. One can relax the measurement invariance requirement to allow factor 

loadings or item thresholds that are specific to each class, similar to the FMM-3 through -

5 models presented in Clark and Muthén et al. (2009). But once this restriction is relaxed,

the factor is no longer being measured the same way throughout the population, and so 

the factor cannot be used as the phenotype in an ACE analysis. In FMMs that do not have 

measurement invariance, another option for combining the FMM and ACE model is to 

have the ACE model on the latent classes as shown in Figure 4.9. Similar to the 

combination of the LCA and ACE models presented, the liability threshold model is use

to transform the latent class variables, Ca and Cb, into latent continuous factors, 

C*b. The variance of the factors C*a and C*b is then decomposed. But, this model can 

be difficult to estimate because of the intense computation required because of the four 

latent factors: C*a , C*b, ηa, and ηb. In this paper, the FMM with an ACE model on the

classes was not fit to the CD data because a FMM with measurement invariance was 

indicated for this data. 
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Presented in Muthén et al. (2006), a second option for combining a FMM and 

ACE model when there is no measurement invariance, is to have the ACE on the factors. 

But, be e 

el 

 

se 

lied underlying structures of CD are much closer than previous statistical models 

to the w  

s 

cause there is no measurement invariance, the factors are not being measured th

same way across the population or, said another way, there is a different factor in each 

class. Because there is a different factor in each class, there is a different ACE model in 

each class as well. This model yields a different heritability for each latent class which 

implies that there are potentially different phenotypes with different heritabilities for the 

same construct of interest. For example, when exploring attention-deficit hyperactivity 

disorder (ADHD), two latent classes related to having only inattention symptoms and 

only having hyperactive symptoms are often found. Using the Muthén et al. (2006) mod

in the ADHD context allows for the possibility of having different heritiabilities in the

two types of ADHD classes. This would help answer the question of whether 

predominantly inattentive ADHD is more heritable than predominantly hyperactive 

ADHD. 

The models presented in this paper can aid in further understanding CD becau

their imp

ay that developmental psychopathologists view the etiology of CD. For example,

Moffit (1993, 2006) proposed a “developmental taxonomy” that distinguishes between 

those individuals with early- and late-starting delinquency. But, Lahey and Waldman 

(2003, 2005)  have proposed that the “developmental taxonomy” of early- and late-

starting delinquency are not qualitatively-distinct classes, but instead represent an 

artificial dichotomization of a continuum of differences among antisocial trajectorie
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(D’Onofrio et al., 2009). The models presented can be seen as blending the Moffitt

Lahey and Waldman views of CD. The LCA and ACE model and the FMM with an A

model on the latent classes imply that there are distinct classes of CD, similar to Moffitt’

theory, but the classes arise because of differences on an underlying continuous 

distribution, similar to Lahey and Waldman’s theory. Additionally, competing theories of 

the etiology of CD can be tested using the models here.  

 

 

, and 

CE 

s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 156



Table 4.1 

odel Fit for Latent Variable Twin Models 

LL par AIC BIC 

M

Model 
Two-Class LCA -4510 26 9072 9196 
Three-Class LCA -4436 41 8955 9152 
One-Factor FA -4460 25 8971 9091 

ass, One-Factor FMM -4452 Two-Cl 31 8967 9116 
 

T

airwise Distribution (%) of Twins in Each Latent Class by Zygosity. a. Two-Class Twin 

on. b. Three-Class Twin LCA solution. 

able 4.2 

P

LCA soluti

a.  MZ Twin B 
 Class 1 2 

 Twin 1 69.1 0.5 
A 2 0.5 
 
    

29.6 

 DZ win B
 Class 1 

 T  
2 

 Twin 1 61.0 9.8 
A 2 8.9 19.6 

 

b MZ Twin 
 C s 3 
.  B 

las 1 2 
Twin 1 5.6 1.2 0 

A 2 1.2 0 
 0 65.1 

 DZ T

26.9 
0  3

 
 win B 

 C s las 1 2 3 
Twin 1.2 2.1 0.5 1 

A 2 2.1 11.4 
0.5 51.6 

19.3 
11.4  3 
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Table 4.3 

CE Estimates for Latent Variable Models 

 Model LL par BIC 

A

Phenotype
LCA: 2-Class AC -5088 28 10366 
FA:1-Factor ACE -5035 27 10253 
FMM: 2-Class, ACE -5035 30 10274 

       1-Factor         
 

E H2 Phenotype A C 
LCA: 2-Class 45.3 (7.57) 35.1 .64) √(pi^2/3) 0.79 (0.11)  (9
FA:1-Factor 1.91 (0.24) 0.82 (0.35)* 0.23 (0.29) 0.84 (0.14) 
FMM: 2-Class, 1.91 (0.24) 0.79 (0.33) 0.03 (0.29)* 0.85 (0.12) 

       1-Factor         
N an v  E e thi ndard deviations. 

 

ote. *Insignific t at the 5% le el. A, C, and stimates in s table are sta
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Table 4.4 

actor Loadings for Twin One-Factor Factor Analytic (FA) and Two-Class, One-Factor 

ture Model (FMM) Solutions 

F

Factor Mix

Loadings Unstandardized  Standardized 
Model FA FMM  FA FMM 
Number of 
Factors 1-Factor 2-Class, 1-Factor   1-Factor 2-Class, 1-Factor  
  Class 2  Class 2 Class 1  Class 1 
Items              
Suspend 1.00 1.00 1.00 2.04 2.19 0.61  
Expelled 

 0.51 1.04 
ay 0.70 0.72 0.72 1.43 1.58 0.44 

al 
s 

 

e       

0.80 0.84 0.84  1.64 1.84 0.51 
Stolen
Runaw

0.52 0.52  1.14 0.32 
 

Lie 0.87 0.91 0.91  1.78 1.99 0.55 
Fire 1.08 1.22 1.22  2.21 2.67 0.74 
Truant 1.08 1.20 1.20  2.21 2.63 0.73 
Property 0.66 0.68 0.68  1.35 1.49 0.41 
Sexu 0.59 0.61 0.61  1.21 1.34 0.37 
Fight 0.65 0.67 0.67  1.33 1.47 0.41 
Weapon 0.35* 0.36* 0.36*  0.72* 0.79* 0.22* 
Stolen 0.75 0.80 0.80  1.53 1.75 0.49 
Factor 
Varianc 4.18 4.79 0.37*  

N significan  5% l

 

ote. * In t at the evel. 
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Figure 4.1. Twin Latent Class Analysis Model Diagram.  
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Figure 4.2. ADCE Model Diagram.  
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Figure 4.3. Latent Class Analysis and ACE Model Diagram. 
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Figure 4.4. Twin Factor Mixture Model Diagram.  
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Figure 4.5. FMM Variation Factor Distributions. A. Factor distribution with factor 

variance set to zero. B. Factor distribution with factor variance varying across latent 

classes. 
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Figure 4.6. Factor Mixture Model & ACE on Factors Diagram. 
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a. 

 

b. 

 

Figure 4.7. a. Two-Class LCA Profile Plot. b. Three-Class LCA Profile Plot.  
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Figure 4.8. Two-Class, One-Factor FMM Profile Plot  
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Figure 4.9. FMM & ACE on the Latent Classes Model Diagram. 
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Appendix C: Mplus code for Chapter 4 

Example Mplus Input and Model Statements  

 

Input 1: Twin latent class analysis (LCA) model  

VARIABLE: Names are ua1-ua6 ub1-ub6; 

 Usevariable are ua1- ub6; 

 Categorical are ua1- ub6; 

 Classes = ca(2) cb(2); 

ANALYSIS: Type = Mixture; 

 Starts = 50 5; 

       Parameterization = Loglinear; 

MODEL: %Overall% 

      ca#1 WITH cb#1; 

      [ca#1] (901); 

      [cb#1] (901); 

MODEL ca: %ca#1% 

[ua1$1- ua6$1] (101-106); 

          %ca#2% 

[ua1$1- ua6$1] (107-112); 

MODEL cb: %cb#1% 

[ub1$1- ub6$1] (101-106); 
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          %cb#2% 

     [ub1$1- ub6$1] (107-112); 

     

Input 2: Twin factor analysis (FA) model  

ANALYSIS: 

 Estimator = ML; 

MODEL: 

 eta_a BY ua1@1  

ua2-ua6 (2-6); 

     eta_b  BY ub1@1  

ub2-ub6 (2-6); 

    [eta_a - eta_b@0];   

    eta_a - eta_b *1 (100);  

 eta_a WITH eta_b;   

    [ua1$1- ua6$1] (101-106); 

     [ub1$1- ub6$1] (101-106); 

 

Input 3: Twin factor mixture model (FMM) with class invariant item thresholds and 

factor loadings  

VARIABLE:  Classes = ca(2) cb(2); 

ANALYSIS: Type = Mixture; 

         Algorithm = Integration; 
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Starts = 500 50; 

         Parameterization = Loglinear; 

 MODEL: %Overall% 

ca#1 WITH cb#1; 

[ca#1] (801); 

         [cb#1] (801); 

eta_a BY ua1-ua6; 

        eta_b BY ub1-ub6; 

         eta_a - eta_b; 

        %ca#1.cb#1% 

         eta_a WITH eta_b; 

        %ca#1.cb#2% 

         eta_a WITH eta_b (999); 

        %ca#2.cb#1% 

         eta_a WITH eta_b (999); 

        %ca#2.cb#2% 

         eta_a WITH eta_b; 

MODEL ca: %ca#1% 

eta_a BY ua1@1  

ua2-ua6 (2-6); 

[eta_a @0]; 

         eta_a (901); 
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[ua1$1- ua6$1] (101-106); 

  %ca#2% 

eta_a BY ua1@1  

ua2-ua6 (2-6); 

[eta_a] (900); 

         eta_a (902); 

[ua1$1- ua6$1] (101-106); 

        

MODEL cb: %cb#1% 

eta_b BY ub1@1  

ub2-ub6 (2-6); 

          [eta_b @0]; 

          eta_b (901); 

 [ub1$1- ub6$1] (101-106); 

   %cb#2% 

eta_b  BY ub1@1  

ub2-ub6 (2-6); 

 [eta_b *1] (900); 

         eta_b *1 (902); 

 [ub1$1- ub6$1] (101-106); 
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Input 4: Twin LCA & ACE model 

VARIABLE: Names are ua1-ua6 ub1-ub6 zyg; 

 Usevariable are ua1- ub6; 

 Categorical are ua1- ub6; 

Classes = cg(2) ca(2) cb(2); 

            Knownclass = cg (zyg=2 zyg=1);  

ANALYSIS: Type = Mixture; 

  Algorithm = Integration; 

Starts = 500 50; 

         Reciprocalinteraction = Nocheck1; 

MODEL:  %Overall% 

Cstar_a BY ; 

            Cstar_b BY ; 

            ca#1 ON Cstar_a @0 Cstar_b @0; 

cb#1 ON Cstar_a @0 Cstar_b @0; 

         [Cstar_a - Cstar_b @0]; 

        [ca#1] (801); 

        [cb#1] (801); 

         Cstar_a - Cstar_b (v); 

MODEL cg: %cg#1% 

          ca#1 ON Cstar_a @1 Cstar_b @0; 

                                                 
1 Special feature available in the forthcoming Mplus V6.0. 
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          cb#1 ON Cstar_a @0 Cstar_b @1; 

          Cstar_a WITH Cstar_b (cdz); 

          %cg#2% 

          ca#1 ON Cstar_a @1 Cstar_b @0; 

          cb#1 ON Cstar_a @1 Cstar_b @0; 

          Cstar_a WITH Cstar_b @0; 

MODEL ca: %ca#1% 

[ua1$1- ua6$1] (101-106); 

   %ca#2% 

 [ua1$1- ua6$1] (101-106); 

MODEL cb: %cb#1% 

 [ub1$1- ub6$1] (101-106); 

   %cb#2% 

[ub1$1- ub6$1] (101-106); 

 MODEL CONSTRAINT: New(a c h); 

 v= a**2 + c**2; 

 cdz = 0.5*a**2 + c**2; 

h = a**2 / (a**2 + c**2 + (3.14**2/3)); 

 

Note. In the first two lines of the class specific statements in the model cg section, 

%cg#1% and %cg#2%, is a way to reduce the number of dimensions of integration in 

order to avoid having two factors correlated at one, which can be problematic when using 
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numerical integration (Algorithm = Integration). In DZ twins, %cg#1%, only the A 

component is correlated at one across twins, but in MZ twins, %cg#2% both the A and C 

components are correlated at one across twins. In the MZ twin group, both latent classes, 

Ca and Cb, are regressed on only C*a. Because C*a and C*b are statistically equivalent 

because of the imposed measurement invariance, this avoids having a factor correlated at 

one. 

 

Input 5: Twin FA and ACE model 

VARIABLE: 

 Classes = cg(2); 

     Knownclass = cg (zyg=2 zyg =1); 

ANALYSIS: Type = Mixture; 

 Algorithm = Integration; 

MODEL: %Overall% 

eta_a BY ua1@1  

ua2-ua6 (2-6); 

eta_b BY ub1@1  

ub2-ub6 (2-6); 

 [eta_a - eta_b @0];   

    eta_a - eta_b (var);    

[ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 
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   %cg#1% 

    eta_a WITH eta_b (covdz); 

    %cg#2% 

    eta_a WITH eta_b (covmz); 

MODEL CONSTRAINT: NEW(a c e h); 

    var = a**2 + c**2 + e**2; 

    covmz = a**2 + c**2; 

    covdz = 0.5*a**2 + c**2; 

    h = a**2 / (a**2 + c**2 + e**2); 

 

Input 6: Twin FMM with class invariant item thresholds and factor loadings & ACE 

model on factors 

VARIABLE: Classes = cg(2) ca(2) cb(2); 

            Knownclass = cg (zyg=2 zyg=1);  

ANALYSIS: Type = Mixture; 

         Algorithm = Integration; 

 Integration = 50; 

Starts = 500 50; 

         Parameterization = Loglinear; 

MODEL: %Overall% 

eta_a by ua1@1 

 ua2-ua6 (2-6); 
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eta_b by ub1@1 

 ub2-ub6 (2-6); 

eta_a - eta_b (v); 

 [ca#1] (801); 

         [cb#1] (801); 

         cg#1 WITH ca#1 (802); 

            cg#1 WITH cb#1 (802); 

 cb#1 WITH ca#1@0; 

   %cg#1.ca#1.cb#1% 

 eta_a WITH eta_b (cdz); 

            [eta_a - eta_b @0]; 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#1.ca#1.cb#2% 

            eta_a WITH eta_b (cdz); 

            [eta_a @0]; 

            [eta_b *] (903); 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#1.ca#2.cb#1% 

            eta_a WITH eta_b (cdz); 

            [eta_a *] (903); 
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            [eta_b @0]; 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106);        

   %cg#1.ca#2.cb#2% 

 eta_a WITH eta_b (cdz); 

            [eta_a - eta_b *] (903); 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#2.ca#1.cb#1% 

 eta_a WITH eta_b (cmz); 

            [eta_a - eta_b @0]; 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#2.ca#1.cb#2% 

            eta_a WITH eta_b (cmz); 

            [eta_a @0]; 

            [eta_b *] (903); 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#2.ca#2.cb#1% 

            eta_a WITH eta_b (cmz); 

            [eta_a *] (903); 
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            [eta_b @0]; 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

   %cg#2.ca#2.cb#2% 

            eta_a WITH eta_b (cmz);             

[eta_a - eta_b *] (903); 

            [ua1$1- ua6$1] (101-106); 

[ub1$1- ub6$1] (101-106); 

MODEL CONSTRAINT: New(a c e h); 

            v= a**2 + c**2 + e**2; 

            cdz = 0.5*a**2 + c**2; 

            cmz = a**2 + c**2; 

            h = a**2 / (a**2 + c**2 + e**2);        
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Chapter Five: Discussion and Future Directions  
 
 

This section contains a summary of the three papers presented in this dissertation 

and discusses the application of the methods utilized in each paper in randomized control 

trials (RCTs). It also provides a roadmap for future methodological work in combining 

latent variable and genetic models. 

Chapter Two: Relating latent class analysis results to variables not included in the 

analysis 

The first paper investigated how the method chosen to incorporate covariates into 

a mixture model can impact the estimates and standard errors in a regression or the 

results of a mean comparison test. One issue examined in this paper that is related to the 

incorporation of covariates into a mixture model is whether the latent class variable can 

be treated as an observed, exact variable. The first part of the study explored two real data 

examples to demonstrate the problem of treating class membership as an observed 

variable and to show how incorrect the estimates and standard errors can be when 

including many auxiliary variables. The second part of the study consisted of Monte 

Carlo simulations to explore under what conditions the results from the real data 

examples occur. The real data examples showed no differences among the methods used 

in the mean comparison tests. For the regression results, most likely class membership 

regression, probability-weighted regression, and pseudo-class regression performed 

similarly; but in comparison to including covariates while forming the latent classes, the 

other methods tended to underestimate the covariate effects and the standard errors. 
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Similar to the real data examples, the mean comparison Monte Carlo simulations 

showed no differences between the methods used, even when the strength of the 

relationship between the latent class and covariate was examined. The regression 

simulation results for when there was no relationship between the latent class variable 

and the covariate suggested that all the regression methods were able to recover the true 

effect of zero. But, when compared to including the covariate while forming the latent 

classes, the other regression methods tended to have underestimated standard errors. The 

regression simulation results for when there was a strong, positive relationship between 

the latent class and covariate showed that the different regression methods produced 

estimates of the covariate effect that were smaller than the true value, with the exception 

of incorporating the covariate while forming the latent classes. As the entropy of the 

latent classes decreased, the covariate effect estimates of the different methods got further 

away from the true value. 

Based on the results of the real data examples and the simulation study, 

recommendations were made about when it is appropriate to use which regression 

method. When it is an option, incorporating the covariates while forming the latent 

classes is best. But, many times this is not feasible because as the number of classes 

increases, the computation time of the model also increases. Additionally, covariates can 

impact the formation and interpretation of the latent classes. If incorporating the 

covariates while forming the latent classes is not an option, then one alternative is to use 

most likely class membership, but only when the entropy is high. Additional 
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recommendations were made about how to select which covariates to include in an 

analysis when there are a large number from which to choose. 

The issue of how to incorporate covariates into mixture models is important when 

evaluating the effectiveness of a RCT. By including covariates into an analysis, rival 

hypotheses, which might also explain why a RCT is effective, can be ruled out. As this 

first paper has shown, the method chosen to incorporate the covariate into a mixture 

model can affect the estimation of the covariate effect, which in turn, can impact the 

ability to correctly rule out alternative explanations for the results in an RCT. 

Chapter Three: Models and strategies for factor mixture analysis: Two examples 

concerning the structure underlying psychological disorders 

The second paper used a factor mixture model (FMM) to explore the underlying 

structure of psychological outcomes and explicates the FMM in more detail than has been 

given in previous research. Because the FMM has both latent categorical and continuous 

variables, the FMM has several advantages over other models used to represent the 

underlying structure of psychopathology. Unlike the categorical representation of 

psychopathology, which can be modeled using a latent class analysis (LCA) model, the 

FMM is able to account for the severity within categories through the use of a latent 

continuous variable. And unlike the dimensional view of psychopathology, which can be 

modeled using a factor analytic (FA) model, the FMM has a latent categorical variable 

that provides a model-based classification system to group individuals. 

This paper introduced five variations of the FMM which differ based on the 

amount of measurement invariance present and discussed the impact measurement 
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invariance has on the interpretation of the different FMM variations. Also, an ad hoc 

method for detecting measurement invariance of the item thresholds was presented. This 

paper also discussed more practical issues of how to build a FMM in practice including a 

discussion on factor measurement structure options and a suggested strategy for 

determining the combination of latent categorical and latent continuous variables.  

The second paper also explored the underlying structure of conduct disorder (CD) 

and attention-deficit hyperactivity disorder (ADHD) by fitting LCA, FA, and FMM 

models to the example data. Each of these examples also elucidated some practical issues 

that can occur when fitting FMM to data. In the CD example, a FMM-2, which implies 

that the underlying structure of CD is continuous, but non-normal, was found to be best 

fitting model for the data. This example highlighted how challenging it can be to compare 

among different model types, with each implying something different about the 

underlying structure. In the ADHD example, a four-factor FA solution was the best 

fitting model for the data. This suggests that even though the FMM is flexible enough to 

allow for the underlying structure to be simultaneously categorical and dimensional there 

are still cases where there may not be a need for this flexibility. 

The use of FMMs in RCT analysis is not prevalent. As mentioned in the second 

paper, this may because there is a dearth in the literature about how FMMs should be 

applied in practice and once a well-fitting model is obtained, how it should be interpreted. 

Through the demonstration of fitting FMMs to the two example datasets and interpreting 

the solutions, this paper sought to remedy this gap. It is important the FMM be explored 

as a possible representation for the underlying structure of behavioral outcomes in RCTs 
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because the flexibility of the FMM allows for the underlying structure to be 

simultaneously categorical and dimensional. Using a FMM as the outcome in a RCT 

might aid in determining whether the RCT has a bigger impact on qualitative differences 

in the outcome, represented by the latent classes, or on the severity, represented by the 

latent factors. 

Chapter Four: ACE Analysis for Latent Variable Phenotypes 

The third paper explored the use of two latent variable models as phenotypes in an 

ACE analysis. The first was the LCA model, which uses a categorical latent variable to 

account for the unobserved heterogeneity in a sample. This paper proposed a single-step 

method for combining LCA and ACE analysis by using the latent class variable as the 

phenotype rather than a three-step ad hoc method with most likely class membership as 

the phenotype. In the LCA and ACE combination, a liability threshold model is used on 

the latent class variable. 

 The second was the FMM with measurement invariance which uses a 

combination of both latent categorical and continuous variables. The presence of 

measurement invariance in the FMM ensures that the factor is measured the same way 

throughout the entire sample. This makes the factor an ideal candidate for the placement 

of the ACE model in the FMM. Alternative methods for combining the FMM and ACE 

when there is no measurement invariance were also presented, but not applied to the data. 

 The use of LCA, FMM, and, for comparison, FA as phenotypes was demonstrated 

through an example concerning conduct disorder (CD) in a sample of Finnish twins. The 

LCA solution had two classes: a large class consisting of likely asymptomatic individuals 
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and a smaller class consisting of likely symptomatic individuals. The FA solution had one 

factor with all items except one, loading significantly on the factor suggesting that it was 

a general CD factor. The FMM solution had two classes and one factor. Similar to LCA 

solution, there was one large class consisting of individuals that had a small probability 

of having any CD symptoms and a smaller class of individuals with a moderate 

probability of endorsing some of the CD symptoms. When an ACE model was applied to 

each of these latent variable models, the heritability was above 0.70 in each model 

suggesting that more than 70% of the variation in the phenotype is attributable to genetic 

variation. 

 This third paper reflects what should be the first steps in incorporating genetics 

into RCTs: defining the phenotype of interest and determining if it is heritable. The latent 

variable models discussed in this paper can be used as an alternative to traditional 

phenotypes for behaviors, such as affection status or a sum of the number of symptoms 

present, because they provide advantages. One advantage is that more pieces of 

information can be used to inform phenotype definition. A second advantage is that 

because multiple pieces of information are used there is less measurement error 

associated with the phenotype. This paper shows how these latent variable phenotypes 

can be combined with an ACE analysis to determine if the behavior of interest is 

heritable. 

Future Research 

 Each of the individual papers concluded with a discussion about future research 

that should be conducted in order to advance the understanding of the methods presented 
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in the papers. This section discusses future research possibilities for the application of 

these methods to issues specific to RCTs and the incorporation of genetic information. 

 The papers in this dissertation focused specifically on methods for cross-sectional 

models, but the goal of RCTs is often to evaluate the long-term impact of an intervention. 

If the goal is to evaluate the effect of an intervention at a later time point, longitudinal 

models need to be considered. The two most common types of longitudinal models that 

can be used in RCT analysis are growth curve and auto regressive models. Growth curve 

models describe the general rate at which an outcome of interest changes. Auto regressive 

models describe the probability of transitioning from one state to another. For example, 

an individual can transition between being affected or not affected by depression over 

time. 

 Both of these types of longitudinal models have latent variable counterparts that 

can be used as phenotypes in a genetic analysis. In growth curve modeling, the intercept 

and slope can be latent continuous variables, called growth factors. In an ACE model, for 

example, the latent growth factors from a growth curve model can then be used as the 

phenotype, as was done in Boomsma et al. (2007). Growth mixture modeling (GMM) 

adds a latent class variable, indicated by the latent growth factors, that groups individuals 

based on their observed growth trajectories. In the RCT context, GMM aids in exploring 

differential treatment effects in classes of people that differ on an outcome of interest 

(Muthén et al., 2002). In GMM there are two possible phenotypes, the latent growth 

factor or the latent classes of trajectories. Similar to LCA, if the latent classes are used as 

the phenotype in an ACE ananlysis, the latent class variable needs to be converted into a 
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latent continuous variable using the liabitlity threshold model. In Kerner and Muthén 

(2009), the classes from a GMM are used in a genome wide association study of systolic 

blood pressure. 

Auto regressive models also have latent variable counterparts. Latent transition 

ananlysis (LTA) uses a latent class measurement model at each time point and a stuctural 

component that models change across groups over time (Nylund, 2007). Another latent 

variable auto regressive model is the FMM-LTA. Suggested by Muthén (2008), the 

FMM-LTA has a FMM as the measurement model and, as in LTA, a structural 

component is used to model change over time. When using these tranisition models as 

phenotypes in an ACE analysis, there are several options for where to place the ACE 

variance components and, for simplicity, are discussed in the LTA context. One place for 

variance components is on the latent class variable at each time point, which would 

provide estimates of the heritability at each time point, but not for the overall period of 

interest. Another option would be to have one ACE model influence all the latent class 

variables so that there is only one heritability. A third option is to combine the previous 

two so that there is an overall ACE model and one on each latent class variable, similar to 

an independent pathways model. One issue to keep in mind if the ACE model is placed 

on the latent class variable at each time point is that each latent class variable would need 

to be converted into a latent continuous one by the liability threshold model. If there are a 

large number of times points, this can be problematic because each time point would 

require its own latent variable. And with each latent variable the model would become 

more complex and require more computation time.  
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 Another extension to the models in these papers would be to include gene by 

environment (GxE) interactions. In RCTs, the intervention can serve as a moderator for 

gene expression. In behavioral genetic analysis, GxE interaction models with latent 

variable phenotypes commonly use a FA model as the phenotype. For example, Harden 

et al. (2006) use a GxE model with a factor measuring cognitive ability as the phenotype 

to assess impact of parental education and income. An extension would be to use mixture 

models, such as the LCA and FMM, as phenotypes in a GxE analysis. The ACE models 

presented in paper three can easily be extended to include GxE interactions. In the LCA 

case, for example, equation 4 is extended to include a gene by treatment interaction by 

the following equation: 

C*ij = tTreatmentij + (a + a´ Treatmentij)Aij + (c + c´ Treatmentij)Cij + eEij , (1) 

where C*ij is the latent continuous variable transformation of the latent categorical 

variable C, t is the effect of treatment status, Treatmentij, and Aij, Cij, and Eij  are the latent 

additive genetic, shared environment, and unshared environment components. 

 There are many other modeling possibilities than what is presented here. This 

dissertation establishes a foundation for the conceptualization of how to incorporate 

mixture models and genetic information in randomized control trials. 
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