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1 Introduction

Section 2 provides technical background for the definition of amplitude and phase used in
the paper. Section 3 provides Mplus inputs for key analyses presented in the paper.

2 Considerations in defining amplitude and phase

Consider the cyclical curve

F (t) = A cos(2πw(t− ϕ)) = (1)

A sin(2πwϕ) sin(2πwt) + A cos(2πwϕ) cos(2πwt) = (2)

β1x1t + β2x2t (3)

where
β1 = A sin(2πwϕ) (4)

β2 = A cos(2πwϕ) (5)

x1t = sin(2πwt) (6)

x2t = cos(2πwt) (7)

Generally we are interested in fitting observed data Y (t) to the above curve, meaning that x1t

and x2t are the predictors in a linear regression and β1 and β2 are the regression coefficients
in that linear regression

Y (t) = ν + β1x1t + β2x2t + εt. (8)

The parameters β1 and β2 are uniquely identified from the data, just because the above
equation is a standard linear regression. Equations (4-5) can then in principle be used to
identify the parameters A and ϕ. These equations however do not identify A and ϕ uniquely.
Let’s first consider the identification of A. From (4-5) we obtain

β2
1 + β2

2 = A2((sin(2πwϕ))2 + (cos(2πwϕ))2) = A2 (9)

A = ±
√
β2
1 + β2

2 . (10)

Thus A is uniquely identified by β1 and β2, except that the sign of A is not identified.
Furthermore

F (t) = A cos(2πw(t− ϕ)) = (−A) cos(π + 2πw(t− ϕ)) = (11)

(−A) cos(2πw(t− (ϕ− 0.5/w))). (12)

Thus, the cyclical curve F (t) with parameters A and ϕ is identical to the cyclical curve with
parameters −A and ϕ− 0.5/w. To identify A uniquely it is necessary to impose a constraint
on A. We impose the constraint that A is positive. With that constraint, A is uniquely
identified and

A =
√
β2
1 + β2

2 . (13)
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Because the range of F (t) is [−A,A], the interpretation of A is that it is half the range of
F (t), and is generally referred to as the amplitude of F (t).

Next we focus on the interpretation and the identification of ϕ. Because the cos function
has a period of 2π the function F (t) has a period of 1/w and

F (t) = A cos(2πw(t− ϕ)) = A cos(2πw(t− (ϕ+ n/w))) (14)

for any integer n. Therefore the cyclical curve with parameters A and ϕ is identical to the
cyclical curve with parameters A and any of the infinitely many number options for the
second parameter ϕ± 1/w, ϕ± 2/w, ϕ± 3/w, etc. To identify the ϕ parameter we therefore
must constrain the parameter to be in the interval of [0, 1/w). Because the cos function has
a maximum at 0, the function F (t) has a maximum at ϕ. Therefore with the identification
condition that 0 ≤ ϕ < 1/w, we can interpret ϕ as the first peak of F (t) after (and including)
0, and we will refer to ϕ as the phase of the curve.

Now we focus on the actual derivation of ϕ. Using (4-5) we see that

β1

β2

= tan(2πwϕ) (15)

The above equation almost precisely identifies the value of ϕ. The tan function has a period
of π and therefore the function tan(2πwϕ) has a period of 1/(2w). Therefore there are
precisely two values of ϕ in the interval [0, 1/w) satisfying equation (15). One, let’s call it
ϕ1, is in the interval [0, 1/(2w)) and one, let’s call it ϕ2, is in the interval [1/(2w), 1/w).
Because of the periodicity ϕ2 = ϕ1 + 1/(2w). Note also that

sin(2πwϕ1) = − sin(2πwϕ2) (16)

cos(2πwϕ1) = − cos(2πwϕ2). (17)

Thus for one of the two solutions of (15)

A sin(2πwϕ) = β1 (18)

A cos(2πwϕ) = β2 (19)

and for the other solution
A sin(2πwϕ) = −β1 (20)

A cos(2πwϕ) = −β2. (21)

Thus equation (15) has two solutions in the interval [0, 1/w), but only one of them satisfies
(4-5). Furthermore, because the distance between ϕ1 and ϕ2 is precisely half of the period
of (1), one of these two values is the highest value of F (t) and the other is the lowest value
of F (t). To figure out which one is the correct solution to (4-5) we must take into account
the sign of β1. Since 0 ≤ ϕ1 < 1/(2w), sin(2πwϕ1) ≥ 0. Therefore if β1 ≥ 0 the solution to
(4-5) is ϕ1 and if β1 < 0 the solution to (4-5) is ϕ2 = ϕ1 + 1/(2w).

Next we connect ϕ1 and ϕ2 with the solution ϕ0 of equation (15) of obtained from the
inverse tangent function

2πwϕ0 = arctan
(β1

β2

)
(22)
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or equivalently

ϕ0 =
1

2πw
arctan

(β1

β2

)
. (23)

The inverse tan function has a range (−π/2, π/2), and therefore ϕ0 is in the interval (−1/(4w), 1/(4w)).
This interval has length of 1/(2w). If β1 and β2 have the same sign then ϕ0 is in the interval
[0, 1/(4w)) and therefore it must be the same as ϕ1. If β1 and β2 have different signs then
ϕ0 is in the interval (−1/(4w), 0). Since the period of tan in equation (15) is 1/(2w), ϕ0

as well as ϕ0 + 1/(2w) are solutions of equation (15). Since ϕ0 + 1/(2w) is in the interval
(1/(4w), 1/(2w)), it must be the same as ϕ1.

We can now summarize the solution of (4-5) as follows

ϕ =


ϕ1 = ϕ0 if β1 ≥ 0 and β2 > 0

ϕ1 = ϕ0 + 1/(2w) if β1 ≥ 0 and β2 < 0

ϕ2 = ϕ1 + 1/(2w) = ϕ0 + 1/(2w) + 1/(2w) if β1 < 0 and β2 > 0

ϕ2 = ϕ1 + 1/(2w) = ϕ0 + 1/(2w) if β1 < 0 and β2 < 0

(24)

Therefore

ϕ =


arctan(β1/β2)/(2πw) if β1 ≥ 0 and β2 > 0

arctan(β1/β2)/(2πw) + 1/(2w) if β1 ≥ 0 and β2 < 0

arctan(β1/β2)/(2πw) + 1/w if β1 < 0 and β2 > 0

arctan(β1/β2)/(2πw) + 1/(2w) if β1 < 0 and β2 < 0

(25)

To include the possibility that β2 = 0 we provide the complete description of the first peak

ϕ =



arctan(β1/β2)/(2πw) if β1 ≥ 0 and β2 > 0

arctan(β1/β2)/(2πw) + 1/(2w) if β1 ≥ 0 and β2 < 0

arctan(β1/β2)/(2πw) + 1/w if β1 < 0 and β2 > 0

arctan(β1/β2)/(2πw) + 1/(2w) if β1 < 0 and β2 < 0

1/(4w) if β1 ≥ 0 and β2 = 0

3/(4w) if β1 < 0 and β2 = 0

(26)

The definition of phase given above as the first peak after zero is somewhat different
than other definitions used in the literature. For example, the cos argument in formula (1)
is sometimes specified as 2πwt+ϕ instead of 2πw(t−ϕ). This change amounts to specifying
ϕ on a different scale and opposite in sign. While such a change seems trivial and amounts
to only a rescaling of the variable, it is quite beneficial for practical purposes. The change in
the sign allows us to interpret ϕ as the first peak after 0, which is practical and meaningful
and it can be used to model the timing of the daily peaking of the variable. The change in
the scale, i.e., the multiplying of ϕ by 2πw, is needed to put ϕ on the interpretable scale of t
(which is typically hours in the day or the time scale of the day which can be 3 hour periods).
If we do not multiply ϕ by 2πw, the scale of ϕ will be radians, which is impractical. While
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other parameterizations of ϕ may yield similar statistical inference, the definition given in
formula (1) allows us to connect ϕ directly to the time series plots of the variable.

In addition, it is important to provide a precise computation of ϕ as the first peak after
0, i.e. formula (26), instead of a simple computation of ϕ as

ϕ = arctan(β1/β2), (27)

which is often recommended as the computation of the phase. This is particularly important
for multilevel time-series analysis where we have a population of people and the random βi

coefficients switch signs, not just across individuals but also in the posterior distribution of a
single individual. If there is enough variation in the β1 and β2 distributions across individuals
and within individual, the simple formula (27) will alternate between these 4 values: peak
of curve in one period, lowest value of curve in one period, peak of curve in another period,
lowest value of curve in another period. Any inference therefore regarding the peaking would
be unreliable if we use (27). The same phenomena can be observed also when β1 and β2

are non random but the signs of these coefficients vary within their posterior distributions.
Note also that acrtan formula (27) yields negative and positive values, and therefore it does
not refer to the first peak after 0.

Given the complex relationship between the first peak and βi, as shown in (26), it is
clear that a one-stage analysis is not quite reliable for peaking inference. For example, if
we specify only that ϕ in (1) is a normally distributed random effect, that would not be
enough. The random effect or parameter ϕ must be constrained to the interval [0, 1/w),
otherwise the posterior distribution of ϕ may contain the peaks from multiple days which
will inevitably be problematic when computing median and mean. This issue might be
further complicated when we want to regress the random effect ϕ on other predictors, where
the regression parameter posterior distribution may switch signs depending on which period
the regression shift points to. Peaks from different periods may be mixed across people and
within a single person posterior distribution. This issue is similar to how classes can flip
in Mixture models yielding incorrect distributions or how signs of loadings can flip in the
factor analysis models. A safer option is to use a two-stage analysis where β1 and β2 random
effects are estimated and imputed in stage 1, and in stage 2 the random effect computed by
(26) is analyzed with multiple imputations.

3 Mplus inputs

Following are Mplus inputs for key runs corresponding to the summary Table 1 of the paper.
The DEFINE statements for phase in input 5b are based on the six lines of (26) given above.
The inputs for the Monte Carlo simulations are given last. Note that many of the analyses
require Mplus Version 8.11 or later.
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Table 1: Step 1a: Cross-classified DSEM, Figure 3

USEVAR = pa;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
LAGGED = pa(1);

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
PROCESSORS = 2;

MODEL: %WITHIN%
pa ON pa&1;

%BETWEEN id%
pa;
[pa] (p0);

%BETWEEN time%
pa;

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 2: Step 2a: Cross-classified DSEM, Figure 8

USEVAR = pa x1 x2;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
BETWEEN = (time) x1 x2;
LAGGED= pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 2;

MODEL: %WITHIN%
pa ON pa&1;

%BETWEEN id%
pa;
[pa] (p0);

%BETWEEN time%
pa ON x1 (p1)
x2 (p2);

MODEL CONSTRAINT: LOOP(time,1,56,0.1);
PLOT(pacycles fscycles);
pacycles = p0 +
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);
fscycles =
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 3: Step 2b: Cross-classified DSEM Factor Analysis, Figure 15

USEVAR = PALA1 PALA2 PALA3 PAHA1 PAHA2
PAHA3 x1 x2;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
BETWEEN = (time) x1 x2;

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10; PROCESSORS = 2;

MODEL: %WITHIN%
fw1 BY pala1-paha1* (&1 1-4);
fw2 BY paha3* paha2 paha1(&1 11-13);
fw1-fw2@1;
fw1 ON fw1&1; fw2 ON fw2&1;

%BETWEEN id%
fb1 BY pala1-paha1*;
fb2 BY paha3* paha2 paha1;
fb1-fb2@1;

%BETWEEN time%
ft1 BY pala1-paha1* (1-4);
ft2 BY paha3* paha2 paha1 (11-13);
ft1 ON x1 (p11); ft1 ON x2 (p12);
ft2 ON x1 (p21); ft2 ON x2 (p22);

MODEL CONSTRAINT: LOOP(time,1,56,0.1);
PLOT(ft1cycle ft2cycle);
ft1cycle = p11*SIN(6.2831853*(1/8)*time)+
p12*COS(6.2831853*(1/8)*time);
ft2cycle = p21*SIN(6.2831853*(1/8)*time)+
p22*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 4: Step 2d: Bivariate two-level RDSEM, Figure 7 with a random slope

USEVAR = pa tired x1 x2;
CLUSTER = id;
TINTERVAL = hrs (3 time);
WITHIN = x1 x2;
LAGGED = pa(1) tired(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
PROCESSORS = 2;

MODEL: %WITHIN%
pa ON x1 x2;
tired ON x1 x2;
paˆ ON paˆ1;
tiredˆ ON tiredˆ1;
s | paˆ ON tiredˆ;

%BETWEEN%
pa tired s WITH pa tired s;

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 5: Step 3a: Cross-classified DSEM, Figure 8

USEVAR = pa x1 x2 sat;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
BETWEEN = (time) x1 x2 sat;
LAGGED = pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

IF(time>33 .AND. time<40)THEN sat = 1 ELSE
sat=0;

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10; PROCESSORS = 2;

MODEL: %WITHIN%
pa ON pa&1;

%BETWEEN id%
pa;
[pa] (p0);

%BETWEEN time%
pa ON x1 (p1)
x2 (p2)
sat (p3);

MODEL CONSTRAINT: LOOP(time,1,56,1);
PLOT(pacycles fscycles saturday patot fstot);
pacycles = p0 + p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);
fscycles = p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);
saturday = p3*[34,39];
patot = pacycles + saturday;
fstot = fscycles + saturday;

OUTPUT: STANDARDIZED TECH1 TECH8;

PLOT: TYPE = PLOT3; FACTORS = ALL(200);

SAVEDATA: SAVE = FS(200); FILE = fscyclessat;
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Table 6: Step 3b: Cross-classified RDSEM, Figure 9

USEVAR = pa x1 x2;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
WITHIN = x1 x2;
LAGGED = pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
PROCESSORS = 2;

MODEL: %WITHIN%
pa ON x1 (p1)
x2 (p2);
paˆ ON paˆ1;

%BETWEEN id%
pa;
[pa] (p0);

%BETWEEN time%
pa;

MODEL CONSTRAINT: LOOP(time,1,56,0.1);
PLOT(pacycles fscycles);
pacycles = p0 +
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);
fscycles =
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);

SAVEDATA: SAVE = FS(200 10);
FILE = fscyclesdeviations.dat;
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Table 7: Step 4a: Two-level RDSEM, Figure 6, Cosinor Model

USEVAR = pa x1 x2;
CLUSTER= id;
TINTERVAL = hrs (3 time);
WITHIN = x1 x2;
LAGGED = pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 8;

MODEL: %WITHIN%
sx1 | pa ON x1;
sx2 | pa ON x2;
paˆ ON paˆ1;

%BETWEEN%
pa sx1 sx2 WITH pa sx1 sx2;
[pa] (p0);
[sx1] (mx1);
[sx2] (mx2);

MODEL CONSTRAINT: LOOP(time,1,56,0.1);
PLOT(fscycle pacycle);
fscycle =
mx1*SIN(6.2831853*(1/8)*time)+
mx2*COS(6.2831853*(1/8)*time);
pacycle = p0 +
mx1*SIN(6.2831853*(1/8)*time)+
mx2*COS(6.2831853*(1/8)*time);

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 8: Step 4c: Cross-classified RDSEM, Figure 9 extended to random coefficients

USEVAR = pa x1 x2;
CLUSTER = id time;
TINTERVAL = hrs (3 time);
WITHIN = x1 x2;
LAGGED = pa(1);

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 2;

MODEL: %WITHIN%
s1 | pa ON x1;
s2 | pa ON x2;
paˆ ON paˆ1;

%BETWEEN id%
pa s1 s2 WITH pa s1 s2;
[pa] (p0);
[s1] (p1);
[s2] (p2);

%BETWEEN time%
pa;

MODEL CONSTRAINT: LOOP(time,1,56,0.1);
PLOT(pacycles fscycles);
pacycles = p0 +
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);
fscycles =
p1*SIN(6.2831853*(1/8)*time)+
p2*COS(6.2831853*(1/8)*time);

OUTPUT: TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;
FACTORS = ALL(200);
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Table 9: Step 5a: Two-level RDSEM, Figure 17 factor analysis

USEVAR = PALA1 PALA2 PALA3 PAHA1 PAHA2
PAHA3 age SDQ girl tiredavg x1 x2;
CLUSTER = id;
WITHIN = x1 x2;
BETWEEN = girl sdq age tiredavg;
TINTERVAL = hrs (3 time);

DEFINE: tiredavg = CLUSTER MEAN(tired);
girl = sexAA - 1;
x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);

CENTER sdq age tiredavg (GRANDMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (25000);
PROCESSORS = 2;

MODEL: %WITHIN%
fpa1 BY pala1-paha1* (&1 1-4);
fpa2 BY paha3* paha2 paha1(&1 11-13);
fpa1-fpa2@1;
s11 | fpa1 ON x1;
s12 | fpa1 ON x2;
s21 | fpa2 ON x1 ;
s22 | fpa2 ON x2 ;
fpa1ˆ-fpa2ˆ ON fpa1ˆ1 fpa2ˆ1;

%BETWEEN%
f1b BY pala1-paha1*;
f2b BY paha3* paha2 paha1;
f1b-f2b@1; f1b WITH f2b (c);
f1b f2b s11-s22 ON girl sdq age tiredavg;

OUTPUT: STANDARDIZED TECH1 TECH4 TECH8;

MODEL PRIORS: c∼ IW(0,3);

PLOT: TYPE = PLOT3; FACTORS = ALL;

SAVEDATA: SAVE = FSCORES(200);
FACTORS = ALL;
FILE = fscov imp*.dat;
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Table 10: Step 5b: Analysis of amplitude and phase based on 200 multiple imputations of
step 5a

DATA: FILE = fscov implist.dat;
TYPE = IMPUTATION;

VARIABLE: NAMES = AGE SDQ GIRL TIREDAVG F1B F2B S11
S12 S21 S22 B PALA1 B PALA2 B PALA3 B PAHA1
B PAHA2 B PAHA3 ID;
USEV = age-tiredavg f1b f2b amp1 amp2 phase1 phase2;
MISSING = *;

DEFINE: amp1 = SQRT(s11ˆ2 + s12ˆ2);
amp2 = SQRT(s21ˆ2 + s22ˆ2);

IF (s11>=0 .AND. s12>0) THEN phase1 =
(ATAN(s11/s12))/(6.28*(1/8));
IF (s11<0 .AND. s12>0) THEN phase1 =
(6.28+ATAN(s11/s12))/(6.28*(1/8));
IF (s11≥0 .AND. s12<0) THEN phase1 =
(3.14+ATAN(s11/s12))/(6.28*(1/8));
IF (s11<0 .AND. s12<0) THEN phase1 =
(3.14+ATAN(s11/s12))/(6.28*(1/8));
IF (s11≥0 .AND. s12==0) THEN phase1 =
3.14*0.5/(6.28*(1/8));
IF (s11<0 .AND. s12==0) THEN phase1 =
3.14*1.5/(6.28*(1/8));

IF (s21≥0 .AND. s22>0) THEN phase2 =
(ATAN(s21/s22))/(6.28*(1/8));
IF (s21<0 .AND. s22>0) THEN phase2 =
(6.28+ATAN(s21/s22))/(6.28*(1/8));
IF (s21≥0 .AND. s22<0) THEN phase2 =
(3.14+ATAN(s21/s22))/(6.28*(1/8));
IF (s21<0 .AND. s22<0) THEN phase2 =
(3.14+ATAN(s21/s22))/(6.28*(1/8));
IF (s21≥0 .AND. s22==0) THEN phase2 =
3.14*0.5/(6.28*(1/8));
IF (s21<0 .AND. s22==0) THEN phase2 =
3.14*1.5/(6.28*(1/8));

CENTER age sdq tiredavg (GRANDMEAN);

Table continues on the next page
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Table 11: Step 5b: Analysis of amplitude and phase based on 200 multiple imputations of
step 5a, continued

ANALYSIS: ESTIMATOR = BAYES;
FBITERATIONS = 2000;

MODEL: f1b f2b amp1 amp2 phase1 phase2 on age-tiredavg;
[amp1] (a1);
[amp2] (a2);
[phase1] (p1);
[phase2] (p2);

MODEL CONSTRAINT: NEW(diffAmp diffPh);
diffAmp = a1-a2;
diffPh = p1-p2;

OUTPUT: STANDARDIZED TECH4;

PLOT: TYPE = PLOT3;
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Table 12: Monte Carlo simulation using two-level random RDSEM cycles analysis with N =
200, T = 56. Step 1

MONTECARLO: NAMES = pa sx1 sx2;
NOBSERVATIONS = 11200;
NREPS = 500;
CSIZES = 200(56);
NCSIZE = 1;
LAGGED = pa(1);
REPSAVE = ALL;
SAVE = pa2LRandomstep1T=56Rep=500rep*.dat;
BETWEEN = sx1 sx2;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (200); ! complete convergence
! not needed
PROCESSORS = 2;

MODEL POPULATION: %WITHIN%
paˆ ON paˆ1*0.37243;
pa*0.51090;

%BETWEEN%
pa WITH sx1*-0.00509;
pa WITH sx2*-0.01340;
sx1 WITH sx2*-0.00127;

[ pa*5.67306 ] ;
[ sx1*-0.08903 ] ;
[ sx2*-0.00674 ] ;

pa*0.74775;
sx1*0.01524;
sx2*0.00752;

MODEL: Same as MODEL POPULATION
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Table 13: Monte Carlo simulation using two-level random RDSEM cycles analysis with N =
200, T = 56. Step 2

DATA: FILE = pa2LRandomstep1T=56rep=500replist.dat;
TYPE = MONTECARLO;

VARIABLE: NAMES = sx1 sx2 pa id time pa1;
USEV = pa x1 x2;
CLUSTER = id;
LAGGED = pa(1);
WITHIN = x1 x2;

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);
pa = sx1*x1+ sx2*x2 + pa;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 2;

MODEL: %WITHIN%

sx1 | pa ON x1;
sx2 | pa ON x2;

paˆ ON paˆ1*0.37243;

pa*0.51090;

%BETWEEN%

pa WITH sx1*-0.00509;
pa WITH sx2*-0.01340;
sx1 WITH sx2*-0.00127;

[ pa*5.67306 ] ;
[ sx1*-0.08903 ] ;
[ sx2*-0.00674 ] ;

pa*0.74775;
sx1*0.01524;
sx2*0.00752;
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Table 14: Monte Carlo simulation using bivariate two-level RDSEM cycles analysis with N
= 200, T = 56. Step 1

MONTECARLO: NAMES = pa tired;
NOBSERVATIONS = 11200;
NREPS = 500;
CSIZES = 200(56);
NCSIZE = 1;
LAGGED = pa(1) tired1);
REPSAVE = ALL;
SAVE = pa2LBivstep1T=56Rep=500rep*.dat;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (200); ! complete convergence
! not needed
PROCESSORS = 2;

MODEL POPULATION: %WITHIN%
paˆ ON paˆ1*0.35281;
paˆ ON tiredˆ*-0.12401;
tiredˆ ON tiredˆ1*0.38683;

pa*0.49183;
tired*1.41098;

%BETWEEN%
pa WITH tired*-0.53406;

[ pa*5.66681 ];
[ tired*3.55581 ];

pa*0.74610;
tired*1.43987;

MODEL: Same as MODEL POPULATION
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Table 15: Monte Carlo simulation using bivariate two-level RDSEM cycles analysis with N
= 200, T = 56. Step 2

DATA: FILE = pa2LBivstep1T=56rep=500replist.dat;
TYPE = MONTECARLO;

VARIABLE: NAMES = pa tired id time pa0 pa1 tired0 tired1;
USEV = pa tired x1 x2;
CLUSTER = id;
LAGGED = pa(1) tired(1);
WITHIN = x1 x2;

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);
pa = -0.09278*x1-0.01485*x2 + pa;
tired = -0.03656*x1 + 0.52587*x2 + tired;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 2;

MODEL: %WITHIN%

pa ON x1*-0.09278;
pa ON x2*-0.01485;
paˆ ON paˆ1*0.35281;
paˆ ON tiredˆ*-0.12401;
tired ON x1*-0.03656;
tired ON x2*0.52587;
tiredˆ ON tiredˆ1*0.38683;

pa*0.49183;
tired*1.41098;

%BETWEEN%

pa WITH tired*-0.53406;

[ pa*5.66681 ];
[ tired*3.55581 ];

pa*0.74610;
tired*1.43987;
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Table 16: Monte Carlo simulation using cross-classified DSEM cycles analysis with N = 200,
T = 56. Step 1

MONTECARLO: NAMES = y;
NOBSERVATIONS = 11200;
NREPS = 500;
CSIZES = 200[56(1)]; ! 200 subjects (2b),
! 56 time points (2a)
NCSIZE = 1[1];
LAGGED = y(1);
REPSAVE = ALL;
SAVE = paccstep1T=56Rep=500rep*.dat;

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (200); ! complete convergence
! not needed
PROCESSORS = 2;

MODEL POPULATION: %WITHIN%
y ON y&1*0.371;
y*0.513;

%BETWEEN LEVEL2A% ! betweeen time
y*0.006;

%BETWEEN LEVEL2B% ! between individuals
y*0.740; [y*5.676];

MODEL: %WITHIN%
y ON y&1*0.371;
y*0.513;

%BETWEEN LEVEL2A% ! betweeen time
y*0.006;

%BETWEEN LEVEL2B% ! between individuals
y*0.740; [y*5.676];
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Table 17: Monte Carlo simulation using cross-classified DSEM cycles analysis with N = 200,
T = 56. Step 2

DATA: FILE = paccstep1T=56Rep=500replist.dat;
TYPE = MONTECARLO;

VARIABLE: NAMES = y time id y1;
USEV = y x1 x2;
CLUSTER = id time;
LAGGED = y(1);
BETWEEN = (time) x1 x2;

DEFINE: x1 = SIN(6.2831853*(1/8)*time);
x2 = COS(6.2831853*(1/8)*time);
y = -0.088*x1-0.009*x2 + y;

ANALYSIS: TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 2;

MODEL: %WITHIN%
y ON y&1*0.371;
y*0.513;

%BETWEEN id%
y*0.740; [y*5.676];

%BETWEEN time%
y*0.006;
y ON x1*-0.088 x2*-0.009;
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