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1 Introduction

In this note we describe a causal recursive system of logit models for latent
categorical variables implemented in Mplus, that is used for latent transition
modeling. Suppose that we have s latent categorical variables C1, C2, ...
, Cs. Suppose that we have a set of covariates X = (1, X0) available in
the model. We assume that the measurement model for Ci is defined by
a set of equations describing the conditional distributions [Yi|Ci, X], where
Yi are observed continuous or categorical variables. We will focus on the
relationship between the Ci. Since non-recursive systems are not allowed in
our system of logit models we can assume a certain ordering for the Ci which
defines the possible casual relationships. Any Ci can be influenced by all
preceding C1 , ..., Ci−1 and can influence any of the following Ci+1, ..., Cs.
The set of logit models that we consider is the following.

P (C1 = i1|X) =
Exp(u(i1)X)∑
iExp(u(i)X)

P (C2 = i2|X,C1 = i1) =
Exp(u(i1, i2)X)∑
iExp(u(i1, i)X)

P (C3 = i3|X,C1 = i1, C2 = i2) =
Exp(u(i1, i2, i3)X)∑
iExp(u(i1, i2, i)X)

...

P (Cs = is|X,C1 = i1, C2 = i2, ..., Cs−1 = is−1) =
Exp(u(i1, i2, ..., is)X)∑
iExp(u(i1, i2, ..., i)X)

.

The parameters U in the above equation are not the parameters that we
are interested in, rather we will estimate the parameters of a set of loglinear
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models that produce the above conditional logit models. For example the
second equation can be viewed as the conditional logit model obtained from
this loglinear model

P (C1 = i1, C2 = i2|X) =
Exp((µ+ w1(i1) + w2(i2) + w12(i1, i2))X)∑

i1,i2 Exp((µ+ w1(i1) + w2(i2) + w12(i1, i2))X)

with the restriction that w(i1) = 0 when i1 is the last category of C1, w2(i2) =
0 when i2 is the last category of C2, and w12(i1, i2) = 0 when i1 is the last
category of C1 or when i2 is the last category of C2. The conditional logit
model obtained from the above model is equivalent to the second conditional
logit model when u(i1, i2) = w2(i2) + w12(i1, i2).

Thus we estimate the following w parameters which in composition pro-
duce the u parameters. The exact relationship between these is given by

u(i1) = w1(i1)

u(i1, i2) = w2(i2) + w12(i1, i2)

u(i1, i2, i3) = w3(i3) + w13(i1, i3) + w23(i2, i3) + w123(i1, i2, i3)

...

u(i1, i2, ..., is) = ws(is) +
s−1∑
j=1

wjs(ij, is) +
s−1∑

j1=1,j2=2,j2>j1

wj1j2s(ij1 , ij2 , is)+

∑
j1=1,j2=2,j3=3,j3>j2>j1

wj1j2j3s(ij1 , ij2 , ij3 , is) + ...+ w123...s(i1, i2, ..., is)

Note however that the parameters w1 are obtained from the log-linear model
for C1, parameters w2 and w12 are obtained from the log-linear model for
C1 and C2. This log-linear model has also a parameter of the type of w1

however that is not the parameter that we use, and in general this parameter
will be different, because in general log-linear tables are not collapsible (see
[A]). Thus, if we are estimating a saturated model the results are going to
depend on the assumed order of the C variables. For example, let’s consider
the following two orders of variables C1, C2, C3, ... and C3, C2, C1, .... The
parameter w13 will be obtained from the loglinear model of C1, C2 and C3

for both orders and it will be the same for both orders. However, parameter
w12 for the first order will be obtained from the loglinear model of C1 and
C2, and for the second order it will be obtained from the loglinear model of
C1, C2 and C3, and thus, will be different in general.
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The total number of w parameters is [(n1+1)...(ns+1)−1](1+q) where ni

are the number of different categories for Ci and q is the number of covariates.
We use the following identification restrictions wj1j2...jk(ij1 , ij2 , ..., ijk) = 0
when for some r, ijr = nr, i.e., the Cr category is the last category. Under
such a restriction the number of free parameters is (n1...ns−1)(1 + q), which
represent a fully saturated model. Similar model for observed variables is
considered in [1], Chapter 7.

2 Estimation

We use an EM algorithm to obtain the ML estimates where the C = (C1, ..., Cs)
variables represent the missing variables. The total number of C categories
is k = n1...ns, which we denote by i = (i1, ..., is). The complete data log-
likelihood is ∑

j

∑
i

1Cj=ilog([Yj|Cj, Xj]) + 1Cj=ilog([Cj = i|Xj])

where j varies across individuals in the sample and therefore the expected
complete data log-likelihood is∑

j

∑
i

pjilog([Yj|Cj, Xj]) + pjilog([Cj = i|Xj])

where pji is the posterior probability

pji =
[Yj|Cj, Xj][Cj = i|Xj]∑
i[Yj|Cj, Xj][Cj = i|Xj]

The maximization of the measurement part of the expected complete data
loglikelihood is obtained as follows. We focus on the conditional logit models
part:

S =
∑
j

∑
i

pjilog([Cj = i|Xj]).

Since
[Cj = i|Xj] = [Cj1 = i1|Xj][Cj2 = i2|Xj, Cj1 = i1]...

[Cjs = is|Xj, Cj1 = i1, ..., Cj(s−1) = is−1]

we get that

S =
∑
j,i1

Pj(i1)[Cj1 = i1|Xj] +
∑
i1

∑
j,i2

Pj(i1, i2)[Cj2 = i2|Xj, Cj1 = i1] + ...+
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∑
i1,i2,...,is−1

∑
j,is

Pj(i1, i2, ..., is)[Cjs = is|Xj, Cj1 = i1, ..., Cj(s−1) = is−1]

where Pj(i1, i2, ..., ir) is the marginal posterior distribution for C1, ..., Cr, i.e.,

Pj(i1, i2, ..., ir) =
∑

i=(i1,i2,...,ir,∗,...,∗)
pji

We will maximize S with respect to the w parameters by Quasi-Newton or
Newton-Ralphson optimization algorithm. For this purpose we need ∂S/∂w
and ∂2S/(∂w)2. The first step to get these derivatives will be to get the
derivatives with respect to the u parameters. Note that ∂u/∂w = D is a
constant matrix and therefore

∂S

∂w
=
∂S

∂u
D

and
∂2S

(∂w)2
= DT ∂2S

(∂u)2
D.

Thus we only need the derivatives with respect to the u parameters. Notice
however that the above formula of S is simply a sum of weighted conditional
multinomial logit models, i.e., S is simply a sum of terms of the following
type ∑

j,ir

Pj(i1, i2, ..., ir)[Cjr = ir|Xj, Cj1 = i1, ..., Cj(r−1) = ir−1]

each one of which is the weighted loglikelihood of a multinomial logit model
with respect to the u parameters and its derivatives are easy to compute
and are well known. Given the first and the second derivatives of S the EM
algorithm and the asymptotic covariance of the ML estimates are obtained
as in [MSS].
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