
Chapter 12
General and Specific Factors in Selection
Modeling

Bengt Muthén

Abstract This chapter shows how analysis of data on selective subgroups can be
used to draw inference to the full, unselected group. This uses Pearson-Lawley
selection formulas which apply to not only regression analysis but also structural
equation modeling. The chapter shows the connection with maximum-likelihood
estimation with missing data assuming MAR versus using listwise deletion.
Applications are discussed of selection into the military using factor analysis
models for the variables used in the selection.

12.1 Introduction

Modeling with selective subgroups needs adjustments to be able to draw inference
to the full group. This is a typical feature in predictive validity studies where a
criterion outcome is regressed on or correlated with a predictor variable and the
criterion outcome is missing for those not selected. The adjustments draw on
Pearson-Lawley selection formulas (Pearson 1903; Lawley 1943–1944; Lord and
Novick 1968; Johnson and Kotz 1972) to obtain desired inferences. The
Pearson-Lawley formulas assume linear, homoscedastic regression of a set of
analysis variables on a set of selection variables. The general Pearson-Lawley
selection formulas can be used for deriving means, variances, and covariances for
the full population given values of the selected population and vice versa. This
chapter shows that Pearson-Lawley selection formulas play a role not only with
respect to predictive validity assessment, but also with respect to multiple-group
latent variable modeling. The connection between selection and maximum-
likelihood estimation under the MAR assumption is illustrated by Monte Carlo
simulations and real-data analyses.
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Individuals applying for a certain training program may be selected based on a
set of tests and other assessments. For example, students are selected into colleges
based on the SAT, GRE, GMAC, or GMAT and job candidates are selected based
on personality tests. To understand the quality of such a selection procedure, the
tests and assessments are used as predictors of a training program outcome such as
grades or job performance. The multiple correlation R value from this regression is
viewed as a predictive validity coefficient. The estimation of this coefficient requires
data on the program outcome and the predictors, which are available only for those
who were selected. The interest is, however, in estimating the coefficient for the
population of all applicants, not only those who were selected. Those who were
selected are not a random subsample of those who applied, which means that the
inference is distorted unless corrections are made. Similarly, screening instruments
are used at baseline in psychological studies to determine a subsample that is at risk
for certain future behavioral problems and is therefore of interest to follow up for
further study. Again, the desired inference is to the population from which the
baseline sample is taken, not to the subpopulation that is at risk.

12.2 Predictive Validity in a Simple Example

Consider the following linear regression

yi ¼ aþ bxiþ ei: ð12:1Þ

In a predictive validity context the predictor x is a test score used to select
individuals into a training program in which a criterion outcome y is measured at
the end of training. Selecting on x, the regression of y on x obtained in the group of
selected individuals correctly estimates the regression model for the full, applicant
population (see, e.g. Muthén and Joreskog 1983; Dunbar and Linn 1991). In
contrast, selecting on y results in biased regression estimates. The two selection
cases are illustrated in Fig. 12.1 using the example of Dunbar and Linn (1991) with
a regression of y on x using standardized variables with correlation 0.6. The
regression model was estimated using (a) a full sample of 5000 subjects, (b) a
selected subsample of subjects with x scores above the mean, and (c) a selected
subsample of subjects with y scores above the mean.

12.3 Monte Carlo Study of Selection in an SEM

In structural equation modeling, analysis of a selective group typically gives dis-
torted estimates of the parameters for the full group. It is instructive to study the
magnitude of such distortions through an example.
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Consider a latent variable version of the selection case of (2). Figure 12.2 cor-
responds to a hypothetical situation of a selection or screening measurement
instrument formed by y1–y6, which are indicators of a general factor g and a specific
factor s in line with bi-factor modeling. At a later time point a criterion measure-
ment instrument y7–y10 measures a single factor f2. Consider first the case where the
selection variable consists of the unweighted sum of y1–y6 so that those with the
highest sum form the selected group which are followed up and administered the
criterion test. Figure 12.3 shows the data structure, where the unselected group do
not have observations on y7–y10.

The effects of selection on the analysis are illustrated by the following Monte
Carlo simulation. A random sample of 2000 subjects is given the y1–y6 test and
those with the top 50 % summed score are selected and given the y7–y10 test. This
procedure is repeated over 500 Monte Carlo replications.

[Full sample] [Selection on x] 

[Selection on y] 

Fig. 12.1 Regression analysis using three different samples
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12.4 Using Listwise Deletion

Using listwise deletion, the sample of selected subjects is analyzed with respect to
the model for y1–y10 using the ML fitting function. Note that this does not give ML
estimates of the parameters in the full sample. With 30 degrees of freedom the mean
and variance of the likelihood-ratio v2 test are expected to be 30 and 60, but are

y1

y2

y3

y4

y5

y6

y10

y9

y8

y7
g

s

f2

Fig. 12.2 Structural equation model with selection

Fig. 12.3 Data structure with
selection (non-shaded area
represents missing data)
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somewhat overestimated as 32.306 and 72.915 and the 5 % reject proportion
obtains a somewhat too high value of 0.108. Still, this implies that the model would
often not be rejected.

The results for the parameter estimates are shown in Tables 12.1 and 12.2. The
first column shows the population values that were chosen and with which the data
were generated. In terms of the selection instrument y1–y6, the factor loadings for
the general factor g and the specific factor s are clearly misestimated as is seen in
the Average column. The 95 % coverage column also shows large deviations from
95 % coverage. Standardized versions of the factor loadings for y2 and y5 are shown
at the bottom of Table 12.2 as stdlam2 and stdlam5g, stdlam5s. This indicates that
the variance explained by the general factor is underestimated and the variance
explained by the specific factor is overestimated. This reflects the fact that the
selection variable is most closely aligned with g given that selection is based on a
sum of all the variables y1–y6.

The key parameters of the structural equation relating f2 to g and s show that the
influence of g is underestimated and the influence of s is overestimated. It is seen
that the variance for g is more strongly underestimated than the variance for s as is
expected due to the selection being more closely aligned with g. Table 12.2 shows
that this results in a standardized effect of g on f2 that is strongly underestimated as
0.4396 compared to the true value of 0.7. At the same time, the standardized effect
of s on f2 is overestimated as 0.6664 instead of 0.506. That is, the relative
importance of the two factors is reversed, distorting the true predictive value of the
factors in the full population.

For the criterion instrument Table 12.1 shows that the unstandardized factor
loadings are well estimated with good coverage. The standardized factor loading for
y8, listed as stdlam8, shows a slight overestimation, which is due to the variance of
f2 being underestimated (see the vf2 entry).

The results of the Monte Carlo simulations can be explained via Pearson-Lawley
formulas applied to factor analysis. The key results are discussed in Sect. 12.6,
whereas Section? presents this in technical terms using matrix formulas.

12.5 Using ML Under MAR

Consider again the model of Fig. 12.2 and the data structure of Fig. 12.3 showing
that there is missing data on y7–y10 for subjects who are not selected. In the Monte
Carlo study of the previous section, model estimation considered subjects in the
selected group who have complete data on y1–y10. Using the same Monte-Carlo
generated data, maximum-likelihood estimation is now applied under the MAR
assumption. MAR is fulfilled because the missingness for y7–y10 is determined by
the variables y1–y6 which are observed with no missingness. Maximum-likelihood
estimation uses all available data, that is, not only subjects in the selected group
who have complete data on y1–y10, but also subjects in the unselected group who
have data on only y1–y6.
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Table 12.1 Results obtained by listwise deletion

Estimates S.E. M.S.E. 95 % % sig

Population Average Std. dev. Average Cover Coeff

g BY

y1 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y2 0.800 0.8451 0.0959 0.0944 0.0112 0.958 1.000

y3 0.700 0.5687 0.0752 0.0740 0.0229 0.546 1.000

y4 0.800 0.3624 0.0773 0.0770 0.1975 0.000 1.000

y5 0.700 0.4458 0.0620 0.0638 0.0685 0.040 1.000

y6 0.600 0.2618 0.0638 0.0657 0.1185 0.004 0.978

s BY

y4 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y5 0.800 0.8385 0.0889 0.0880 0.0094 0.968 1.000

y6 0.700 0.6785 0.0934 0.0868 0.0092 0.920 1.000

f2 BY

y7 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y8 0.800 0.8017 0.0447 0.0454 0.0020 0.940 1.000

y9 0.700 0.7029 0.0428 0.0418 0.0018 0.934 1.000

y10 0.600 0.6007 0.0394 0.0385 0.0016 0.952 1.000

f2 ON

g 0.700 0.5754 0.0745 0.0748 0.0211 0.592 1.000

s 0.800 0.9566 0.1071 0.1053 0.0360 0.738 1.000

g WITH

s 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000

Intercepts

y1 0.000 0.7932 0.0314 0.0311 0.6301 0.000 1.000

y2 0.000 0.6202 0.0266 0.0255 0.3854 0.000 1.000

y3 0.000 0.6137 0.0292 0.0302 0.3774 0.000 1.000

y4 0.000 0.8351 0.0334 0.0338 0.6986 0.000 1.000

y5 0.000 0.6745 0.0257 0.0263 0.4555 0.000 1.000

y6 0.000 0.6356 0.0274 0.0292 0.4047 0.000 1.000

y7 0.000 0.6170 0.0367 0.0363 0.3820 0.000 1.000

y8 0.000 0.4921 0.0278 0.0282 0.2430 0.000 1.000

y9 0.000 0.4305 0.0259 0.0265 0.1860 0.000 1.000

y10 0.000 0.3691 0.0275 0.0249 0.1370 0.000 1.000

Variances

g 1.000 0.3689 0.0546 0.0520 0.4013 0.000 1.000

s 0.400 0.3075 0.0487 0.0481 0.0109 0.492 1.000
(continued)

228 B. Muthén

RRRRRRRRReReReReReRevReReRevReeveevevvevv
isvisvisvisvisis
essseisise
d dddededddddddd
0.

71 0.1050.1

0.0000000

7932 0.03140.0314

0.6202 0.0202 0.

0.61370.6137

0.83510.8351

0 0.6740 0.674

0.

PrPrPrPrPProPrPrProPrrorrroroooooooo
fofofofofoffffff

0

2 0.920.9

0.0000 1.000000 1.0

0.0020 00.0020

18 0.001818 0.0018

0.0385 0.001.0385 0.0

88



The Monte Carlo results for ML are as follows. The likelihood-ratio v2 test
performs well. With 30 degrees of freedom v2 has mean 29.933, variance 61.528,
and 5 % reject proportion 0.050, which are all close to the expected values. The
parameter estimation works very well as shown in Table 12.3. The ML approach of
also using the information on y1–y6 for those not selected produces estimates close
to the true values for not only the y1–y6 part of the model but for the whole model.

As a minor detail, it may be noted that the f2 factor loadings of Table 12.3 have
smaller standard errors than those in Table 12.1 using the selected group only. This
reflects the smaller sample size when using only the selected group.

Table 12.1 (continued)

Estimates S.E. M.S.E. 95 % % sig

Population Average Std. dev. Average Cover Coeff

Residual variances

y1 0.600 0.6003 0.0494 0.0479 0.0024 0.946 1.000

y2 0.400 0.3913 0.0340 0.0329 0.0012 0.942 1.000

y3 0.800 0.7925 0.0394 0.0391 0.0016 0.930 1.000

y4 0.800 0.7838 0.0455 0.0463 0.0023 0.942 1.000

y5 0.400 0.4064 0.0272 0.0270 0.0008 0.950 1.000

y6 0.700 0.6883 0.0364 0.0351 0.0015 0.932 1.000

y7 0.700 0.7003 0.0385 0.0410 0.0015 0.968 1.000

y8 0.400 0.3982 0.0240 0.0243 0.0006 0.948 1.000

y9 0.400 0.3974 0.0233 0.0223 0.0005 0.934 1.000

y10 0.400 0.3991 0.0212 0.0209 0.0005 0.952 1.000

f2 0.254 0.2237 0.0350 0.0358 0.0021 0.858 1.000

Table 12.2 Standardized results obtained by listwise deletion

Estimates S.E. M.S.E. 95 % % sig

Population Average Std. dev. Average Cover Coeff

New/additional parameters

vy2 1.200 0.6512 0.0292 0.0291 0.3021 0.000 1.000

vy5 1.146 0.6930 0.0312 0.0310 0.2062 0.000 1.000

vf2 1.000 0.6230 0.0556 0.0567 0.1452 0.000 1.000

vy8 1.040 0.6228 0.0495 0.0517 0.1765 0.000 1.000

stdf2ong 0.700 0.4396 0.0422 0.0423 0.0696 0.000 1.000

stdf2ons 0.506 0.6664 0.0413 0.0413 0.0274 0.036 1.000

stdlam2 0.800 0.6302 0.0393 0.0388 0.0304 0.006 1.000

stdlam5g 0.654 0.3227 0.0375 0.0384 0.1112 0.000 1.000

stdlam5s 0.473 0.5534 0.0357 0.0362 0.0077 0.388 1.000

stdlam8 0.784 0.8007 0.0256 0.0256 0.0009 0.896 1.000
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Table 12.3 Maximum-likelihood results assuming MAR

Estimates S.E. M.S.E. 95 % % sig

Population Average Std. dev. Average Cover Coeff

g BY

y1 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y2 0.800 0.7983 0.0213 0.0214 0.0005 0.948 1.000

y3 0.700 0.6992 0.0193 0.0199 0.0004 0.952 1.000

y4 0.800 0.7997 0.0262 0.0262 0.0007 0.952 1.000

y5 0.700 0.7011 0.0230 0.0235 0.0005 0.960 1.000

y6 0.600 0.6012 0.0216 0.0217 0.0005 0.948 0.978

s BY

y4 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y5 0.800 0.7981 0.0475 0.0466 0.0023 0.938 1.000

y6 0.700 0.6993 0.0441 0.0425 0.0019 0.950 1.000

f2 BY

y7 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

y8 0.800 0.8004 0.0386 0.0401 0.0015 0.944 1.000

y9 0.700 0.7020 0.0390 0.0375 0.0015 0.926 1.000

y10 0.600 0.5996 0.0356 0.0352 0.0013 0.942 1.000

f2 ON

g 0.700 0.6981 0.0413 0.0449 0.0017 0.976 1.000

s 0.800 0.8011 0.0612 0.0614 0.0037 0.956 1.000

g WITH

s 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000

Intercepts

y1 0.000 0.0001 0.0259 0.0265 0.0007 0.964 0.036

y2 0.000 0.0002 0.0234 0.0228 0.0005 0.952 0.048

y3 0.000 0.0013 0.0203 0.0211 0.0004 0.954 0.046

y4 0.000 0.0000 0.0276 0.0268 0.0008 0.942 0.058

y5 0.000 0.0008 0.0242 0.0240 0.0006 0.946 0.054

y6 0.000 0.0010 0.0210 0.0219 0.0004 0.960 0.040

y7 0.000 0.0054 0.0459 0.0467 0.0021 0.958 0.042

y8 0.000 0.0036 0.0392 0.0407 0.0015 0.956 0.044

y9 0.000 0.0019 0.0379 0.0379 0.0014 0.958 0.042

y10 0.000 0.0029 0.0358 0.0353 0.0013 0.940 0.060

Variances

g 1.000 1.0032 0.0454 0.0457 0.0021 0.954 1.000

s 0.400 0.4013 0.0319 0.0328 0.0010 0.968 1.000
(continued)
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12.6 Pearson-Lawley Selection Formulas

In the regression example there is one selection variable and it is identical to x. In
general, the selection variable need not be the same as x, need not be an observed
variable, and need not be a single variable. The Pearson-Lawley formulas assume
linear, homoscedastic regression of a set of continuous analysis variables on a set of
selection variables. Normal distributions are not assumed. The general Pearson-
Lawley selection formulas can be used for deriving means, variances, and covari-
ances for the full population given values of the selected population and vice versa.

Going from the full to a selected population, the means, variances, and
covariances of the analysis variables in the selected population are obtained from
(1) the means, variances, and covariances of the selection variables in the selected
and full population; (2) the covariances of the analysis and selection variables in the
full population; and (3) the means, variances, and covariances of the analysis
variables in the full population.

Table 12.3 (continued)

Estimates S.E. M.S.E. 95 % % sig

Population Average Std. dev. Average Cover Coeff

Residual variances

y1 0.400 0.3990 0.0213 0.0212 0.0005 0.956 1.000

y2 0.400 0.3992 0.0181 0.0170 0.0003 0.922 1.000

y3 0.400 0.4001 0.0155 0.0157 0.0002 0.948 1.000

y4 0.400 0.3984 0.0225 0.0229 0.0005 0.962 1.000

y5 0.400 0.4007 0.0178 0.0179 0.0003 0.954 1.000

y6 0.400 0.3994 0.0167 0.0162 0.0003 0.950 1.000

y7 0.400 0.4006 0.0262 0.0274 0.0007 0.970 1.000

y8 0.400 0.3981 0.0230 0.0229 0.0005 0.954 1.000

y9 0.400 0.3974 0.0224 0.0214 0.0005 0.940 1.000

y10 0.400 0.3993 0.0208 0.0203 0.0004 0.954 1.000

f2 0.254 0.2518 0.0278 0.0283 0.0008 0.944 1.000

New/additional parameters

vy2 1.040 1.0375 0.0327 0.0328 0.0011 0.964 1.000

vy5 1.146 1.1480 0.0360 0.0363 0.0013 0.952 1.000

vf2 1.000 0.9995 0.0934 0.0977 0.0087 0.958 1.000

vy8 1.040 1.0386 0.0561 0.0587 0.0031 0.962 1.000

stdf2ONg 0.700 0.6995 0.0258 0.0267 0.0007 0.964 1.000

stdf2ONs 0.506 0.5072 0.0336 0.0343 0.0011 0.952 1.000

stdlam2 0.784 0.7839 0.0137 0.0124 0.0002 0.904 1.000

stdlam5 g 0.654 0.6545 0.0156 0.0158 0.0002 0.956 1.000

stdlam5 s 0.473 0.4709 0.0231 0.0245 0.0005 0.970 1.000

stdlam8 0.784 0.7843 0.0189 0.0190 0.0004 0.932 1.000
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Going from a selected to the full population, the means, variances, and
covariances of the analysis variables in the full population are obtained from (1) the
means, variances, and covariances of the selection variables in the selected and full
population; (2) the covariances of the selection and analysis variables in the selected
population; and (3) the means, variances, and covariances of the analysis variables
in the selected population.

12.7 Pearson-Lawley and Factorial Invariance

As pointed out in Meredith (1964), see also Olsson (1978) and Muthén and
Jöreskog (1983), a factor model for a certain population also holds in a selected
subpopulation if selection takes place on variables related to the factors and not
directly related to the factor indicators. This is in line with regression where
selection on x does not change the regression parameters, but selection on y does
(Muthén and Jöreskog 1983).

When selection is related to only the factors, the full population factor loadings,
factor indicator intercepts, and factor indicator residual variances are not affected by
selection but are the same in the selected population. This is a rationale for
assuming scalar measurement invariance in multiple-group modeling. The selection
effect is absorbed into the factor means and the factor covariance matrix (see, e.g.,
Muthén and Jöreskog 1983, p. 367; Muthén et al. 1987, p. 440). Consider, for
example, the case of a gender covariate influencing the factors. In a two-group
analysis based on gender one should therefore expect full measurement invariance.
In contrast, consider the gender covariate influencing factor indicators directly,
where the direct effects imply that the means of the factor indicators vary across
gender not only as a function of the factor mean varying across gender. In this case,
selection on gender implies selection on factor indicators and one should not expect
full measurement invariance. When selection is directly related to the factor indi-
cators, the factor model does not hold in the selected subpopulation but is distorted
as shown in Muthén (1989, p. 83) and illustrated in the Monte Carlo simulation.

For Fig. 12.2 model used in the Monte Carlo study, the factor model for y1–y6 is
distorted because of selection on the factor indicators. The factor model for y7–y10 is
not distorted, however, because the selection is indirect via the factor f2 given that
y1–y6 do not influence y7–y10 directly. The next section discusses an approach that
gives correct maximum-likelihood estimates under this type of selection.

12.8 Predictive Validity of Factors

Structural equation models are useful in predictive validity studies given that factors
playing different roles in the test performance can be isolated and used as predictors
of criterion outcomes. The use of a bi-factor model such as Fig. 12.2 is studied e.g.
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in Gustafsson and Balke (1993), arguing for the value of using both a general and
specific factors. While several previous studies indicate that not much increase in
predictive power is to be gained from using a differentiated set of ability dimen-
sions, as compared to an undifferentiated composite score (see, e.g. Schmidt and
Hunter 1981), Gustafsson and Balke (1993) demonstrate that a bi-factor, orthogonal
factor model may bring out a more differentiated pattern of relations between
predictors and criteria, and particularly so if a latent variable model is used also for
the criterion variables.

Muthén and Hsu (1993) study selection and predictive validity for structural
equation models such as those used in Gustafsson and Balke (1993) One of their
approaches uses factor scores based on the parameters from the factor model for the
predictors estimated from a random sample of the full population. This corresponds
to using all subjects of Fig. 12.3. In the case of a random sample, that is, no
selection, it is known (Tucker 1971) that with factor score estimated by the
regression method, consistent estimates are obtained for the regression of a
dependent variable on the estimated factor scores. Although the factor scores have
biases, the factor covariance bias and the bias in the covariances of the factors and a
dependent variable cancel out in the regression of a dependent variable on the
estimated factor scores. In the current case of selection, Muthén and Hsu (1993,
pp. 261–262) use Pearson-Lawley selection formulas to show that when a sum of
the factor indicators is used as a selection variable, the regression of a dependent
variable on the estimated factor scores in the selected group also gives unbiased
structural coefficients.

12.9 Selection Based on Factors: Predictive Validity
of Admission Tests in the U.S. Military

Given a model such as Fig. 12.2 it is of interest to select subjects based on the
factor values instead of a sum of the factor indicators. Muthén and Gustafsson
(1994) compare selection based on factors with the conventional selection based on
sums of factor indicators used for admission into the U.S. military. Hands-on job
performance for nine U.S. army jobs is related to the standard set of ten ASVAB
tests as well as twelve experimental tests added to the ASVAB. A bi-factor model is
considered for the total number of 22 tests.

A first complication is that it is not known who among the applicant sample was
selected and who was not. This means that the data are not structured as in Fig. 12.3
because information on y1–y6 for an unselected group is not available. A second
complication is that data for the 22 tests are not available for the unselected,
applicant group. Only the ten ASVAB tests are available for the applicant group
and the twelve experimental tests are only available for the selected, matriculant
group. These two complications are resolved by using Pearson-Lawley adjustments
in combination with the factor score approach as follows.
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As a first step, Pearson-Lawley adjustment is made to the 22 � 22 sample
covariance matrix for the nine jobs in the selected, matriculant group to obtain an
estimate of the covariance matrix for the unselected, applicant group. In this
adjustment the ten ASVAB tests are used as selection variables given that ASVAB
is the standard selection instrument into the military. A 10 � 10 ASVAB covari-
ance matrix is used for a reference group of 650,278 applicants. A bi-factor factor
model is then applied to the 22 � 22 adjusted covariance matrix and estimated
factor scores computed for the selected group in the nine army jobs. The criterion
variable of hands-on job performance is then regressed on the estimated factor
scores to give unbiased regression estimates in line with Muthén and Hsu (1993).
Hsu (1995) shows that standard errors for these regression estimates are well
approximated at moderate sample sizes even though the factor score estimation
assumes no sampling error in the factor model parameters. Muthén and Gustafsson
(1994) show that different profiles of selected subjects are obtained using the
factor-based selection versus using the conventional selection. They also argue that
the assessment of incremental predictive validity of new tests is better done using a
factor model.

12.10 Swedish Military Enlistment Example

A special application of the maximum-likelihood approach under MAR is used for
Swedish military enlistment data in Muthén et al. (1994). Enlistment data collection
includes: a cognitive test battery; a psychologist’s rating of ability to handle
strenuous situations; education; medical, and physical tests; and a psychologist’s
rating of the suitability for being an officer. Performance is measured as two
supervisor ratings at the end of the training. Here, the missing data structure features
three missing data patterns. Only the individuals scoring in the top 60–70 % of the
cognitive test are evaluated for their suitability for being an officer, and performance
is only measured for individuals selected as officers. Selection as officer is deter-
mined by several other factors than those determining the missing data patterns.

Muthén et al. (1994) use data on the performance of a select group of officers in
charge of large units. Because individuals are not followed longitudinally the data
come from two sources, a criterion sample of 1208 graduating officers and an
enlistment sample. The enlistment sample is created as a random subsample of
individuals known to have been selected as officers from the three years that the
criterion sample officers were most likely tested. A sample size corresponding to the
known selection ratio is chosen so that the maximum-likelihood procedure has the
proper ratio of selected and non-selected individuals. A latent variable model is
formulated with three latent variable constructs for the four cognitive tests, one
construct for the psychologist’s ratings, and one construct for the supervisor ratings.
In a preliminary analysis, logistic regression is carried out to study predictors of
being selected as an officer. In addition to the variables listed above, the location of
the enlistment office and the time between the enlistment testing and service are
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found important and are included in the final latent variable model to avoid
selection biases. A useful finding for modifying the selection procedure concerns
the time between the enlistment testing and service. While increasing time has a
negative effect on selection, it has a positive effect on performance as an officer,
presumably due to an age advantage.

12.11 Conclusions

This chapter shows how analysis of data on selective subgroups can be used to draw
inference to the full, unselected group. This uses Pearson-Lawley selection for-
mulas which apply to not only regression analysis but also structural equation
modeling. The chapter shows the connection with maximum-likelihood estimation
with missing data assuming MAR versus using listwise deletion. Applications are
discussed of selection into the military using factor analysis models for the variables
used in the selection.
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