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Abstract

To date, cross-lagged panel modeling has been studied only for continuous outcomes.
This paper presents methods that are suitable also when there are binary and ordinal
outcomes. Modeling, testing, identification, and estimation are discussed. A two-part
ordinal model is proposed for ordinal variables with strong floor effects often seen in
applications. An example considers the interaction between stress and alcohol use in
an alcohol treatment study. Extensions to multiple-group analysis and modeling in the
presence of trends are discussed.

Keywords: panel data; random intercept; RI-CLPM; stress and drinking; alcohol
treatment study
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1 Introduction

The cross-lagged panel model (CLPM) and its random intercept counterpart RI-CLPM
are popular models for investigating longitudinal relationships between two or more
variables where the variables at each time point are regressed on themselves and each
other at previous time points. For an overview and a discussion of the merits of CLPM
and RI-CLPM, see, e.g., Hamaker (2023). To date, however, the literature covers only
continuous variables. This paper presents methods that are suitable also when there
are binary and ordinal variables.

The binary and ordinal case needs special considerations in terms of modeling and
estimation. Maximum likelihood estimation is generally not feasible but Bayesian and
weighted least squares methods can be used. The paper demonstrates analysis methods
that work well in practice for both binary and ordinal variables as well as combinations
of binary, ordinal, and continuous variables.

Section 2 discusses modeling and testing. Section 3 treats identification, and es-
timation matters for the case of a binary variable. Section 4 presents simulations for
the binary univariate case as well as the binary bivariate RI-CLPM case. Section 5
discusses applications of analyses with a binary variable using alcohol data from a
large randomized treatment study. Section 6 considers ordinal variables and presents
a two-part ordinal model suitable for variables that have strong floor effects. Section
7 continues the alcohol treatment example using an ordinal alcohol risk variable. Sec-
tion 8 presents extensions to the analysis of multiple groups as well as models that
allow trends. Section 9 concludes. Mplus scripts for key analyses are given in the
Supplementary Material.

2 Binary, univariate outcome: Modeling and

testing concepts

This section gives an introduction to modeling and testing concepts for binary and
ordinal variables. Readers who are unfamiliar with categorical variable methods are
recommended to study books such as Agresti (2012, 2018), Long (1997), and de Ayala
(2022).1 The case of a binary outcome is considered as a starting point. For this
case it is instructive to first consider basics of Item Response Theory (IRT) and then
relate that to factor analysis with binary variables. Following the description of these
techniques, which are suitable for cross-sectional data, modeling of longitudinal data
central to this paper is discussed. The section ends with a discussion of model testing.

2.1 IRT and factor analysis

The left part of Figure 1 shows a model with a latent variable f influencing five variables
y1-y5. With continuous observed variables y, the arrows represent linear regressions
with slopes referred to as factor loadings. For binary observed variables, the arrows
represent non-linear regressions as shown in the right part of the figure. The regressions
express the probability of yj = 1 as opposed to 0 as a function of the value of the

1Because Mplus is used in this paper, Mplus Short Course Topic 2 posted at
https://www.statmodel.com/topic2.shtml is also informative.

3



Figure 1: Model with one latent variable represented as a model diagram (a circle represents
a latent variable and a square represents an observed variables) and as probability curves
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latent variable. For example, the variables may represent incorrect/correct responses
to five different math test items where the latent variable is referred to as ability or
achievement. As the ability increases, the probability of answering the item correctly
increases. For a given ability value, the five regression curves show that the right-most
curve represents the most difficult item in that the probability of answering it correctly
is the lowest. The curves also differ in how well they discriminate between ability values
where steeper curves represent larger probability differences between lower and higher
ability values. The parameterization of difficulty and discrimination is used in Item
Response Theory (IRT). For an introduction to IRT, see, e.g., de Ayala (2022). IRT
uses logistic or normal (probit) distribution functions to describe the curves of Figure 1,

P (y = 1|f) = 1/(1 + e−a(f−b)), (1)

P (y = 1|f) = Φ[a(f − b)], (2)

where a and b are the discrimination and difficulty parameters for a certain variable
and Φ is the standard normal distribution function used for probit. The variables are
assumed to be independent conditioned on f. Here, f has mean 0 and variance 1. The
logistic and probit curves are very similar.

Figure 2 shows an equivalent formulation of the IRT model which is akin to factor
analysis using continuous outcomes. Factor analysis of binary and ordinal variables (see
Christofferson, 1975; Muthén, 1978) considers a continuous latent response variable y*
underlying each binary observed variable y, where y = 0 or 1 is determined by exceeding
a threshold τ or not,

y =

{
1, if y∗ > τ

0, if y∗ ≤ τ,
(3)

where the latent response variable y∗ follows a linear regression on the factor f ,

y∗ = λ f + ϵ, (4)

where ϵ is a residual with mean zero and variance θ. The θ parameter is not available in
IRT. Unless multiple groups or multiple timepoints are considered, θ is not identified
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Figure 2: 1-factor model using a latent response variable representation
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but is fixed at 1, or alternatively, the y* variance is fixed at 1.2 The variables are
assumed to be independent conditioned on f. The factor analysis parameterization
uses thresholds and factor loadings. In Figure 2, the arrows between the y∗ circles
and the y boxes refer to the threshold relationship of (3) while the arrows between
f and y∗ refer to the factor loadings of (4). The short arrows at the bottom of the
y∗ circles refer to the ϵ residuals. Continuing the math test example, the y* value
for a certain variable as induced by the factor may be just above the threshold or far
above it, thereby capturing the idea that the skill needed to solve the item correctly
could be measured in a finer gradation. The threshold formulation is also useful for
the generalization to ordinal outcomes where a variable has more than one threshold.

IRT and binary factor analysis are equivalent models which can be seen as follows.
Assuming a normally distributed residual ϵ, the model of (3) and (4) implies a probit
regression of y on f as in (2),

P (y = 1|f) = P (y∗ > τ |f), (5)

= 1− P (y∗ ≤ τ |f), (6)

= 1− Φ[(τ − λf)/
√
θ], (7)

= Φ[(−τ + λf)/
√
θ], (8)

where λf is the mean of y∗ conditioned on f and the last equality of 1−Φ[x] = Φ[−x]
is due to the symmetry of the distribution function. The translation between the two
parameterizations of a, b and τ , λ is

a = λ/
√
θ, (9)

b = τ/λ, (10)

where θ is fixed at 1. When both ϵ and f in (4) are normally distributed, y∗ is normal
because a sum of two normal distributions is normal. For the factor model, multivariate
normality for the set of y* variables can be specified together with uncorrelated (or
independent) residuals ϵ. Specifying a logistic instead of a normal distribution for
the ϵ residual in (4) results in a logistic regression of y on f . Modeling with the
logistic distribution, however, does not generalize to the models considered in this

2This correspond to the Theta versus Delta parameterizations in Mplus.
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Figure 3: Ordinal model using a latent response variable representation
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paper because there is not a multivariate version of the logistic distribution with the
flexibility that the multivariate normal distribution offers. For technical details with
further IRT and factor models, see Muthén and Asparouhov (2016) and Asparouhov
and Muthén (2020a). The equivalence between the IRT formulation of (1) and (2) and
the factor analysis formulation of (3) and (4) is well known (see, e.g., Muthén, 1983
with formal proofs in Takane & de Leeuw, 1987).

Assuming a normal distribution for the factor f together with multivariate normal
residuals ϵ, not only univariate normal residuals ϵ, is equivalent to assuming a multi-
variate normal distribution for the y* variables. The correlations between the normal
y* variables are referred to as tetrachoric when the observed variables are binary. The
y* concept also covers the ordinal case of Figure 3. This shows an example of two
5-category ordinal variables represented by two y* variables, each of which has four
thresholds. The thresholds are not equally spaced over the y* distribution, causing
strong ceiling effects. There is a linear relationship between the y* variables as fol-
lows from normality which motivates the use of correlations among the y* variables
(in the ordinal case, the correlations are referred to as polychoric and polyserial if one
variable is continuous). The regular (Pearson) correlation between the y variables is
quite different than the correlation between the y* variables.3 For example, a factor
model that holds for a set of y* correlations may not hold for the corresponding set of
y correlations. The representation drawing on multivariate normal y* variables behind
binary and ordinal variables will be referred to as a multivariate probit model.

2.2 Longitudinal modeling

So far, the observed variables in Figure 1 and Figure 2 have been viewed as different
variables, that is, corresponding to a cross-sectional analysis. In that case, the focus is
on the relationships between f and the y’s. This paper, however, considers longitudinal

3See Mplus Short Course Topic 2 posted at
https://www.statmodel.com/topic2.shtml, slides 133-139.
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Figure 4: Random intercept model with auto-regressive residuals (iy represents the random
intercept for y)
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analysis where the same variable is measured at several time points. In the longitudinal
case, the factor of Figure 2 corresponds to a random intercept where the factor loadings
are all fixed at 1. The strength of covariance among the y* variables at different time
points is constant and captured by the random intercept variance. With a trend, one
or more random slope latent variables can be added.

In longitudinal modeling for continuous outcomes it is well-established that correla-
tion among the residuals needs to be allowed for in order for the model to fit well (see,
e.g., Chi & Reinsel, 1989). The random intercept alone cannot capture all the corre-
lation among the y*’s and thereby not among the y’s. In the earlier discussion of IRT
and factor analysis, the model was specified for univariate outcomes with the added
specification of independence of the outcomes conditioned on the latent variable. In
the longitudinal modeling with auto-correlated residuals, this is not sufficient because
the y outcomes are no longer independent conditioned on the latent variable f. In-
stead, the multivariate probit model specification is needed. This makes the modeling,
testing and estimation more complex. Related longitudinal modeling was presented
in Hedeker and Gibbons (1994), Muthén (1996), and Hedeker and Mermelstein (2000)
but not with auto-regressions among the residuals which are key in the current setting.
Asparouhov and Muthén (2020b) included auto-regressive residuals but focused on the
different setting of intensive longitudinal data. The current paper is novel in that the
modeling includes auto-regression of residuals applied to the framework of RI-CLPM.

Figure 4 shows a model with linear auto-regressions of lag 1 for the y* residuals. In
this way, the y* variables are related to each other, that is, there is a correlation between
them beyond what is predicted by their common dependence on the random intercept
iy. This is different from Figure 2 which does not consider relationships among the
y*’s. The statistical representation of Figure 4 is given in Section 3. Figure 4 is a
categorical counterpart to the univariate (single process) part of a continuous-outcome
RI-CLPM (Hamaker et al., 2015). The relationships among the residuals capture the
dynamic within part of the model. Cross-lagged effects between two or more processes
refer to the relationships between the residuals of these processes. The contribution
of this paper is to show the applicability of the multivariate probit approach to the
RI-CLPM for binary and ordinal outcomes.
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2.3 Testing

The assumption of underlying y* normality of the multivariate probit model for Fig-
ure 4 should be tested. The model misspecification sensitivity to the normality as-
sumption for the y∗ variables has been investigated in a series of SEM articles. For
example, Flora and Curran (2004), Rhemtulla et al. (2012), and Li (2016) found little
sensitivity. Foldnes and Gronneberg (2022) criticized these investigations and found
more sensitivity using new types of underlying non-normal distributions. It is unclear,
however, how realistic these non-normal distributions are. Furthermore, they found
that alternative approaches did not perform better, such as ignoring the categorical
nature of the variables and treating them as continuous. It is clear, however, that the
assumption of multivariate normality for the y* variables does not necessarily fit every
data set and it is important to test the assumption. Following is a discussion of the
testing topic. For the ordinal case, normality may be frequently rejected. Because of
this, extensions of the model for the ordinal case to achieve good model fit are presented
in Section 6.1.

Model fit assessment for categorical outcomes can be done in several different ways.
One approach is analogous to what is used in structural equation modeling, where
fit to covariances or correlations is considered. For the multivariate probit model,
this amounts to fit of correlations among the latent response variables y* underlying
each observed categorical y variable. This was studied in Muthén (1983, 1984) and
Muthén et al. (1997) using chi-square testing based on a weighed least-squares esti-
mator (WLSMV) for a multivariate probit model. The Muthén et al. (1997) WLSMV
chi-square works well when the number of variables is not large and the sample size is
not small which makes it particularly suitable for cross-lagged panel modeling. Consid-
ering the weighted least-squares chi-square test of fit, Foldnes and Gronneberg (2022,
p. 562) found that it was inflated when normality does not hold, thereby providing a
conservative testing approach. Foldnes and Gronneberg (2022) also studied a bootstrap
testing procedure based on generating data from the estimated correlation matrix for
the y* variables. Checking of model fit based on chi-square for a multivariate probit
model is also possible with Bayesian estimation as discussed in Asparouhov and Muthén
(2021a, b) using posterior predictive checking that produces a posterior predictive p-
value (PPP). Using any fit statistic, the general posterior predictive checking approach
is to compute the fit statistic for the observed data, generate a fit statistic distribution
based on generated data from the estimated model, and find the proportion of cases
where the latter is larger than the former. Based on the same overall chi-square as
used with WLSMV, the Bayes approach, however, has low power for binary outcomes
and is less powerful than the WLSMV chi-square test (Asparouhov & Muthén, 2021a).
The Bayes approach is more powerful for ordinal variables.

A second approach considers the fit to the data in the form of response patterns,
that is, a frequency table for all variables. A model may fit the y* correlations well
but not the frequency table. Even a just-identified y* model that includes all possible
correlations may not fit the frequency table because the assumption of underlying
normality does not hold. With categorical variables, the model can be tested against
data using the standard Pearson and likelihood-ratio chi-square frequency table tests.
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Summing over the cells of the table, these two tests are expressed as:

Pearson :
∑
j

(oj − ej)
2/ej (11)

Likelihood ratio : 2
∑
j

oj log(oj/ej) (12)

Such testing was discussed in Muthén (1993). An example was given with rejection of
underlying normality due misfit for only two out of 49 cells in the bivariate frequency
table. It was conjectured that this was due to anomalous response behavior and that
the normal y* model presented a smoothed version of the data.

In the multivariate case, there are, however, typically too many frequency table
cells with many cells having estimated frequencies close to zero, invalidating the tests.
For example, with 8 binary variables there are 28 = 256 possible response patterns,
where many patterns are often not observed (zero cells in the frequency table) leading
to the two tests disagreeing strongly and becoming useless. A practical approach is
to consider fit to the most frequent response patterns, e.g., the twenty most frequent.
There are, however, alternative frequency table checks where the tables are collapsed
into univariate and bivariate tables which ensures higher frequencies. In particular,
bivariate frequency checking is a useful way to find model misspecification. Asparouhov
and Muthén (2022) presents significance testing of standardized residuals for both
response patterns and bivariate frequency tables.4

This paper will do model testing using a combination of chi-square testing using
WLSMV estimation, Bayes PPP testing, and using standardized residuals for response
patterns, uni- and bi-variate frequency tables. Not all of these test can be made in a
given situation but depend on which estimators can be used for the different model
types.

3 Binary univariate case: Identification and es-

timation

Consider the binary random intercept probit model shown in Figure 5 for T = 5. Using
a standard statistical notation for an intercept, α is the same as the random intercept
called iy in Figure 4. The model can be expressed as follows for individual i and
time point t. For the y∗t continuous latent response variable at time t with threshold
parameter τt, y

∗
t > τt implies yt = 1 while otherwise yt = 0. The model specifies the

linear relations

y∗it = αi + ϵit, (13)

ϵit = βt ϵit−1 + ζit; t = 2, . . . , T, (14)

ϵi1 = ζi1, (15)

where αi ∼ N(0, ψ) represents the random intercept, ϵit represents the residual for
y∗t , βt represents the auto-regression, and ζt ∼ N(0, θt) are the residuals in the auto-
regressions. This results in multivariate normal y∗ variables, that is, it is a multivariate
probit model.

4In Mplus, TECH10 for WLSMV and Bayes give standardized residuals for response patterns, uni- and
bi-variate frequency tables, and Bayes PPP for Pearson fit to uni- and bi-variate tables.
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Figure 5: Random intercept model with auto-regressive residuals
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3.1 Identification

A major distinction between this model and the corresponding model for continuous
outcomes is that the variances for the ζ residuals are not all identified. This can be
portrayed as the loss of information due to not observing the y* variables directly but
only in a discretized fashion. For a binary variable, the mean π and variance π(1 −
π) are mathematically related so that the sample mean and variance do not provide
information about two separate parameters as in the continuous case. A maximum
of T − 1 V (ζit) variances can be identified as will be discussed below. Typically,
however, it is difficult to estimate T − 1 variances without incurring large standard
errors for model parameters. Estimation faces an empirical identification issue where
the number of identifiable variances depends on the data in terms of correlations across
time, number of time points, and sample size. Fixing all residual variances at 1 is often
reasonable as the default. This is also the standard in maximum-likelihood estimation
of growth models for ordinal outcomes when there is no residual correlation (see, e.g.,
Hedeker & Gibbons, 1994). A first step to relax this default model would be to free
the first residual variance which may be the largest, but in practice even this variance
may obtain a large standard error with no improvement in model fit. This has been
observed in the data sets encountered so far.

Identification issues for the binary random intercept model with auto-regressive
residual are as follows. Consider first the impact of random intercept variance and
auto-regression on the y* correlations over time. Figure 6 shows four panels which
differ by the magnitude of the random intercept variance. Within each panel four
curves are shown differing by the magnitude of auto-regression. The curves show the
correlation between y* at t = 1 and y* at t = 2, 3, . . . T for T = 10. The curves are
computed by the formula Corr(y∗1, y

∗
t ) = ψ+βt−1(1−ψ) where ψ is the random intercept

variance, β is the constant auto-regression among the residuals, and y* variances are
all 1. Due to the unit y* variances, ψ is the same as the R-square of y* explained
by the random intercept. The formula shows that as t increases, βt−1 decreases due
to |β| < 1. This means that as t increases, the second term on the right-hand side
of the formula decreases and the correlation decreases down towards the asymptote of
ψ, the random intercept variance. The larger ψ is, the higher the asymptote. Also,
the higher the auto-regression, the slower the decline in correlations over time. For
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instance, panel (c) of Figure 6 shows the case of random intercept variance 0.5 where
with auto-regression of 0.25, the correlation between the first two time points is a little
above 0.6 and declines to the asymptote of 0.5 at approximately t = 4.

While the threshold parameters are trivially identified in terms of the proportion
y=1 for the outcomes, the key model parameters ψ, βt, and residual variances θt need
to be identified in terms of correlations among the y* variables. Figure 6 suggests how
this identification is accomplished. This can be viewed as choosing the estimates of
the ψ, βt, θt parameters to fit the curve of the sample correlations at different time
distances.

Figure 6: RI and AR1 impact on y* correlations across time (T=10)

(a) RI variance (R2) = 0.00 (b) RI variance (R2) = 0.25

(c) RI variance (R2) = 0.50 (d) RI variance (R2) = 0.75

Muthén and Asparouhov (2002), see also Muthén (1996), showed that growth mod-
eling with categorical outcomes and no auto-correlated residuals can identify T − 1
residual variances in addition to the random effect variances (a simulation with cor-
related residuals was presented in Muthén, 1996). Random intercept modeling is a
special case of such modeling. A growth model for binary outcomes needs T ≥ 4 while
the random intercept model needs T ≥ 3. Figure 6 (c) shows that in the case of
random intercept variance ψ = 0.5 and auto-regression 0.25, the auto-regression itself
gives zero correlation contribution at t ≈ 4, that is, a time distance of at least 3. Three
time points spaced at least 3 time points apart would therefore have no auto correla-
tion, leading to the identification of ψ and T −1 θt’s based on Muthén and Asparouhov
(2002).

The actual identification expressions can be presented as follows. Consider again
the Figure 6 (c) case of T = 10 with an auto-regression of 0.25 so that the auto-
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regression itself gives zero contribution at t ≈ 4. The correlations over longer time
distances are solely due to the random intercept variance ψ. This implies that ψ is
known (identified), in this case as 0.5. Consider the correlation between y∗a and y∗b for
timepoints a and b,

Corr (y∗a, y
∗
b ) = ψ/(

√
ψ + θa

√
ψ + θb). (16)

With ψ known (identified) and fixing the residual variance θ1 to 1, (16) with a = 1
shows that correlations between time 1 and later timepoints identify the remaining
T − 1 θt’s when considering the correlations for longer time distances where the auto-
regressive contributions are zero.

Consider again the example of the auto-regressive contribution to the correlation
being zero for t ≥ 4, that is, at a time distance of at least 3. With ψ known (identified)
and θ1 = 1, the correlation between t = 1 and t = 4 identifies θ4, the correlation
between t = 1 and t = 5 identifies θ5, etc. up to the correlation between t = 1 and
t = 10 identifying θ10. In all cases, the time distance is at least 3. It remains to identify
θ2 and θ3 for which the time distance is less than 3. But knowing for instance θ10 as
just stated, (16) shows that with a = 2, b = 10, the correlation between t = 2 and
t = 10 identifies θ2 and that with a = 3, b = 10, the correlation between t = 3 and
t = 10 identifies θ3. The T-1 auto-regression parameters of β are then identified from
among the remaining correlations.

3.2 Estimation

Estimation of the univariate random intercept probit model may be carried out by
maximum likelihood (ML), weighted least-squares (WLSMV), and Bayes. All three
estimators are available in Mplus (Muthén & Muthén, 1998-2017). The ML estimator,
however, needs to use numerical integration over the T+1 latent variables and is there-
fore not feasible for a typical number of time points due to the number of quadrature
points increasing exponentially with T resulting in too time consuming computations
and loss of numerical precision. WLSMV (Muthén et al., 1997) is a fast estimator
not needing numerical integration and handling the multivariate probit model also for
larger T. It can give information about the empirical identification status in that it
presents the condition number of the estimated information matrix.5 The WLSMV es-
timation uses a convenient residual specification where the residuals can be referred to
directly as latent variables; see Asparouhov and Muthén (2023).6 This means that the
residuals can be regressed on each other as is needed for the auto regressions and for
the cross-lagged regressions in the bivariate case.7 WLSMV is, however, disadvantaged
because it does not handle MAR missingness like the full-information ML and Bayes
estimators. The Bayes estimator combines a practical approach with full-information
estimation. The Bayes approach to be used in the application sections handles the
multivariate probit model using an efficient algorithm (Asparouhov & Muthén, 2020b)
together with the residual specification (see Asparouhov & Muthén, 2023). In some
cases, non-symmetric confidence/credibility intervals are needed. With Bayes, this is

5In Mplus, this is the ratio of smallest to largest eigenvalue of the estimated information matrix.
6This is the hat notation in Mplus. The Theta parameterization is used.
7In contrast, the weighted least squares estimation in Muthén (1983, 1984, 1996) could estimate only

correlations among residuals.
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Table 1: Number of parameters, sample statistics, and degrees of freedom for the binary
outcome univariate random effect probit model with fixed residual variances

T # parameters # sample statistics DF

3 3+1+2=6 6 0
4 4+1+3=8 10 2
5 5+1+4=10 15 5
10 10+1+9=20 55 35

obtained automatically while with WLSMV, bootstrapping is needed. Because of the
arbitrary scale of the y∗ latent response variables, it is useful to present estimates in a
standardized metric where the y∗ variances are 1.

Table 1 shows the number of parameters τt, ψ, βt , the number of sample statistics,
and degrees of freedom for the univariate random effect probit model with fixed residual
variances θt. Here, degrees of freedom refers to the number of restrictions imposed on
the sample statistics of univariate proportions and correlations. This is the degrees of
freedom of the chi-square test of fit for the weighted least-squares estimator (WLSMV).
T = 3 is the minimum number of time points required for identifying the model. It
should be noted, however, that T = 3 is a bare minimum for this type of analysis with
categorical outcomes because this generally provides little information to distinguish
between correlation due to the random intercept versus due to autocorrelation. More
time points are strongly recommended.

3.3 Binary bivariate case: RI-CLPM

The generalization of the binary univariate outcome model to the bivariate case is
shown in Figure 7. This is the binary counterpart to RI-CLPM (Hamaker et al., 2015).
The bivariate model offers no further identification complications beyond the univariate
case. Each univariate part follows the identification rules just discussed. The cross-
lagged parameters are identified in terms of the correlations between the y* and z*
variables. Estimation can be performed by Bayes or WLSMV.

4 Binary outcome simulations: Univariate and

bivariate cases

Simulations for the case of a univariate binary outcome are shown in Table 2 and Table 3
for the case of T = 5. Population values are based on analyses with suicidal ideation and
substance abuse data (Ialongo, 2022). Data are generated with time-varying thresholds
representing binary outcomes of low prevalence with P(y1 = 1) ranging from 0.12 to
0.20. The low-prevalence binary case represents lower-end categorical information, so
that better performance can be expected for binary variables with more even split and

13



Figure 7: Bivariate RI-CLPM for categorical outcomes
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for ordinal variables. Time-varying thresholds and time-varying auto-regressions are
specified in the analyses. Residual variances are fixed at 1. For simplicity, there is no
missing data. 500 replications are carried out using both WLSMV and Bayes estima-
tion. With Bayes, 2,000 draws (iterations) are recorded, having skipped every 10th
iteration for better standard error estimation due to lower autocorrelation between
consecutive parameter values in the iterations. WLSMV uses first- and second-order
information from univariate proportions and correlations whereas Bayes uses full infor-
mation. With binary outcomes and T = 5, WLSMV uses information from 15 sample
statistics (5 univariate proportions and 10 tetrachoric correlations). The 25 = 32 re-
sponse patterns represent the potential raw data that is used by the full-information
estimation by Bayes. This means that Bayes uses about twice as many sample statis-
tics as WLSMV which is expected to reduce the variability of the estimates. Many of
the response pattern frequencies are, however, low which implies that WLSMV uses
key parts of the available information so that the reduction in variability by Bayes may
not be large.

WLSMV results in Table 2 show that at N = 500, somewhat biased parameter esti-
mates and standard errors are obtained. In particular, the first two auto regressions are
underestimated and the random intercept variance is overestimated with its standard
error underestimated. These biases may result in inclusion of a random intercept when
it is not needed. The model has 5 degrees of freedom. The WLS chi-square testing re-
sults are good with a mean of 4.86 and a 5% reject proportions of 0.042. For N = 1000,
all results are acceptable. Bayes results in Table 3 show a similar picture. For N = 500,
the Bayes standard errors perform better than WLSMV and are on the whole smaller
as expected by a full-information estimator as compared to the limited-information
estimation by WLSMV.
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Table 2: Monte Carlo results for univariate binary outcome for T = 5 using WLSMV

ESTIMATE S. E. 95% % Sig
Population Average Std. Dev. Average M. S. E. Cover Coeff

N = 500

Z5ˆ ON
Z4ˆ 0.122 0.0890 0.1762 0.1588 0.0320 0.924 0.118

Z6ˆ ON
Z5ˆ 0.089 0.0754 0.1795 0.1715 0.0323 0.938 0.078

Z7ˆ ON
Z6ˆ 0.166 0.1556 0.1940 0.1750 0.0377 0.936 0.162

Z8ˆ ON
Z7ˆ 0.126 0.1245 0.1788 0.1723 0.0319 0.944 0.138

Thresholds
Z4$1 1.282 1.3066 0.1311 0.1212 0.0177 0.932 1.000
Z5$1 1.438 1.4659 0.1341 0.1269 0.0187 0.936 1.000
Z6$1 1.663 1.7010 0.1522 0.1363 0.0245 0.926 1.000
Z7$1 1.786 1.8233 0.1515 0.1412 0.0243 0.930 1.000
Z8$1 1.879 1.9205 0.1510 0.1466 0.0245 0.946 1.000

Variances
IZ 1.536 1.6280 0.3284 0.2934 0.1161 0.920 1.000

N = 1000

Z5ˆ ON
Z4ˆ 0.122 0.1060 0.1136 0.1104 0.0131 0.942 0.166

Z6ˆ ON
Z5ˆ 0.089 0.0834 0.1236 0.1214 0.0153 0.944 0.098

Z7ˆ ON
Z6ˆ 0.166 0.1582 0.1256 0.1239 0.0158 0.954 0.264

Z8ˆ ON
Z7ˆ 0.126 0.1271 0.1203 0.1219 0.0145 0.956 0.198

Thresholds
Z4$1 1.282 1.2992 0.0846 0.0848 0.0074 0.960 1.000
Z5$1 1.438 1.4551 0.0872 0.0882 0.0079 0.956 1.000
Z6$1 1.663 1.6882 0.1012 0.0946 0.0108 0.922 1.000
Z7$1 1.786 1.8074 0.0969 0.0977 0.0098 0.948 1.000
Z8$1 1.879 1.9037 0.1006 0.1014 0.0107 0.960 1.000

Variances
IZ 1.536 1.5953 0.2059 0.2018 0.0458 0.956 1.000
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Table 3: Monte Carlo results for univariate binary outcome for T = 5 using Bayes

ESTIMATE S. E. 95% % Sig
Population Average Std. Dev. Average M. S. E. Cover Coeff

N = 500

Z5ˆ ON
Z4ˆ 0.122 0.0967 0.1546 0.1575 0.0245 0.956 0.102

Z6ˆ ON
Z5ˆ 0.089 0.0669 0.1571 0.1671 0.0251 0.960 0.062

Z7ˆ ON
Z6ˆ 0.166 0.1571 0.1749 0.1717 0.0306 0.936 0.158

Z8ˆ ON
Z7ˆ 0.126 0.1347 0.1760 0.1731 0.0310 0.938 0.156

Thresholds
Z4$1 1.282 1.3044 0.1190 0.1195 0.0146 0.942 1.000
Z5$1 1.438 1.4800 0.1266 0.1259 0.0177 0.932 1.000
Z6$1 1.663 1.7088 0.1361 0.1345 0.0206 0.950 1.000
Z7$1 1.786 1.8283 0.1409 0.1393 0.0216 0.938 1.000
Z8$1 1.879 1.9298 0.1381 0.1457 0.0217 0.952 1.000

Variances
IZ 1.536 1.6598 0.2836 0.2962 0.0956 0.940 1.000

N = 1000

Z5ˆ ON
Z4ˆ 0.122 0.1072 0.1101 0.1091 0.0123 0.946 0.172

Z6ˆ ON
Z5ˆ 0.089 0.0841 0.1130 0.1167 0.0128 0.954 0.098

Z7ˆ ON
Z6ˆ 0.166 0.1585 0.1278 0.1206 0.0164 0.936 0.288

Z8ˆ ON
Z7ˆ 0.126 0.1307 0.1271 0.1204 0.0161 0.928 0.216

Thresholds
Z4$1 1.282 1.2940 0.0866 0.0833 0.0076 0.952 1.000
Z5$1 1.438 1.4598 0.0869 0.0869 0.0080 0.954 1.000
Z6$1 1.663 1.6874 0.0924 0.0928 0.0091 0.950 1.000
Z7$1 1.786 1.8067 0.0947 0.0960 0.0094 0.946 1.000
Z8$1 1.879 1.9037 0.0940 0.0998 0.0094 0.952 1.000

Variances
IZ 1.536 1.5962 0.1844 0.1986 0.0375 0.944 1.000
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Simulations for the bivariate binary outcome case of RI-CLPM with T=5 are shown
in Table 4 for the WLSMV estimator and in Table 5 for the Bayes estimator. The
population parameter values are again chosen from the Ialongo (2022) study with one
variable having the same univariate parameters as those of the univariate simulation
and the other with similar values. Time-varying thresholds and auto-regressions are
again specified in the analyses. The cross-lagged effects are specified as time varying.
For simplicity, there is no missing data. With Bayes, 5,000 draws (iterations) are
recorded, having skipped every 10th iteration for better standard error estimation.
500 replications are carried out. With two binary outcomes and T = 5, WLSMV uses
information from 55 sample statistics (10 univariate proportions and 45 tetrachoric
correlations). The 210 = 1024 response patterns represent the potential raw data that
is used by the full-information estimation by Bayes. This means that Bayes uses about
20 times as many sample statistics as WLSMV and this is expected to make important
reduction in the variability of the estimates. The tables show results for only the new
parameters of cross-lagged effects.

For WLSMV, N=500 is clearly insufficient as is seen in the parameter estimate
bias and standard error bias. N=1000 shows an improvement and N=2000 shows
acceptable results. With N=2000, the power to detect the cross-lagged effect of Z7ˆ
ON Y6ˆ is estimated as 0.858 (see the last column). The model has 34 parameters and
21 degrees of freedom. The WLSMV chi-square testing of model fit is performing well
with chi-square mean and 5% rejection proportions for N=1000/N=2000 of 20.3/20.5
and 0.05/0.04.

For Bayes, the results are acceptable already at N=500 and excellent at N=1000.
For N=2000, the power to detect the Z7ˆ ON Y6ˆ effect is estimated as 0.944. As
expected, Bayes has lower variability in the estimates than WLSMV. The advantage of
the full-information Bayes estimator versus the limited-information WLSMV estimator
is clear from these results.

5 Binary outcome example

Data from the COMBINE Study of Alcohol Use Disorder are used to illustrate the
techniques for categorical outcomes. COMBINE is a 16-week, multisite randomized
double-blind clinical trial comparing treatments of alcohol dependence (Anton et al.,
2006). The sample size is 1,383. The measurement occasions to be considered here
are: Baseline, week 1, week 2, week 4, week 6, week 8, week 10, week 12, week 16.
There are also follow-up measurement occasions up to week 52. For this illustration,
the T = 8 time points of the treatment are used, week 1 - week 16. The focus is on the
relationship between perceived stress and alcohol use during the trial. There is a robust
literature examining associations between alcohol and stress using preclinical models
with non-human animals, human laboratory studies, and intensive longitudinal studies
(see Armeli et al., 2000; Becker, 2017; Sinha, 2022), but few studies have examined
bidirectional effects during treatment among individuals with alcohol use disorder. The
stress variable is based on a 4-item, brief version of The Perceived Stress Scale with
scores of 0 to 16 (McHugh et al., 2013). The analyses will use two different measures of
alcohol use. Alcohol Risk is measured as a 5-category variable: Abstinence, low risk,
medium risk, high risk, very high risk. These are WHO-defined drinking risk levels
based on amount of alcohol consumed. The Alcohol Risk variable is also used to define
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Table 4: Monte Carlo results for bivariate binary RI-CLPM, T = 5, WLSMV

ESTIMATE S. E. 95% % Sig
Population Average Std. Dev. Average M. S. E. Cover Coeff

N = 500

Y7ˆ ON
Z6ˆ 0.213 0.1987 1.1535 0.5677 1.3280 0.941 0.134

Z7ˆ ON
Y6ˆ 0.375 0.4620 1.7628 0.7869 3.1086 0.899 0.312

N = 1000

Y7ˆ ON
Z6ˆ 0.213 0.2199 0.2962 0.1865 0.0876 0.918 0.258

Z7ˆ ON
Y6ˆ 0.375 0.3882 0.2549 0.1876 0.0650 0.896 0.584

N = 2000

Y7ˆ ON
Z6ˆ 0.213 0.2116 0.1389 0.1239 0.0193 0.930 0.422

Z7ˆ ON
Y6ˆ 0.375 0.3732 0.1383 0.1254 0.0191 0.924 0.858
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Table 5: Monte Carlo results for bivariate binary RI-CLPM, T = 5, Bayes

ESTIMATE S. E. 95% % Sig
Population Average Std. Dev. Average M. S. E. Cover Coeff

N = 500

Y7ˆ ON
Z6ˆ 0.213 0.2409 0.2234 0.2629 0.0506 0.962 0.188

Z7ˆ ON
Y6ˆ 0.375 0.3788 0.2398 0.2645 0.0574 0.956 0.394

N = 1000

Y7ˆ ON
Z6ˆ 0.213 0.2348 0.1645 0.1705 0.0275 0.952 0.338

Z7ˆ ON
Y6ˆ 0.375 0.3803 0.1713 0.1731 0.0293 0.940 0.682

N = 2000

Y7ˆ ON
Z6ˆ 0.213 0.2244 0.1102 0.1130 0.0122 0.954 0.550

Z7ˆ ON
Y6ˆ 0.375 0.3798 0.1140 0.1160 0.0130 0.950 0.944
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Figure 8: Distribution of the alcohol risk variable at week 4
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a binary variable of Abstinence versus not by combining the four highest categories.
The analyses will treat the stress variable as continuous using linear regressions. This
is not appropriate for Alcohol Risk which as shown in Figure 8 has a strong floor effect
that would bias results from a linear model. The binary Abstinence variable is analyzed
first, whereas analyses using ordinal models for Alcohol Risk are presented later.

5.1 CLPM and RI-CLPM analyses using the binary ab-
stinence variable

This section presented results of the T = 8 analysis of the binary abstinence variable.
8% have missing data at all eight time points and are deleted, resulting in a sample
size of 1,375. There is rather little attrition. At the last time point of week 16, 93%
remain in the sample. The proportion non-abstinent varies between 0.45 and 0.51.
The analyses will use both the limited information WLSMV estimator and the full-
information Bayes estimator but large differences in results are not expected due to the
low degree of missing data. With categorical data, the raw data can be represented by
the response patterns observed in the sample. With binary outcomes and T = 8, there
are 28 = 256 possible patterns. In these data, 234 patterns have non-zero frequency,
125 patterns have frequency greater than 1, and 20 patterns have frequency greater
than 10. The 234 observed response patterns constitute the full information in the raw
data which is used by the Bayes estimator. In contrast, the WLSMV estimator uses
only the 36 first- and second-order sample statistics corresponding to the proportions
and correlations among the 8 variables.

The 20 most frequent response patterns are shown in Table 6. It is seen that 23% of
the sample has the response pattern of all zeros, that is, individuals who are abstinent
at all eight time points. The estimated frequencies for WLSMV and Bayes in Table 6
refer to the unrestricted binary probit model where no restrictions are placed on the
thresholds or correlations among the continuous latent response variables. This tests
if a probit model is suitable for the data in the first place before adding restrictions
on the correlations. The unrestricted probit model has 36 parameters (8 thresholds
and 28 correlations) whereas an unrestricted frequency table model has 28 − 1 = 255
parameters. In other words, the unrestricted probit model is a very parsimonious
representation of the data. Table 6 shows that this model fits reasonably well with no
significant standardized residuals among the 20 most frequent patterns for WLSMV
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Table 6: Response pattern frequencies for abstinence outcome

Estimated Stand’d Residual
Observed Frequency Z-score

Pattern Percentage Frequency WLSMV BAYES WLSMV BAYES

00000000 22.69 312.00 291.16 289.78 1.28 1.37
11111111 19.85 273.00 291.67 291.80 -1.17 -1.18
11111110 2.76 38.00 26.23 25.47 1.86 1.98
00000001 2.47 34.00 31.02 33.42 0.49 0.10
01111111 1.60 27.00 28.62 28.88 -0.29 -0.33
00011111 1.60 22.00 15.89 14.00 1.26 1.66
00111111 1.38 19.00 16.52 18.91 0.54 0.02
11111011 1.09 15.00 12.11 10.59 0.72 1.10
10000000 1.09 15.00 12.23 12.11 0.68 0.72
11110000 1.02 14.00 11.98 11.35 0.52 0.68
00010000 1.02 14.00 12.11 16.52 0.48 -0.59
00000111 0.95 13.00 11.98 11.60 0.27 0.37
11111101 0.95 13.00 10.84 10.72 0.57 0.61
11101111 0.87 12.00 11.10 10.09 0.25 0.53
00000100 0.87 12.00 10.72 8.70 0.35 0.92
00001000 0.87 12.00 11.73 11.35 0.07 0.18
11000000 0.87 12.00 10.34 12.36 0.46 -0.10
11111100 0.87 12.00 9.58 10.21 0.67 0.49
11110111 0.87 12.00 11.85 11.98 0.04 0.01
11011111 0.80 11.00 8.20 8.57 0.81 0.70

and only 1 significant standardized residual for Bayes (z-score = 1.98).
Table 7 shows univariate analyses of the binary abstinence variable using the Bayes

estimator.8 The first model is the just mentioned unrestricted probit model. As de-
scribed in Section 2, the Bayes estimator provides a posterior predictive p-value (PPP)
where PPP> 0.05 is often used as a descriptive measure of acceptable fit and PPP
around 0.5 is considered excellent. The unrestricted probit model, model 1, gets a
PPP of 0.520. PPP is, however, always around 0.5 for a model that is just-identified
like model 1. Although Bayes uses more information than first- and second-order mo-
ments by using the further information in the raw data, the PPP model testing is
based on chi-square which still concerns fit to the first- and second-order moments so
the model is still just-identified. In other words, the H0 and H1 models are the same.
WLSMV chi-square testing has zero degrees of freedom and can therefore also not be
used to test the unrestricted model 1.

As mentioned in Section 2, testing the model against data can be done by checking
the fit to the response patterns and the bivariate frequency tables. In the current

8Mplus scripts for key analyses are given in the Supplementary Material.
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Table 7: Bayes results for univariate analysis of abstinence (N = 1375, T = 8)

Model # par’s PPP # Sig. Residuals Comment

Resp Pattern Bivar

1. Unrestricted 36 0.520 1* 0 Good fit
2. AR1 15 0.082 2 4 Ok fit
3. AR2 21 0.474 0 0 Good fit
4. RI-AR1 16 0.189 2 4 Good fit
5. RI-AR2 22 0.472 0 0 Good fit

* 3rd most frequent pattern with 38 observations and Z-score=1.98.

analyses, standardized residual fit for the 20 most frequent response patterns are used
as one part in assessing overall model fit. In addition, fit to the bivariate frequency
tables is considered. There are 8(8 − 1)/2 = 28 bivariate frequency tables and since
each table has 4 cells, there are 112 cells total available for testing of standardized
residuals. Making the crude approximation of independent tests in the cells, a Type I
error of 5% for the 112 test, or 6 tests, are expected to be significant when the model
is correct. This number will be used as a threshold for a descriptive fit assessment.
The unrestricted model of Table 7 shows that only 1 response pattern, the third most
frequent pattern with frequency 38, has a significant misfit in terms of the standardized
residual and the z-score is only 1.98. None of the bivariate standardized residuals show
misfit. The overall assessment is that this model fits the data well which means that
testing of restrictions on the correlations as in models 2 - 5 is appropriate.

Models 2 and 3 of Table 7 are models without the random intercept and using
auto-regression with lags 1 and 2, respectively. From the improvement in fit, it is clear
that a lag of 2 is motivated. Models 4 and 5 use a random intercept, where again there
is a preference for using a lag of 2. Model 5 with lag 2 obtains a small variance of 0.089
for the random intercept with Bayesian credibility interval [0.001 0.375]. This indicates
that there is not a large trait component for the tendency to report abstinence or not
over the 8 weeks. Letting the first residual variance be freely estimated as discussed in
Section 3 does not improve fit and gives a large standard error for the residual variance.

Turning to the analysis of primary interest, Table 8 shows results for bivariate anal-
ysis of the binary abstinence variable and the continuous stress variable. For these two
variables, the Bayes PPP and the WLSMV chi-square refer to the full bivariate model,
whereas the number of significant residuals refer to the binary abstinence variable only.
The random intercept model for the bivariate case was shown in Figure 7, except that
the continuous latent response variables are directly observed for the stress variable.
The cross-lagged effects are lag 1 for all models. Time invariance is not imposed for
any of the parameters. This model is referred to as RI-CLPM. The CLPM models
1, and 2 that do not have random intercepts fit poorly. The RI-CLPM model 3 with
auto-regressions of lag 1 also fits poorly, whereas the RI-CLPM model 4 with auto-
regressions of lag 2 fits well as assessed by both Bayes and WLSMV. Models 5 - 8 will
be discussed in the next section.
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Table 8: Results for bivariate analysis of stress and abstinence (N = 1375, T = 8)

Model # par’s PPP/ # Sig. Residuals Comment

χ2 Resp Pattern Bivar

1. CLPM1, Bayes 60 0.000 1 19 Poor fit
2. CLPM2, Bayes 72 0.000 0 0 Poor fit
3. RI-CLPM1, Bayes 63 0.016 2 6 Poor fit
4. RI-CLPM2, Bayes 75 0.283 0 0 Good fit

RI-CLPM2, WLSMV 75 χ2(69)=83 0 0 Good fit
(p=.1218)

5. RI-RCLPM, WLSMV 70 χ2(74)=84 0 0 Good fit
(p=.1899)

6. RI-RLPM, WLSMV 63 χ2(81)=87 0 0 Good fit
(p=.2999)

7. Single-direction lag 0, WLSMV 69 χ2(75)=84 0 0 Good fit
(p=.2143)

8. Single-direction lag 0, WLSMV 55 χ2(89)=87 0 0 Good fit
No cross-lagged effects (p=.5519)

For model 4, the abstinence random intercept variance is now somewhat larger
than in the univariate analysis, with Bayes estimate 0.191 and CI [0.081 0.413]. As
mentioned earlier, it is useful to present estimates in a standardized metric given the
arbitrary scale of the latent response variables. The random intercept variance estimate
for abstinence translates to small R-square values for the latent response variables at
the different time points, with values between 0.03 and 0.16. In contrast, the random
intercept variance for the stress outcome gives high R-square values for the latent
response variables, ranging from 0.53 to 0.56. For the residual auto regressions, the
abstinence R-square values are in the range of 0.7 to 0.8 whereas the stress R-square
values are lower, ranging from 0.10 to 0.23. The WLSMV estimates are similar. Freeing
the first residual variance for abstinence as discussed in Section 3, does not lead to
an estimate significantly different from the default of 1 for either estimator. The
significance of the cross-lagged effects is found to be the same when having this residual
variance fixed or free.

The interesting key finding of model 4 is that the cross-lagged estimates show no
significant influence of stress on non-abstinence whereas all seven cross-lagged effects
of non-abstinence on stress are significant with standardized values ranging from 0.17
to 0.28. These lagged effects suggest that failing to stay abstinent during the trial
causes increased stress. The lag of 1 for the cross-lagged effects translates to 2 weeks,
except for the second time point which is 1 week after the first and the eighth time
point which is 4 weeks after the seventh.
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Figure 9: Four equivalent panel models for T = 3

(a) CLPM, lag1 cross-lags (b) Reciprocal lag0, no cross-lags

b bc c

(c) Reciprocal lag0, lag1 cross-lags,
no residual covariances

(d) Single-direction lag0, lag1 cross-lags,
no residual covariances

5.2 Binary outcome: Contemporaneous and reciprocal
modeling alternatives

Conclusions drawn from the CLPM and RI-CLPM models have been challenged in
Muthén and Asparouhov (2023). They pointed out that there are several competing
models that are equivalent or nearly equivalent in terms of model fit but have different
interpretation. They argued for also examining models that allow contemporaneous
(lag 0) effects instead of or in addition to cross-lagged effects. While this challenge
was made in the context of continuous outcomes, the same principles hold also with
categorical outcomes. Figure 9 displays four key models for T = 3 shown as equivalent
in Muthén and Asparouhov (2023). For simplicity, no random intercepts are included.
Model (a) is the regular CLPM, models (b) and (c) use reciprocal, lag 0 effects but
differ in whether cross-lagged effects are included. Model (d) has a single-direction lag
0 effect and cross-lagged effects. Estimates of reciprocal effects in models (b) and (c)
often find a significant lag 0 effect in only one direction, thereby giving support for
model (d).

The reciprocal model (b) is referred to as RI-RLPM (random intercept reciprocal
lagged panel model) and the reciprocal model (c) is referred to as RI-RCLPM (random
intercept reciprocal cross-lagged panel model). Bayes estimation is not available in
Mplus for the reciprocal models but they can be estimated using WLSMV. As pointed
out in Muthén and Asparouhov (2023), for these models it is important to allow for
non-symmetric confidence intervals which can be obtained in the WLSMV context
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using bootstrapping. The RI-RCLPM also needs to apply parameter constraints to
obtain admissible parameter estimates. The analysis uses a restriction applied to the
reciprocal effects held time invariant as described in Muthén and Asparouhov (2023)
to avoid dual solutions and negative R-square (this is referred to as restriction a).
The results are presented as model 5 in Table 8, showing that the model fits well and
is more parsimonious than the RI-CLPM. Model 6 is the RI-RLPM which does not
include cross-lagged effects (model type (b)) and uses time-invariant lag 0 effects. This
model also fits well and is more parsimonious than model 5. Using bootstrapping,
model 6 shows insignificant lag 0 effects of stress on non-abstinence but significant
effects of non-abstinence on stress with standardized estimates ranging from 0.18 to
0.25 (the standardized effects vary despite invariant lag 0 effects due to varying latent
response variable variances). Based on this finding, model 7 uses the single-direction,
time-invariant lag 0 model (model type (d)) which also fits well. The model 7 lag 0
effect of non-abstinence on stress has standardized effects ranging from 0.22 to 0.29.
The single-direction lag 0 model which instead uses the reverse effect of stress on non-
abstinence fits the same and has a significant lag 0 effect but the standardized effects
are much smaller, ranging from 0.06 to 0.08 (not shown). Model 7 does not have any
significant cross-lagged effects and they are excluded in model 8 which is the most
parsimonious of the eight models. The model 8 lag 0 effects of non-abstinence on
stress have standardized effects ranging from 0.18 to 0.24. Freeing the first residual
variance for the abstinence variable as discussed in Section 3 gave a larger standard
error, did not result in an improvement in fit, and did not change the magnitude of
the standardized lag 0 effect estimates.

The set of analyses in Table 8 indicate that there is an effect of non-abstinence
on stress rather than the other way around. In line with the conclusions of Muthén
and Asparouhov (2023), the time lag for the effect is, however, difficult to establish.
The more traditional model 4 states that the effect has lag 1 which is mostly a time
interval of two weeks in these data. In contrast, model 8 states that the effect is
contemporaneous. Although model 8 is more parsimonious, both model 4 and model
8 fit the data well. There is not a strong statistical argument for choosing between
the models. The models are not nested due to the differences of including residual
covariances or not and including lag 0 effects or not. Therefore chi-square difference
testing cannot be applied. It may be disappointing to not be able to determine the lag
of the effect, but that is the nature of the design of data collection. More importantly,
the direction of the effect has been determined.

6 Ordinal outcome

This section turns to the case of ordinal outcomes such as for the alcohol risk outcome
in Figure 8. The unrestricted probit model is often rejected for ordinal outcomes when
there is a strong floor effect. When applying the unrestricted probit model to the
alcohol risk variable, five response patterns have significant standardized residuals with
an especially strong misestimation of the most common response pattern of abstinence
at all eight time points where the observed frequency 312 obtains the estimate 267.
The total number of bivariate cells is 25 × 8(8 − 1)/2 = 700 of which 273 cells show
significant standardized residuals which is far greater than the 35 suggested by the 5%
threshold. It is clear that an alternative model is needed for this variable.
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The bivariate probit model for two ordinal variables was shown in Figure 3. With
C categories, the number of parameters in the model is C1-1+C2-1+1 (2 sets of thresh-
olds + 1 polychoric correlation) = C1+C2-1 parameters. For C1=C2=5, this adds to
9 parameters. The unrestricted multinomial model for the two variables has C1*C2-1
parameters which for C=5 adds to 24 parameters. This is the model that is tested
against in the bivariate frequency tests and where model misfit is often found. How-
ever, intermediate models are possible. This paper uses a model which has C1+C2
parameters, that is, adding one parameter to the unrestricted probit model for two
variables. For C=5, it has 10 parameters. Despite adding only a single parameter, this
model fits the data considerably better. The model will be referred to as the two-part
ordinal model.

6.1 Two-part ordinal model

The two-part ordinal model is inspired by two-part regression modeling of semicontin-
uous outcomes proposed by Duan et al. (1983) and two-part growth modeling with
semicontinuous outcomes in Olsen and Schafer (2001); see also two-part growth mixture
modeling in Muthén (2001). For ordinal outcomes, the model draws on the two-part
regression analysis with an ordinal outcome that was used in Muthén, Muthén and
Asparouhov (2016). The model is suitable for outcomes that have a strong floor effect
as seen for the alcohol risk variable. The idea of the model is shown in Figure 10 for the
case of a 4-wave growth model with random intercept and random slope growth factors.
A 5-category ordinal variable is split into an ordinal part p (positive categories) for
individuals who are above the floor value and a binary part b defined by being at the
floor value (b=0) or above it (b=1). The ordinal outcome is missing when the binary
outcome is zero. A strength of the two-part model is that the two parts can have dif-
ferent relations to covariates as indicated by the x variable in the figure. For example,
a treatment dummy variable can have different influence on the two parts. Each part
uses a probit model with continuous latent response variables specified for the binary
variable and the ordinal variable. For the ordinal part, there are C-2 thresholds and
for the binary part there is one.

The two-part model of Figure 10 corresponds to a single outcome, where the ordinal
and binary parts are correlated only via their random intercepts. The univariate two-
part ordinal model with random intercepts can be expressed as follows for the binary
part b and ordinal part p in terms of the corresponding latent response variables,

b∗it = αbi + ϵbit , (17)

p∗it = αpi + ϵpit , (18)

where αbi ∼ (N, 0, ψb) and αpi ∼ (N, 0, ψp) denote random intercepts that are corre-
lated, and the normally distributed ϵ residuals typically have auto-regressions as before
in Equation (14). Here, b∗it has a single threshold τbt for each timepoint t while for an
outcome with C categories, p∗it has C − 2 thresholds for each time point t, where for
the ordinal variable pit observed in category c,

pit = c⇔ τc−1,t ≤ p∗it < τc,t. (19)

As before, however, a first step is to test the fit of the unrestricted multivariate
normal probit model. For the unrestricted two-part ordinal model, there are no random
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Figure 10: Two-part model
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intercepts and correlations are instead considered between the latent response variables
for the two parts themselves. The exception is correlation between the two parts at
the same time point which are not well determined given that the ordinal part is never
observed when the binary part is zero; these concurrent correlations are fixed at zero
in the estimation of the unrestricted model.

For a bivariate RI-CLPM of ordinal outcomes, there can in principle be four model
parts, an ordinal and a binary for each of the two outcomes. The four processes would
be correlated via their random intercepts only. In the current application, a two-part
model is considered for the alcohol outcome but is not needed for the continuous stress
outcome. This model therefore has three correlated random intercepts.

The two-part ordinal model is estimated by Bayes which properly handles the miss-
ing data on the ordinal outcome when the binary outcome is zero. ML would also handle
the missing data correctly, but as before, ML involves numerical integration with too
many dimensions to be practical. Because WLSMV is a limited-information estimator,
it cannot handle this special missing data situation properly.

7 Ordinal outcome example

The univariate analysis of the T = 8 alcohol risk outcomes involves eight ordinal
and eight binary variables when applying the two-part ordinal model. Table 9 shows
univariate analysis results using both the regular ordinal probit model and the two-
part ordinal probit model. Model 1 is the unrestricted regular ordinal probit model.
This model is not appropriate for the data in that it has strong indications of misfit
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Table 9: Univariate analysis of 5-category alcohol risk using regular and two-part ordinal
models (N=1375, T=8)

Model # par’s PPP/ # Significant Residuals Comment

χ2 Resp Pattern* Bivar

Regular ordinal probit

1. Unrestricted 60 0.498 5 (312) 273 (39%) Poor fit
2. AR2 45 0.151 5 (312) 277 Poor fit
3. RI-AR2 46 0.135 5 (312) 274 Poor fit

Two-part ordinal probit

4. Unrestricted 144 0.472 1 (12) 29 (4%) Good fit
5. AR2 58 0.145 2 (46, 13) 106 (15%) Poor fit
6. RI-AR2 61 0.228 1 (12) 52 (7%) OK fit

* Observed frequency in parentheses.

with a significant standardized residual for 5 response patterns including the most
frequent response pattern of 312 with individuals being in the abstinence category at
all time points. Model 1 also has 273 significant standardized residuals for the bivariate
frequency tables which is 39% of all 700 bivariate cells.9 The more restricted models
2 and 3 are consequently also misfitting. These results show the need for the two-part
ordinal model.

Turning to the two-part ordinal probit models, model 4 is the unrestricted model
and, unlike model 1, model 4 shows a good fit, making it possible to proceed with the
more restrictive models 5 and 6. Model 5 is the lag 2 model without random intercepts
for the two processes and it fits poorly. Adding the random intercepts of model 6,
the three extra variance-covariance parameters produce a much better fit. Model 6
has sizeable variances for the two random intercepts. The random intercept R-squares
range from 0.3 to 0.6 with slightly higher values for the binary part. In contrast, model
3 has ignorable random intercept variance and R-squares about 0.04.

The bivariate analysis of stress and alcohol risk with a two-part ordinal representa-
tion involves eight continuous, eight ordinal, and eight binary variables. The RI-AR2
model is used for both stress and alcohol risk. The three random intercepts are cor-
related and lag 1 cross-lagged effects are allowed among all three sets of variables.
Concurrent residual correlations are allowed between the continuous variables on the
one hand and the ordinal and binary variables on the other hand. Concurrent residual
correlations are not included between the ordinal and binary variables due to lack of
information since the ordinal variable is missing for a binary variable of zero.10 This
RI-CLPM has 137 parameters. It obtains a good fit with PPP = 0.181, 1 signifi-

9The bivariate frequency testing of the two-part ordinal model using TECH10 was introduced in Mplus
in Version 8.8.

10Mplus uses the Gibbs random walk algorithm for this Bayesian analysis.
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cant standardized residual for the response pattern with frequency 12, and 52 (7%)
significant standardized residuals for the bivariate frequency tables.

The RI-CLPM with a two-part ordinal representation of alcohol risk has 5 out of
7 significant cross-lagged effects for the binary part influencing stress and 6 out of 7
significant cross-lagged effects for the ordinal part influencing stress. The standardized
effects range from 0.08 to 0.22 for the binary part and 0.16 to 0.29 for the ordinal part.
For the cross-lagged effects of stress influencing the two parts of alcohol risk, 1 out of 7
effects are significant for the binary part and zero for the ordinal part. The conclusion
is that increased alcohol risk has a lagged positive effect on stress, with a larger effect
for the ordinal part than the binary part. There is almost no evidence of lagged effects
from stress to alcohol risk.

Reciprocal (lag 0) effect modeling using the two-part ordinal model can currently
not be estimated using Bayes (WLSMV cannot handle two-part modeling as mentioned
earlier). Single-direction lag 0 two-part ordinal modeling is, however, possible using
Bayes. The lag0 effects are held time invariant. This model has 123 parameters and is
therefore more parsimonious than the two-part ordinal RI-CLPM with 137 parameters.
As expected, the model fits about the same in the two directions and has similar fit
as the RI-CLPM. The effects from alcohol risk to stress are larger than from stress to
alcohol risk for both the binary and ordinal parts. In standardized terms, the effects of
binary risk on stress range from 0.18 to 0.22 and the effects from ordinal risk to stress
range from 0.27 to 0.39. The effects from stress to binary risk range from 0.12 to 0.15
and the effects from stress to ordinal risk range from 0.14 to 0.19. These analyses do
not give a clearcut conclusion of the direction of influence between the two outcomes
but the effects are stronger in the alcohol to stress direction. As in the binary case, it
is not possible to determine if the effects have lag 1 or lag 0.

8 Extensions

Multiple-group analysis makes it possible to study group differences in parameters
of all the models discussed. Because group membership is typically time invariant,
the influence of groups on the time-invariant random intercepts is of key interest,
particularly group differences in their means. For instance, the zero means of the
random intercepts in the two-part ordinal model of Equations (17) and (18) can instead
be estimated while holding thresholds invariant across the groups. By fixing the random
intercept means to zero for one group, the thresholds of that group are identified by
that group’s proportions, and this in turn identifies the random intercept means for the
other groups through their observed proportions. Group differences in other parameters
may also be studied such as cross-lagged or contemporaneous effects.

The COMBINE example has a special interest in group differences in the random
intercept means of the alcohol risk variable. This double-blind randomized clinical
trial of alcohol use disorder treatment has nine groups, one placebo group and eight
groups with different combinations of medication and therapy. Each group consists of
approximately 150 subjects.

Multiple-group two-part ordinal analysis of the nine groups adds the (9 − 1)3 =
24 parameters of the means of the three random intercepts to the previous section’s
bivariate two-part ordinal models for stress and alcohol risk. The random intercept
means for the placebo group are fixed at zero as a comparison. The analyses use both
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the RI-CLPM version and the single-direction lag 0 models of the previous section.
The models are estimated by Bayes. The RI-CLPM version uses 161 parameters and
obtains PPP = 0.296 which is an improvement over the previous analysis with PPP =
0.181. The maximum number of significant bivariate cells for any of the nine groups
is only 6 with a total of 23. The single-direction lag 0 model has 147 parameters with
time-invariant lag 0 effects. As before, similar fit for lag 0 regression in both directions
are obtained and the fits are similar to that of the RI-CLPM.

Because all three models fit well, the choice between the three models is not expected
to matter in terms of estimating the treatment effects. The results show that neither
the choice between cross-lagged versus lag 0 effect modeling, nor the choice of the
direction of the lag 0 effect matters in terms of which groups have random intercept
means significantly different from the zero value of the placebo group. Here, a negative
mean represents a beneficial treatment outcome. No group has significant random
intercept means for the stress outcome. Four groups have significant negative means for
the random intercept of the binary part. Two of these four groups also have significant
negative means for the random intercept of the ordinal part. The four groups with
significant effects for abstinence are:

� Naltrexone

� Naltrexone + acamprosate

� Placebo + behavioral intervention

� Naltrexone + acamprosat + behavioral intervention

These treatments were also found to be the most effective in the analyses of the COM-
BINE study. The second and third treatment listed were the ones found to also de-
crease the risk of a higher degree of alcohol risk and can therefore be said to be the
most successful treatments.

It is also possible to allow group differences in other model parameters such as the
effect of alcohol on stress. The groups may be estimated with these parameters un-
constrained and then tested for group invariance. A Wald chi-square test of invariance
can be carried out based on Bayes estimates as described in Asparouhov and Muthén
(2021b). Using the single-direction model with time-invariant lag 0 effect for both the
binary and ordinal alcohol risk parts on stress, group invariance was rejected on the
5% level with χ2(16) = 28.37 (p = 0.0285).

A further extension is to add a growth model. For example, linear growth for the
two-part ordinal model is shown in Figure 10 where random slopes sp and sb are added
to the random intercepts. In the bivariate analysis of stress and alcohol risk using the
two-part ordinal model for alcohol risk, there would be three growth models. Auto-
regressions among the three variables can be added. A multiple-group version of this
model would allow the means of the random slopes to also vary across groups. In a
model with no random slope, the random intercept refers to the level at all time points,
in this case during the eight time points following the start of treatment. Including a
random slope, a parameterization can be chosen so that the random intercept refers
to the status at the last time point and treatment effects evaluated for those random
intercept means. Analysis using this model did not change the above findings of which
treatments had significant effects.
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9 Conclusions

This paper presented modeling, testing, identification, and estimation for the case of
binary and ordinal variables in cross-lagged panel modeling. Simulations showed that
estimation with both Bayes and weighted least squares methods worked well given a
sufficient sample size and a sufficient number of time points. A larger sample size and
more time points are required than for continuous variables. A two-part ordinal model
was proposed for ordinal variables with strong floor effects. Using a randomized study
of alcohol treatment, the methods were used to examine the interaction between stress
and alcohol use. Extensions to multiple-group analysis and modeling in the presence
of trends were discussed.

The substantive results of the current study are consistent with preclinical data
indicating that alcohol consumption increases subsequent stress, and that stress does
not strongly predict lagged alcohol consumption. The time scale of weeks may be
a limitation, given that some intensive longitudinal studies with heavy social drinkers
have shown within day and day-to-day effects of stress on alcohol consumption (Armeli
et al., 2000; Wemm et al., 2022). Future research should test the association between
stress and alcohol use among individuals with alcohol use disorder using intensive
longitudinal data collected during treatment.

Binary and ordinal variables also appear in panel studies as factor indicators. Ran-
dom effects modeling of such a multiple-indicator case was studied in Muthén (1983,
1984). However, in the multiple-indicator case, the CLPM and RI-CLPM modeling
still considers a continuous outcome, namely the factor, so that CLPM and RI-CLPM
analysis can draw on the continuous-variable modeling of Mulder and Hamaker (2020).

Further methods for the joint longitudinal analysis of several categorical variables
are discussed in Muthén and Asparouhov (2022). They include bivariate latent tran-
sition analysis and analysis with distal outcomes. With intensive longitudinal data
where there are many time points spaced closely in time, dynamic structural equation
modeling (DSEM; Asparouhov et al., 2018; Hamaker et al., 2023) is available for binary
and ordinal outcomes. DSEM analyses are intended for data with T ≥ 20 and are not
suitable for the small number of time points in panel data that is considered here.
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