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There is evidence to suggest that the effects of behavioral interventions may be

limited to specific types of individuals, but methods for evaluating such outcomes

have not been fully developed. This study proposes the use of finite mixture models

to evaluate whether interventions, and, specifically, group randomized trials, impact

participants with certain characteristics or levels of problem behaviors. This study

uses latent classes defined by clustering of individuals based on the targeted

behaviors and illustrates the model by testing whether a preventive intervention

aimed at reducing problem behaviors affects experimental users of illicit substances
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differently than problematic substance users or those individuals engaged in more

serious problem behaviors. An illustrative example is used to demonstrate the

identification of latent classes, specification of random effects in a multilevel

mixture model, independent validation of latent classes, and the estimation of

power for the proposed models to detect intervention effects. This study proposes

specific steps for the estimation of multilevel mixture models and their power

and suggests that this model can be applied more broadly to understand the

effectiveness of interventions.

Prevention scientists seek to improve health outcomes for youth. Although some

prevention programs have been found to successfully prevent adolescent drug

use or delinquency (Hawkins, 2004; Loeber & Farrington, 1998; Mihalic, Fagan,

Irwin, Ballard, & Elliott, 2004; Sherman et al., 1997; U.S. Department of Health

and Human Services, 2001), evaluations of other preventive interventions have

found that effects differ across participants’ demographic characteristics, such

as sex, race/ethnicity, income, and other factors. For example, an evaluation of

the Good Behavior Game (Kellam, Ling, Merisca, Brown, & Ialongo, 1998)

reported reductions in participants’ observed levels of playground aggression

compared with those in the control condition, but these effects were significant

only for males. The evaluation of the Lion’s-Quest Skills for Adolescence

(SFA) curriculum indicated reduced alcohol use and binge drinking for Hispanic

students in the intervention compared with controls but showed no effects on

these outcomes for White students (Eisen, Zellman, Massett, & Murray, 2002).

In contrast, evaluations of other prevention programs have not found much

evidence for differential effectiveness according to demographic characteristics

(Elliott & Mihalic, 2004). For example, the Life Skills Training drug prevention

program has shown reductions in substance use for White, middle-class students

attending suburban schools as well as minority students attending inner-city

schools (Botvin, Mihalic, & Grotpeter, 1998).

Differences in intervention effects also may be related to participants’ levels

of the behaviors or attitudes the intervention targets for change. Evaluations

of some prevention programs indicated larger effects for high-risk participants

(i.e., those demonstrating greater levels of targeted risk factors or problem

behaviors at pretest; see Allen & Philliber, 2001; Frey et al., 2005; Kellam

et al., 1998; Lochman, Curry, Dane, & Ellis, 2001; Stoolmiller, Eddy, & Reid,

2000). In addition to finding overall program effects for the Teen Outreach

Program, Allen and Philliber found larger reductions in teenage pregnancy,

course failure, and school suspension for intervention students who reported

higher baseline levels of teenage pregnancy, school suspension, and school risk

factors, respectively. Similarly, the Good Behavior Game demonstrated greater

decreases in observed playground aggression for boys who were rated as having

the highest levels of playground aggression at pretest (Kellam et al., 1998).

Also, the Anger Coping Power evaluation (Lochman et al., 2001) reported
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stronger intervention effects on boys’ aggression for those who reported lower

baseline scores on problem solving and higher baseline scores on anxiety and

somatization. In contrast, other program evaluations have found somewhat better

results for low-risk compared with high-risk participants (Perry et al., 2002). For

example, significant intervention effects on past-month smoking and lifetime

marijuana use were found for SFA students who had not initiated drug use

at baseline, but these effects were nonsignificant for baseline substance users

(Eisen et al., 2002). An evaluation of Project Alert (Ellickson & Bell, 1990)

demonstrated that cigarette “experimenters” (those who had initiated use, but

smoked less than three times per year) who received the school-based substance

prevention curriculum from either teachers or teachers assisted by teens were

less likely than control students to report past-week or past-month smoking after

the intervention ended. Current cigarette users who received the Alert curriculum

from teachers assisted by teens, however, reported higher rates of past-week and

past-month smoking compared with control students. These studies indicated

that interventions may differentially affect high- and low-risk students, though

the direction and magnitude of such effects may be program specific.

These data suggest that it is important not only to test for main effects of

preventive interventions but also to evaluate potential variations in effects for

different groups of participants. In this article, we propose the use of multilevel

mixture models to examine the effects of a community-based prevention program

on participants with different profiles of problem behaviors and delinquency.

The use of these models is demonstrated using data from the Community Youth

Development Study (CYDS).

THE COMMUNITY YOUTH DEVELOPMENT STUDY

CYDS is a group randomized trial testing the efficacy of the Communities

That Care (CTC) prevention operating system (Hawkins & Catalano, 1992;

Hawkins, Catalano, & Arthur, 2002). CTC is a community-based, strategic

approach designed to reduce youth involvement in problem behaviors, including

substance use, delinquency, and violence. Community members are trained to

assess the epidemiology of problem behaviors in their community, identify

risk and protective factors that influence the likelihood of these behaviors,

prioritize specific factors as targets for intervention, and address these factors

with evidence-based prevention programs.

Study Aims

CYDS has several design features that guided this demonstration of finite mixture

modeling. First, it evaluates a universal prevention operating system that, target-

ing all youth in the community, aims to reduce the full range of substance use and
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problem behaviors via the implementation of selected research-based programs

(Hawkins et al., in press). The first aim of the present study is to implement

mixture models to identify groups of students mostly likely to be affected by

the CTC intervention. Second, because the CYDS is a group randomized trial,

multilevel analyses are needed in order to model the intervention effects at

the community level. The second aim of this study is to demonstrate how the

multilevel data structure can be taken into account with random-effects mixture

models. Third, the logic for identifying latent classes of students in this study

implies that these classes represent qualitatively different groups of students. A

third aim of this study is to establish the validity of these classes by examining

their relationship with exogenous variables (e.g., risk and protective factors) and

by replicating the results for two cohorts of students. The fourth aim of this

study is to examine differences in levels of behavior problems between students

in treatment and control communities at the end of the community mobilization

and planning phase of the CTC intervention in the CYDS. Because the 1st

year of the intervention involved prevention training and planning but not the

implementation of preventive interventions, which could be expected to affect

behaviors, we expect no treatment effects at this point. However, the analyses can

nonetheless illustrate the use of multilevel mixtures to test intervention effects

that might occur later in later years of the CYDS. This study also examines

power to find intervention effects in the CYDS. The power analyses support the

utility of using multilevel mixtures to examine intervention effects and are used

to guide the model specification for the intervention test.

MIXTURE MODELS IN INTERVENTION RESEARCH

A mixture model is a statistical tool for identifying latent groups of individuals

(McLachlan & Peel, 2000; B. O. Muthén & Shedden, 1999). The mixture model

assesses unobserved variables on a categorical scale with the goal of identifying

latent classes of respondents. Mixture models are starting to be used to evaluate

whether interventions have different effects for different types of students (B. O.

Muthén et al., 2002). For example, an evaluation of the Good Behavior Game

examined whether the effects of the intervention were different for students

with differing trajectories of aggressive behavior (Stoolmiller et al., 2000). The

evaluation hypothesized that students with moderate levels of aggression would

be most affected because the level of the intervention delivered was not expected

to be strong enough to affect students with the highest levels of aggressiveness

(B. O. Muthén et al., 2002).

Most previous work has used mixture models to examine differential interven-

tion effects with repeated measures by identifying latent classes of individuals

with differing trajectories and then assessing within class differences in the
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effects of the intervention on development (B. O. Muthén et al., 2002). In the

present study we look at intervention effects between classes rather than within

classes. We ask whether the intervention affects the proportion of students in a

given class rather than whether the effect of the intervention differs for students

in different classes. When there are more than two latent classes, this may be

thought of as a differential effect of the intervention because students in some

classes may be affected while those in other classes are not affected. It can

also be viewed as a nonlinear intervention effect because the intervention is

modeled as affecting students with particular profiles of the outcome variables.

This question is particularly relevant for preventive interventions where it is

believed that the intervention may reduce one type of problem behavior but not

others. For example, a population-based substance use intervention that reaches

a large proportion of the population with a relatively low dosage might be

expected to reduce experimental drug use but not more serious levels of use.

Figure 1 depicts the proposed model for examining effects in the CYDS. The

model includes a latent class variable identified by 12 indicators of substance

use and delinquency. As CYDS is a group randomized trial, intervention effects

are modeled as occurring at the community level. Effects of CYDS on class

membership are tested because the theory guiding the present analyses suggests

that CTC affects the probability of class membership. However, a variety of

different models looking at intervention effects could be incorporated into the

multilevel mixture framework.

FIGURE 1 Multilevel mixture model for the effects of treatment on class membership in

CYDS.
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ASSESSING VALIDITY OF THE LATENT CLASSES

To better understand the latent classes identified in these analyses, we used

procedures from the field of psychometrics that emphasize the assessment of

validity when measuring latent constructs (Clark & Watson, 1995; Cronbach

& Meehl, 1955). We propose that when latent class variables are used to

identify qualitatively distinct classes of individuals they be thought of as any

other latent variable and subjected to a similar process of measure develop-

ment and validation. Ideally this process should be theory driven, utilizing

previous knowledge of what types of qualitative differences might exist and

what variables might predict those differences. The measurement model for a

latent class variable consists of two parts: the number of classes and the item

distributions/probabilities within each class. This is similar to exploratory factor

analysis, in which the user specifies the number of factors and then the optimal

weights of each item on those factors are derived analytically. Unfortunately, as

in exploratory factor analyses, the results are sample dependent. We propose that

one important step in providing evidence for the validity of latent classes is that

the analysis be replicated in an independent sample. This should serve to reduce

the chance that results are due to sample-specific characteristics. Replication in

a separate cohort also provides some evidence that the results are not specific

to a particular cohort.

Another step in establishing the validity of latent classes is to provide ev-

idence for construct validity. If classes are identified based on theoretical and

empirical evidence of what is known about the construct under study, then

theory can be used to support construct validity. One way to provide evi-

dence for validity, drawing from Cronbach and Meehl’s (1955) use of the

nomological net, is to show that the classes relate to other variables differ-

ently and in ways predicted by theory. In the CYDS example, one way to

establish validity is to show that different variables (i.e., risk factors) pre-

dict membership in different classes defined by students’ self-reported levels

of involvement in problem behaviors. If three classes are identified in the

CYDS analyses (e.g., Abstainers, Experimenters, and Drug Users) and theory

or previous evidence shows that Experimenters tend to be adolescents who

experienced poor family management practices, whereas Drug Users tend to

be those whose friends engage in substance use, then partial evidence for the

validity of the classes will be that these variables differentiate the groups of

students.

Although latent classes may represent qualitative differences between partic-

ipants, an alternative hypothesis is that the classes represent simple variation

on a continuum of problem behaviors and accordingly are rank ordered on the

predictor variables. This alternative has implications for interpreting findings of

differential intervention effects. If true, this would represent a nonlinear inter-
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vention effect rather than suggesting that the intervention affects some groups

differently than others. In this investigation, based on previous theoretical and

empirical work suggesting different developmental pathways for substance use

and delinquency (Moffitt, 1993), we expect that analyses will identify qualitative

differences among participants. We test this assumption by replicating the results

of the initial mixture analysis in a second data set and examining evidence for

the construct validity of the classes identified.

GROUP RANDOMIZED TRIALS

This study examines the use of mixture models within a group randomized

trial (GRT). GRTs involve groups or clusters of individuals randomized into

intervention and control conditions (Feng, Diehr, Paterson, & McLerran, 2001;

Feng et al., 1999; Murray, 1998; Raudenbush & Liu, 2000). In prevention

and biomedical research, this design is useful when interventions are provided

to groups or to all individuals within an organization. Because groups, not

individuals, are randomly assigned to conditions in GRTs, intervention must

be thought of as a group-level rather than an individual-level variable. Typically,

individuals within groups are more similar to each other than to those in other

groups, a condition that leads to a violation of the assumption of independence

of observations made by fixed-effects statistical models (e.g., regression type

models). When fixed-effects models are used with this design, standard errors

will be biased downward (Murray, Clark, & Wagenaar, 2000; Murray, Feldman,

& McGovern, 2000). A second challenge associated with the use of GRTs is

that the appropriate degrees of freedom for the intervention effect are based

on the number of groups randomized rather than on the number of individuals

in the study (Murray, 1998). Therefore, when analyzing data from GRTs, it is

recommended to use random-effects models that assume individuals are inde-

pendent of each other conditional on group membership and to estimate the

correct degrees of freedom for group-level effects (Murray, 1998; Raudenbush

& Bryk, 2002).

The use of random-effects models in a regression context is common and has

been well documented (Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).

The inclusion of random effects in the estimation of mixture models is less

developed, though Vermunt (2003) has described a mathematical model and ad-

dressed issues with the specification and use of random-effects mixture models.

The current article applies multilevel mixture models to group randomized trials.

The illustration of these techniques with CYDS involves the specification of

both fixed- and random-effects portions of the model, examination of conditions

necessary for identification and successful estimation of the model, and methods

for assessment of power to detect intervention effects.
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The model tested in this study (see Figure 1) explicitly accounts for the

fact that students in the demonstration data set were nested within schools and

within communities. The regression weights of each latent class on the items

measuring substance use and delinquency (in the within section of Figure 1) were

constrained to be the same across clusters. The model included one latent class

variable with T classes so that each student had a nonzero probability of being in

each of the T classes. At the school level, the latent class variable represents the

proportion of students in each school who were estimated to be in each of the

latent classes. The regression of the latent class variable on intervention status at

the community level indicates that community involvement in the intervention

can affect the proportion of students in each class, thus answering the research

question, “Does the intervention affect the probability that a student will be in

a particular class as compared with a reference class?” T-1 parameters were

estimated for this effect, as the latent class variable has T-1 degrees of freedom.

The solid dot at the individual level in Figure 1 illustrates that the probability

of membership in a given class is allowed to differ among schools; this is the

random-effects portion of the model.

THE FINITE MIXTURE MODEL

Here we introduce the mathematical formulation of the finite mixture model

that was implemented in this article. The formulation presented here is for

ordered categorical indicator variables. Thus, in this case the finite mixture

model simplifies to a latent class model, which follows. Let the K-dimensional

vector of unordered responses be Y1 through YK for individual i within group

j be denoted by Yij with i D 1; : : : ; nj ; j D 1; : : : ; J . Let cij denote the

unobserved latent class variable and let a particular class be t D 1; : : : ; T .

The simple latent class model can then be written as

P.Yij D s/ D

T
X

tD1

P.cij D t/P.Yij D sjcij D t/

D

T
X

tD1

P.cij D t/

K
Y

kD1

P.Yijk D skjcij D t/;

(1)

where s is a specific response pattern and sk is the response for the kth item. It

models the probability of a particular response as the weighted average of the

probabilities conditional on class membership. The weights, P.cij D t/, are the

probability of individual i belonging to class j. Notice that the items are assumed

to be independent given membership in a specific latent class. To account for
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the multilevel structure of the model, the parameters are allowed to depend on

the group j. Because the particular interest of this study is in the weights as well

as the probabilities conditional on class membership, we can write them using

the logit function, ln
�

p

1�p

�

, which when applied to Equation (1) leads to

P.cij D t/ D
exp.
tj /

T
P

rD1

exp.
rj /

(2)

P.Yijk � skjcij D t/ D
exp.ˇk

sk tj
/

Sk
P

rD1

exp.ˇk
rtj /

; (3)

where Sk is the number of response categories, which are assumed to be ordered.

Equation (2) in this model corresponds to the probability of individual i in group

j being in class t, while Equation (3) relates the response vector Y to each class.

For identification purposes the coefficient in the reference category needs to

be fixed at zero. This formulation is equivalent to fitting separate models for

each group j. Because of the complexity and large number of parameters in this

model, the following more restrictive model, for which the parameters are not

allowed to depend on a specific group, is often more useful. This is called the

fixed-effects model in this study and is the starting point for our analyses.

P.cij D t/ D
exp.
t/

T
P

rD1

exp.
r/

(4)

P.Yijk � skjcij D t/ D
exp.ˇk

sk t/

Sk
P

rD1

exp.ˇk
rt/

: (5)

Notice that, again, identifying constraints like 
1 D ˇk
1t D 0 have to be placed

on the parameters.

Random Effects in the Finite Mixture Model

The fixed-effects model assumes that the proportion of participants in each class

is the same across all clusters. An alternative to using fixed effects for the

probability of class membership is a model in which the class-specific effects

are assumed to be random from a particular distribution. To do so, the general
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multiclass model from the previous section, or more specifically the coefficients

in Equation (2), could be defined as


tj D 
t C �t � zj 8t D 1; : : : ; T; (6)

with zj � N.0; 1/; and 
1 D �1 D 0 for identification. The variance of zj may

also be estimated as in zj � N.0; �/; with one of the �t parameters fixed to 1

for identification. The coefficient 
tj therefore assumes that the between-group

variation in the log-odds of belonging to the tth instead of the first latent class

follows a normal distribution with mean 
t and a variance of �t � zj . Notice

that a perfect correlation between the random components in the 
 ’s is implied.

This is true because the same random effect zj is used for each class t and then

scaled by �t . In this study, this is called the random factor model because it

can be expressed by having one factor with a random variance for the between-

school differences in the probabilities of class membership. The rather restrictive

assumption that 
 ’s are perfectly correlated can be relaxed by using a covariance

structure with a (T-1)-dimensional distribution on the 
 ’s. Instead of using (T-1)

perfectly correlated normal random variables, the (T-1)-dimensional vector 
 can

be modeled with a multivariate normal distribution. That is, 
 � MN.�;
P

/,

where � represents a vector of means and † is the variance-covariance matrix.

In this study, we call this the fully random model.

Covariates in the Finite Mixture Model (Combining

Individual Covariates and Group-Level Effects)

Let X1j denote the rJ -dimensional vector of covariates of the group j and let X2ij

be the rI -dimensional vector of covariates for the individual i. Define 
0tj as the

class intercept, 
1t as the rJ -dimensional vectors coefficients in the classes, and


2t as the rI -dimensional vector of coefficients in the individual. A multinomial

logistic regression model for cij is obtained by

P.cij D t jX1j ; X2ij / D
exp

�


0tj C 
 0

1tX1j C 
 0

2tX2ij

�

T
P

rD1

exp
�


0rj C 
 0

1rX1j C 
 0

2rX2ij

�

: (7)

Notice that, depending on the definition of the parameters 
0tj ; 
1t and 
2t, this

formulation can be used to deal with fixed effects as well as random effects.

Interpretation of the Model Parameters

Figure 1 presents the graphical depiction of this model applied to the CYDS.
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The within-effects of Figure 1 correspond to covariates 
2t; 
1t; while the

between-effect relates to the intervention effect 
0tj . The estimates of ˇ from

Equation (5) correspond to the arrows from the latent class variable to each of

the K indicators.

Parameter estimation. To estimate the parameters of the model, the max-

imum likelihood approach is used. Because of the large number of parameters,

the necessary maximization is rather expensive computationally and, therefore,

not straightforward. Instead of using a Quasi-Newton method on the complete

data likelihood, a modified EM-Algorithm is used.

First, the expected value is approximated by replacing the integral with a finite

sum of points, m D 1; : : : ; M: Using the conditional independence assumption

of the classes, then P.Wj D m; cij D t jYj ; Xj /; where Wj represents the

probability mass for group j at a certain point. This can be computed directly

without having to find the much more complicated P.Wj D m; cj D t jYj ; Xj /

first. Notice that this general formulation allows Wj to come from any mixing

distribution, not only the normal mixing distribution used in this article. A more

detailed description of the modified EM-Algorithm can be found in B. O. Muthén

& Shedden (1999) and Vermunt (2003).

Understanding the model. The model described in this article is fairly

complicated, requiring the estimation of many parameters and having many

alternative specifications that may affect the results. A reasonable concern for

models with this degree of complexity is that the analyses are too far removed

from the data, making it difficult to understand and have confidence in the

results. Because the models described here have response profiles to multiple

items as their outcome, it is not possible to translate these results to simple

mean differences on any item. However, researchers familiar with basic latent

class analysis (see McLachlan & Peel, 2000) may benefit by thinking of these

models as similar to a two-stage approach. In the first stage, separate latent

class analyses are conducted for each community with the substance use and

delinquency variables as the indicators of the latent classes. Individuals are then

assigned to their most probable latent class. In the second stage, the proportion of

students in each community in each class is regressed on the treatment effect. In

essence, these models work by identifying students as belonging to a particular

class and then examining the relationship between those classes and treatment.

Although this technique oversimplifies the analyses, it may help in understanding

what is being tested and perhaps provide a technique for assessing some of the

assumptions of the model, such as the assumption that all communities contain

the same latent classes.
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METHOD

Analyses for the first three aims of this article used data obtained from statewide

surveys of public school students conducted by the state agencies responsible

for alcohol and drug abuse prevention in the states of Colorado, Illinois, Kansas,

Maine, Oregon, Utah, and Washington. These states used one of two methods

for drawing statewide samples of schools for their surveys. In Kansas and

Washington, all public schools in the state were invited to participate in the

surveys and schools that elected to participate were included in the samples. The

other five states used a probability sampling scheme stratified by the geographic

regions of the state to draw representative samples of schools.

The fourth aim uses data from the CYDS trial, which was collected from

24 communities (12 matched pairs1) in the same seven states. This data was

collected by CYDS staff in all states except Utah and Kansas, where it was col-

lected by the same agencies as in the first samples. None of these 24 communities

were included in the first two data sets. For the CYDS trial, one community from

each matched pair was assigned randomly to be in the intervention condition

and implement CTC and the other to be in the control condition with prevention

services operating as usual.

Surveys were administered during one classroom period using standardized

administration procedures. Administration procedures ensured the anonymity

and confidentiality of students’ responses. Screening criteria were used to ex-

clude respondents who lied or responded inconsistently to a set of screening

items. For instance, students were asked if they had ever smoked cigarettes in

their lifetime and also how frequently they had smoked cigarettes during the

past 30 days. If students responded “Never” to the question, “Have you ever

smoked cigarettes?” and also indicated that they smoked one or more cigarettes

per day during the past 30 days, their answers were considered inconsistent. Data

used for model development were collected in 1998 and 2000 from a sample of

schools that excluded schools in the 24 CYDS communities; data used to test

intervention effects in the CYDS study were collected in 2004. The 1998 data

set was used in an exploratory fashion to develop the measurement model and

the 2000 data were used to replicate these results. It is especially important to

replicate these results in a separate cohort of students to reduce the chances that

the results are cohort specific.

1Matched pairs were used in this study to increase the likelihood of baseline comparability.

However, explicitly including the matching in analysis when there are a small number of clusters

causes a reduction in power because of a loss of cluster level degrees of freedom. With low ICCs

for the outcomes it is advisable to ignore the matching when conducting analyses (Diehr, Martin,

Koepsell, & Cheadle, 1995).
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Participants

The 1998 exploratory data set included 44,531 eighth-grade students from seven

states, nested within 494 schools or, in one state, counties.2 The second data

set, used for confirmatory analyses, included data from 45,848 eighth-grade

students in four states in 2000 nested within 418 schools. The 2004 data set

used to test intervention effects was comprised of eighth-grade students from

the communities in the CYDS study (Hawkins et al., in press) and was collected

at the end of the mobilization and planning phase of the CYDS intervention.

Because the CTC intervention was in the planning phase in the 1st year, few

prevention activities were conducted that could reasonably be expected to influ-

ence student behaviors. Consequently, these analyses serve primarily to assess

baseline comparability of the treatment and control conditions. No intervention

effects are hypothesized.

Measures

Data for all analyses were collected using the Communities That Care (CTC)

Youth Survey (Arthur, Hawkins, Pollard, Catalano, & Baglioni, 2002; Glaser,

Van Horn, Arthur, Hawkins, & Catalano, 2005), which was administered anony-

mously by teachers during one classroom period. The CTC Youth Survey mea-

sures risk and protective factors for problem behaviors as well as self-reported

substance use and delinquency and students’ demographic characteristics. The

current analyses focused on the substance use and delinquency items. Students

were asked to report the frequency with which they used alcohol, tobacco, and

marijuana in the last 30 days and in their lifetime as well as the number of

times in the last 2 weeks they had more than five drinks at one time (binge

drinking). Lifetime and 30-day use for each of these outcomes were combined

into one variable with three levels: no use, lifetime but not current use, and

current use within the last 30 days. These responses are treated as ordered

categories. Students also indicated the frequency with which they engaged in

eight delinquent behaviors over the last year. Each of the eight delinquency items

and the binge drinking question were treated as binary variables. Frequency

distributions for each of the substance use and delinquency variables for the

1998 and 2000 data are reported in Table 6.

Two variables, lifetime alcohol and marijuana use, were not included in

one state in the 2000 sample. However, two proxy variables, age at first use

2In one state, counties rather than schools were used because school identifiers were not available.

However, in most cases only one school per county was sampled. An examination of numbers of

individuals per cluster indicates that the counties had approximately the same number of students as

schools in other states except for two counties with over 1,000 students, which were dropped from

the analysis.
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of alcohol and marijuana, were included. To avoid excluding data from an

entire state or using full information maximum likelihood (FIML) estimation of

missing data for these two variables, scores for the lifetime use variables were

imputed using single imputation based on the relationship of the age of first use

variables with lifetime use in the other states. A high degree of correspondence

between the proxy variables and the lifetime use variables was observed for

the states for which both variables were present, supporting the validity of this

method.

Data Analysis

Data analyses were conducted in Mplus Version 3.12 (L. K. Muthén & Muthén,

2004) and Version 4.2 (L. K. Muthén & Muthén, 2006) for the analyses of CYDS

data. For missing data due to students skipping questions, the full information

maximum likelihood (FIML) estimator was used. FIML uses the observed data

under the assumption that missing data points are missing at random.

RESULTS

Specification of Fixed Effects

Analyses based on the exploratory data set began with the specification of

the fixed-effects portion of the mixture model (i.e., determining the number of

latent classes to be estimated and the interpretation of those classes). Although

the random-effects portion of the model may change the specification of the

fixed-effects portion, we began by specifying the fixed effects because these

were easier to estimate and provided guidance for the random-effects models.

The initial model had two levels. The individual level included the latent class

measurement model, and the school level corresponded to school means and

variances for each latent class. The analyses included 12 indicator variables at

the individual level and one latent class variable with T classes (see Figure

1). Because the indicator variables were binary or ordinal, these patterns were

captured by thresholds estimated for T-1 classes. For the binary responses,

the thresholds represent the log-odds of responding “no” versus “yes” for an

individual in class t.

One further issue with model estimation is noteworthy. Finite mixture models

tend to be highly sensitive to the choice of start values (Bauer & Curran, 2004;

McLachlan & Peel, 2000). In this study, 100 different random start values

were used for each fixed-effects model. Each set of start values was run for

10 iterations, and the models with the 10 best log likelihoods were continued
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until the model converged. Differences in the log likelihoods among the top

models were less than .01, providing evidence that the solution is not a local

maxima. Further, following recent simulation analyses looking at the effects of

local maxima (Hipp & Bauer, 2006), the final results were reanalyzed with 1,000

random starts, each run until convergence. In some cases results from analyses

that converged to different log likelihoods were also examined; no substantive

differences in conclusions were found.

Analyses were conducted for models with one through nine latent classes.

A common method for choosing the number of classes is to use penalized

information criteria such as the Akaike Information Criteria (AIC; Akaike, 1974)

and the Sample Size Adjusted Bayesian Information Criteria (SBIC; Sclove,

1987). These values are reported in the five rows of Table 1 for fixed-effects

models with one through six classes. The traditional criterion is that the best-

fitting model is the one with the lowest value on the penalized information

criteria. However, in this study, it is clear that this criterion was never met,

likely because the sample size increased the power of these analyses to find

latent classes that were either very small or were due to correlated errors rather

than “true” categorical differences among groups of individuals. Another test

TABLE 1

Fit Criteria for Different Model Specifications

Number of Classes

Model 1-Class 2-Class 3-Class 4-Class 5-Class 6-Class

Fixed effect model

# of Parameters 15 31 47 63 79 95

Loglikelihood �237012 �193045 �185024 �182245 �180734 �179737

AIC 474113 386151 370141 364615 361626 359663

SBIC 474196 386322 370401 364963 362062 360187

Entropy 1 0.895 0.812 0.802 0.801 0.802

Random class model

# of Parameters N/A 32 49 66 83 **

Loglikelihood �192539 �184359 �181699 �180122

AIC 385143 368817 363529 360410

SBIC 385319 369087 363893 360868

Entropy 0.895 0.813 0.803 0.785

Random Factor

# of Parameters N/A N/A 49 66 83 100

Loglikelihood �184370 �181574 �180419 �179040

AIC 368838 363279 361005 358280

SBIC 369109 363643 361463 358831

Entropy 0.812 0.803 0.789 0.800

Note: N/A–not applicable, ** this model is computationally too difficult to run.
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for empirically determining the number of latent classes is the bootstrapped

likelihood ratio test (BLRT; McLachlan & Peel, 2000). This test, however, is

computationally intensive and, in this analysis, is also affected by the increased

power due to the large sample size. To establish that the BLRT finds too many

classes with this sample size, we estimated it for the six-class model, which we

rejected as described later in this article because of a small and uninterpretable

class, and found that it did, indeed, indicate the need for six rather than five

classes. Thus, in selecting the number of classes to be retained, we relied

partially on penalized information criteria and changes in log likelihood values

to eliminate those solutions with very poor results, similar to using a scree test

of these values (Nylund, Asparauhov, & Muthén, 2007). Large reductions in

these fit indices were taken to indicate that additional classes were needed. We

also looked at the substantive interpretation of the different classes.

In these analyses, classes were interpreted based on the responses of students

in a given latent class to the indicators of the latent class variable (i.e., sub-

stance use and delinquency items). Rather than present the thresholds (i.e., the

parameters actually estimated), which are difficult to interpret, Table 2 presents

the probability of a given response to each item for students in each latent class.

For brevity, we focus on four-class and five-class models, although one- through

nine-class models were examined. Solutions with fewer than three classes were

eliminated because they were clearly inadequate to fit the data, and models with

more than five classes were eliminated because those solutions subdivided the

simpler solutions into very small classes (containing less than 3% of the students)

and had little practical or theoretical value. Note that the latent class model

described assumes that the indicators are independent given class membership.

In this example there are some cases for which this could be questioned, for

example, whether marijuana use and getting high at school are really independent

within classes. This possibility was examined by looking at within-class bivariate

residuals. The highest residuals found were .05 and nearly all were under .01. No

evidence was found suggesting that additional within-class correlations between

variables were needed.

Both four- and five-class solutions had a large latent class containing about

half the sample who did not engage in any problem behaviors, with the exception

of having a small probability of reporting lifetime cigarette and alcohol use. We

termed these students “Abstainers.” Each of these solutions also had a group

of students, comprised of just over 10% of the sample, who engaged in a

high level of substance use but who had a fairly low probability of reporting

other problem behaviors except getting high at school and attacking someone.

We referred to these students as “Drug Users.” Each class also had a group

of students comprising 4% to 5% of the sample whose probability of engag-

ing in substance use was as high or almost as high as the Drug Users but

who were differentiated by their increased probability of engaging in problem
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TABLE 2

Results of Multilevel Unconditional Latent Class Analyses for Eighth Graders

4-Class 5-Class

1 2 3 4 1 2 3 4 5

Proportion 50% 31% 14% 5% 52% 23% 11% 11% 4%

Cigarettes

Never 0.90 0.20 0.04 0.10 0.90 0.12 0.21 0.02 0.12

Lifetime 0.09 0.65 0.31 0.25 0.09 0.74 0.42 0.30 0.25

Current 0.01 0.16 0.64 0.65 0.01 0.14 0.37 0.68 0.63

Alcohol

Never 0.73 0.10 0.01 0.06 0.71 0.13 0.01 0.01 0.07

Lifetime 0.22 0.54 0.12 0.15 0.23 0.69 0.07 0.14 0.16

Current 0.05 0.36 0.86 0.79 0.06 0.19 0.92 0.85 0.78

Marijuana

Never 1.00 0.74 0.16 0.13 1.00 0.70 0.64 0.06 0.16

Lifetime 0.00 0.22 0.24 0.16 0.00 0.25 0.18 0.23 0.16

Current 0.00 0.05 0.60 0.71 0.00 0.05 0.17 0.71 0.68

Binge Drinking

No 1.00 0.86 0.33 0.27 1.00 0.98 0.41 0.33 0.28

Yes 0.00 0.14 0.68 0.73 0.00 0.02 0.59 0.67 0.72

Suspended

No 0.96 0.86 0.66 0.23 0.96 0.83 0.88 0.56 0.23

Yes 0.04 0.15 0.34 0.77 0.04 0.17 0.12 0.44 0.78

Carried gun

No 0.98 0.95 0.91 0.28 0.98 0.95 0.94 0.89 0.16

Yes 0.02 0.05 0.09 0.73 0.02 0.05 0.06 0.11 0.84

Sold drugs

No 1.00 0.99 0.79 0.23 1.00 0.99 1.00 0.67 0.21

Yes 0.00 0.01 0.22 0.77 0.00 0.01 0.00 0.34 0.79

Stole Vehicle

No 1.00 0.99 0.92 0.40 1.00 0.98 0.98 0.89 0.33

Yes 0.00 0.01 0.08 0.60 0.00 0.02 0.02 0.12 0.67

Arrested

No 0.99 0.96 0.81 0.26 0.99 0.94 0.97 0.71 0.24

Yes 0.01 0.05 0.19 0.74 0.01 0.06 0.03 0.29 0.76

Attacked someone

No 0.96 0.84 0.60 0.12 0.96 0.83 0.81 0.51 0.10

Yes 0.04 0.16 0.40 0.88 0.04 0.17 0.19 0.49 0.90

High at school

No 1.00 0.95 0.39 0.14 1.00 0.95 0.87 0.24 0.16

Yes 0.00 0.05 0.61 0.86 0.00 0.05 0.13 0.76 0.85

Gun to school

No 1.00 1.00 0.99 0.57 1.00 1.00 1.00 0.99 0.76

Yes 0.00 0.00 0.01 0.43 0.00 0.00 0.00 0.01 0.54

Note: Proportions are based on estimated posterior probabilities.
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behaviors; for example, the probability of these students carrying a gun to

school in the last year was between 43% and 54%. We termed these “Problem

Students.”

The difference between the four- and five-class models was primarily with a

class of students we called “Experimenters.” In the four-class model, this group

comprised 31% of the sample. Experimenters have high lifetime alcohol and

cigarette use but low current use. In the five-class model, this group comprised

23% of the sample, and there was a second class containing 11% of the sample.

Based on a cross tabulation comparing class membership in the four- and

five-class models, the new class was comprised of students from both the

Experimenter and Substance User classes from the four-class model. In the

five-class model, these students had very high current alcohol use but low rates

of all other behaviors except lifetime cigarette use. We termed this the “Alcohol

Use” class. The evidence thus far provided support for either the four- or five-

class solutions. Further analyses focused on the evaluation and comparison of

these models.

Specification of the Random Effects

The difference between the fixed- and random-effects models involved the esti-

mation of the variance of the latent class means. The models described earlier

had class means that were estimated for T-1 classes. The class means represented

the log-odds of being in a given class versus being in the reference class (the

Abstainer class in this application), although when random effects are included

in the model they are only estimates of the log-odds. In the fixed-effects models,

the variance of the class means between schools was fixed to zero whereas in

the random-effects model, a variance was estimated for these parameters. Fixing

this variance to zero amounted to making the assumption that the proportion of

students in each class was the same for each school. Although it is beyond

the scope of this article to evaluate the effects of violating this assumption, we

suspect that they would be the same as in ordinary regression analysis. That

is, when conducting a group randomized trial, the use of a fixed-effects model

can lead to underestimation of standard errors and, consequently, an increase in

Type I errors. Thus, our next step was to model and quantify the between-school

variation in class membership.

Alternative specifications of the random-effects models were considered (see

Figure 2 for graphical depictions of the options considered). In the first specifi-

cation, each of the T-1 class means was allowed to vary among schools with co-

variances among these effects freely estimated. Thus, every school may have had

a different proportion of students in every class. Although this was a compelling

model, computationally it became increasingly difficult to estimate as the number
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FIGURE 2 Alternative specifications of the between schools random effects.

of classes increased.3 Vermunt (2003) suggested an alternative specification that

takes advantage of the fact that the variances of the means for each class are

frequently highly correlated. He suggested the use of a common factor to capture

these covariances and the inclusion of the random effect by allowing the variance

of this factor to vary across clusters (see the random factor model in Figure 2).

This specification greatly simplifies model estimation, although as more classes

are added it becomes increasingly restrictive. Hybrid models that combine these

two specifications are also possible. In this study, three models were compared:

the fixed-effects model, the fully random model, and the random-factor model. It

should be noted that the fully random model was not estimable when more than

five classes were included due to the computational complexity of estimating

random effects.

Table 1 presents the log likelihood and penalized information criteria for each

model. Note that although these models are nested, a chi-square difference test is

not appropriate because the variances in the fixed-effects model are constrained

to zero, which is on the boundary of the parameter space for the variance.

However, comparison of model fit between the fixed-effects and random-effects

models shows large differences in all criteria, demonstrating the need for a

random error variance for the class means. Comparing values of penalized infor-

mation criteria between the fully random and random-factor models showed only

small differences favoring the least restrictive (fully random) models. Most other

3As currently implemented in Mplus, these models required numerical integration. One

dimension of integration is required at the within-school level and each random effect at the between-

school level requires an additional dimension. The number of integration points used was, by default,

15. However, the five dimensions of integration in the five-class model required that this be reduced

to five integration points to be run on a computer with two gigabytes of RAM available to the

program. These models took over 24 hr to converge.
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analyses focused on the random-factor model because it was computationally

easier to estimate than the fully random model.

Throughout the evaluation of these models, it was important to consider

whether the estimation of random effects changed the results from the fixed-

effects models. The penalized information criteria for these models (presented in

Table 1) did change, but they changed in a very systematic way such that model

fit improved for the less restrictive models by about the same magnitude for each

model. Further, the profiles of the probability of a student responding positively

to each item for each latent class were evaluated for the different models. These

profiles indicated only very small differences between either the proportion of

students in a given class for the three random-effects specifications or in the

proportions of students expected to respond to each item. Comparing Tables 2

and 7 demonstrates the differences between the fixed-effect and random-factor

models for the five-class solution. This illustrates that the fixed-effects portion of

the model was essentially unchanged by the specification of the random effects.

It should be noted that multiple starting values were used for the random-factor

model and for some of the fully random models. However, in all cases we found

that it was adequate to use the parameter estimates from the fixed-effects models

as start values for the fully random models rather than using multiple starts.

The final step in the estimation of the random effects was to quantify the

differences in the proportion of students in a given latent class between schools.

This task was more straightforward with the fully random model; consequently,

the results reported here are from that model. Table 3 shows the between-school

variances for each model as well as intraclass correlation coefficients (ICCs). It

also shows the expected odds of a student being in a certain class versus being

in the reference class for a school at the 10th and 90th percentiles. Variances

presented here are on the log-odds scale and the ICC was computed using the

formula proposed by Hedeker (2003) and recommended by Vermunt (2003). The

odds for schools at the 10th and 90th percentiles were calculated based on the

TABLE 3

School Level Variance in Class Membership

4-Class 5-Class

1 2 3 4 1 2 3 4 5

Proportion 50% 32% 14% 5% 51% 23% 11% 11% 4%

Average log-odds ref �0.51 �1.466 �2.772 ref �0.87 �1.63 �1.78 �2.99

Variance in log-odds ref 0.14 0.39 0.77 ref 0.18 0.22 0.50 0.75

ICC ref 0.04 0.11 0.19 ref 0.05 0.06 0.13 0.19

School at 10th % ref 0.27 0.09 0.02 ref 0.20 0.10 0.06 0.02

School at 90th % ref 0.49 0.34 0.16 ref 0.42 0.26 0.29 0.13
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assumption that the variance components follow a normal distribution. To find

the expected odds of a student being in a given class for a school at the 10th

percentile, we multiplied the square root of the variance (the standard deviation)

in the log-odds by 1.28 (the z score for the 10th percentile) and subtracted the

result from the average log-odds. The resulting log-odds was then converted to

an odds. The expected odds for a school at the 90th percentile was found using

the same formula except that 1.28 times the standard deviation was added to the

average log-odds rather than subtracted from it.

All models used the Abstainer class (i.e., the largest class) as the reference

category. The results indicated that the variance for the proportion of students

in each latent class versus the Abstainer class differed greatly among classes.

ICCs for membership in the Experimenter class versus the Abstainer class were

relatively small (.04–.05) and similar to those reported for continuous variables

in other studies (Hawkins, Van Horn, & Arthur, 2004). However, ICCs for the

Problem Student class were quite large (.19), indicating that the odds of a student

being in that latent class versus the Abstainer class differed greatly among

schools.

Model Validation

The third step in the model development process involved understanding the

differences among classes. We identified 13 risk factors as well as gender and

ethnicity for which differences in the latent classes were expected. Using the

exploratory sample, latent class membership was regressed on each one of these

variables independently (see Table 4 for results from the four-class model and

Table 5 for results from the five-class model). Independent models were run

due to the relatively large degree of collinearity among risk factors. For the

risk factors, the results represent the expected increase in the log-odds of being

in each class versus the Abstainer class that is associated with a one-standard-

deviation increase in the risk factor. The demographic variables were dummy

coded so the parameter estimates can be interpreted as the difference in odds

between that group and the reference group.

These analyses showed that these predictors differentiate some classes but not

others. One example is that girls were less likely than boys to be in each class

versus the Abstainer class, except that in the five-class model, girls were more

likely than boys to be in the Alcohol Use class. This is one indication that the

Alcohol use class was qualitatively different from the Experimenter and Drug

Use classes. Another indication that latent classes were qualitatively different

was that students in the Alcohol Use class had lower reports of school failure

than all other classes, including the Experimenter class. There was also some

support for qualitative differences between the Drug Use class and the Problem

Student class. This was most clearly demonstrated with regard to the risk factors
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TABLE 4

Predictors of Latent Class Membership with the Four-Class Model

Experimenters Drug Users Problem Students

Beta SE OR Beta SE OR Beta SE OR

Demographics

Female �0.15 (.03) 1.09 0.09 (.05) 0.86 �1.36 (.07) 0.26

African American 0.49 (.10) 1.63 0.33 (.11) 1.40 1.44 (.12) 4.23

Native American 0.63 (.10) 1.89 1.01 (.12) 2.76 1.59 (.13) 4.88

Hispanic 0.44 (.06) 1.54 0.72 (.07) 2.06 1.28 (.09) 3.59

Asian -0.09 (.07) 0.92 �0.28 (.10) 0.76 0.61 (.11) 1.83

Other 0.24 (.07) 1.28 0.47 (.09) 1.60 1.11 (.10) 3.03

Community Risks

community disorganization 0.50 (.02) 1.66 0.93 (.03) 2.54 1.46 (.04) 4.30

norms favorable to drug use 0.80 (.03) 2.23 1.38 (.03) 3.97 1.81 (.04) 6.13

laws favorable to drug use 0.69 (.02) 1.99 1.20 (.03) 3.31 1.60 (.05) 4.94

perceived availability of drugs 1.54 (.03) 4.64 2.96 (.05) 19.20 3.55 (.10) 34.67

perceived availability of guns 0.42 (.02) 1.52 0.71 (.03) 2.03 1.33 (.04) 3.80

Family Risk

parent attitude favorable to drugs 2.46 (.23) 11.69 3.07 (.24) 21.54 3.49 (.26) 32.92

parent attitude favorable to ASB 1.24 (.07) 3.44 1.68 (.07) 5.39 2.12 (.07) 8.31

School Risk

academic failure 0.68 (.02) 1.97 1.07 (.03) 2.90 1.52 (.04) 4.58

Peer / Individual Risk

favorable attitudes toward ASB 1.71 (.04) 5.51 2.68 (.05) 14.64 3.64 (.07) 38.21

favorable attitudes toward drugs 3.74 (.18) 42.27 5.45 (.21) 231.60 6.21 (.25) 495.71

perceived risk of drug use 0.99 (.04) 2.69 1.77 (.06) 5.85 2.01 (.08) 7.49

interaction with antisocial peers 4.04 (.19) 56.83 5.22 (.19) 184.56 6.08 (.20) 436.59

friends drug use 4.27 (.18) 71.24 6.09 (.19) 439.22 6.94 (.25) 1034.84

rewards for antisocial involvement 0.73 (.03) 2.07 1.18 (.04) 3.24 1.58 (.05) 4.84

Notes: Parameters indicated in bold are significat p < :05; OR is the Odds Ratio.

related to substance use. In most cases the regression weights for the Drug Use

and Problem Student classes were quite similar.

There were, however, many other instances in which differences appeared to

reflect that individuals were ranked from more to less behavior problems rather

than that classes were qualitatively different. In most cases, the means of the risk

factors increased from one class to the next, suggesting more quantitative than

qualitative differences between classes. For example, each class was associated

with a progressively higher level of the risk factor Parental Attitudes Favorable

to Drugs.

Replication With a Second Data Set

The fourth step in these analyses was to replicate the results using the 2000 data

set. We first examined differences in students’ reports of engaging in problem

behaviors between the two samples (see the first two columns in Table 6).

In general, reports of problem behaviors declined from 1998 to 2000. Next,

the random factor four- and five-class models were replicated. The change in



TABLE 5

Predictors of Latent Class Membership with the Five-Class Model

Experimenters Alcohol Users Drug Users Problem Students

Beta SE OR Beta SE OR Beta SE OR Beta SE OR

Demographics

Female �0.31 (.05) 0.73 0.27 (.06) 1.31 -0.10 (.06) 0.90 �1.51 (.08) 0.22

African American 0.78 (.10) 2.18 �0.58 (.20) 0.56 0.62 (.11) 1.86 1.53 (.13) 4.64

Native American 0.81 (.11) 2.25 0.25 (.16) 1.29 1.22 (.12) 3.39 1.58 (.15) 4.83

Hispanic 0.48 (.07) 1.62 0.41 (.08) 1.51 0.78 (.08) 2.17 1.33 (.09) 3.78

Asian �0.03 (.08) 0.97 �0.26 (.12) 0.77 �0.21 (.12) 0.81 0.68 (.12) 1.97

Other 0.36 (.09) 1.43 -0.05 (.12) 0.95 0.61 (.09) 1.84 1.16 (.12) 3.19

Community Risks

community disorganization 0.52 (.03) 1.69 0.51 (.04) 1.67 1.02 (.03) 2.78 1.48 (.04) 4.40

norms favorable to drug use 0.72 (.03) 2.06 0.98 (.04) 2.66 1.42 (.03) 4.14 1.76 (.04) 5.79

laws favorable to drug use 0.65 (.02) 1.91 0.85 (.03) 2.33 1.26 (.03) 3.53 1.59 (.05) 4.92

perceived availability of drugs 1.49 (.04) 4.41 1.80 (.06) 6.03 3.15 (.06) 23.41 3.37 (.09) 28.96

perceived availability of guns 0.37 (.03) 1.44 0.52 (.03) 1.68 0.74 (.03) 2.09 1.38 (.04) 3.97

Family Risk

parent attitude favorable to drugs 2.34 (.19) 10.40 2.72 (.21) 15.18 3.03 (.20) 20.64 3.39 (.21) 29.52

parent attitude favorable to ASB 1.20 (.07) 3.32 1.35 (.08) 3.85 1.75 (.08) 5.74 2.17 (.08) 8.75

School Risk

academic failure 0.77 (.03) 2.17 0.59 (.03) 1.81 1.24 (.03) 3.44 1.51 (.05) 4.54

Peer / Individual Risk

favorable attitudes toward ASB 1.68 (.05) 5.37 1.88 (.06) 6.52 2.78 (.07) 16.12 3.63 (.08) 37.83

favorable attitudes toward drugs 3.49 (.16) 32.92 4.28 (.21) 71.88 5.44 (.19) 230.67 5.93 (.21) 374.28

perceived risk of drug use 0.97 (.05) 2.62 1.13 (.05) 3.09 1.83 (.06) 6.25 1.95 (.08) 7.05

interaction with antisocial peers 4.36 (.21) 78.57 4.25 (.19) 69.97 5.51 (.20) 247.15 6.18 (.21) 482.51

friends drug use 3.98 (.17) 53.68 4.72 (.20) 111.61 6.10 (.20) 447.20 6.45 (.22) 635.24

rewards for antisocial involvement 0.67 (.03) 1.94 0.88 (.03) 2.40 1.19 (.04) 3.30 1.60 (.06) 4.93

Notes: Parameters indicated in bold are significat p < :05; OR is the Odds Ratio.
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TABLE 6

Comparing Results from the 4-Class Exploratory and Replication Models

Distributions 4-Class–Exploratory 4-Class–Replication

Exploratory Replication 1 2 3 4 1 2 3 4

Proportion 50% 32% 14% 5% 62% 21% 10% 7%

Cigarettes

Never 52.5% 64.0% 0.90 0.20 0.04 0.10 0.93 0.21 0.18 0.06

Lifetime 30.4% 23.5% 0.09 0.64 0.32 0.25 0.07 0.66 0.36 0.25

Current 17.1% 12.5% 0.01 0.16 0.64 0.65 0.00 0.14 0.46 0.69

Alcohol

Never 40.0% 51.2% 0.73 0.10 0.01 0.06 0.75 0.23 0.01 0.05

Lifetime 30.4% 25.7% 0.22 0.54 0.13 0.15 0.20 0.56 0.06 0.14

Current 29.6% 23.1% 0.05 0.36 0.86 0.79 0.06 0.22 0.93 0.81

Marijuana

Never 76.2% 83.1% 1.00 0.74 0.15 0.13 1.00 0.73 0.52 0.07

Lifetime 10.9% 7.5% 0.00 0.22 0.24 0.16 0.00 0.21 0.17 0.18

Current 12.9% 9.4% 0.00 0.05 0.60 0.71 0.00 0.06 0.31 0.76

Binge Drinking

No 83.2% 87.0% 1.00 0.86 0.33 0.27 0.99 0.95 0.32 0.30

Yes 16.8% 13.0% 0.00 0.14 0.67 0.73 0.01 0.05 0.68 0.70

Suspended

No 85.3% 88.0% 0.96 0.85 0.66 0.23 0.96 0.80 0.85 0.40

Yes 14.7% 12.0% 0.04 0.15 0.34 0.78 0.04 0.20 0.15 0.61

(continued )
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TABLE 6

(Continued )

Distributions 4-Class–Exploratory 4-Class–Replication

Exploratory Replication 1 2 3 4 1 2 3 4

Carried gun

No 93.0% 98.1% 0.98 0.95 0.61 0.27 0.98 0.94 0.95 0.69

Yes 7.0% 4.9% 0.02 0.05 0.09 0.73 0.02 0.06 0.06 0.32

Sold drugs

No 93.5% 96.1% 1.00 0.99 0.78 0.22 1.00 0.99 0.98 0.46

Yes 6.5% 3.9% 0.00 0.01 0.22 0.78 0.00 0.01 0.02 0.54

Stole Vehicle

No 95.8% 97.4% 1.00 0.99 0.92 0.40 1.00 0.98 0.98 0.69

Yes 4.2% 2.6% 0.00 0.02 0.08 0.60 0.00 0.02 0.02 0.31

Arrested

No 92.5% 94.8% 1.00 0.95 0.81 0.26 1.00 0.94 0.99 0.50

Yes 7.5% 5.2% 0.01 0.05 0.19 0.74 0.00 0.06 0.04 0.50

Attacked someone

No 83.7% 88.3% 0.97 0.84 0.60 0.12 0.97 0.83 0.80 0.34

Yes 16.3% 11.7% 0.04 0.17 0.40 0.88 0.03 0.17 0.20 0.66

High at school

No 86.4% 90.5% 1.00 0.95 0.38 0.14 1.00 0.94 0.72 0.19

Yes 13.6% 9.5% 0.00 0.05 0.62 0.86 0.00 0.06 0.28 0.82

Gun to school

No 97.9% 99.1% 1.00 1.00 0.99 0.57 1.00 1.00 1.00 0.87

Yes 2.1% 0.9% 0.00 0.00 0.01 0.43 0.00 0.00 0.00 0.13

Note: The solution reported here is for the random factor model.3
1
3
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prevalence of problem behaviors across data sets resulted in changes in the

proportion of students in a given class across the two data sets and in the expected

responses of students in the different class (see Tables 6 and 7). However, even

though these values changed between the two samples, the interpretation of each

class in the five-class model remained the same. For example, more than one

third of the Problem Students in the replication sample reported carrying a gun

to school in the last year and they reported similar levels as in the exploratory

sample on nearly all of the other problem behaviors. The four-class model was

not as well replicated in the 2000 data set (see Table 6). Here, the Drug Use

class represented lower levels of substance use, especially marijuana use, and

the Problem Behavior class also had lower levels of offending in the exploratory

data.

Power to Detect Intervention Effects

A primary motivation for this article was to explore methodology for examining

whether the CYDS can reduce the number of students in a community who

experiment with substance use. By isolating Experimenters from those who

engage in more serious levels of substance use and delinquency, we hope to

test whether this universal intervention can reduce the likelihood that a student

will experiment with substance use as distinct from reducing the probability

of more serious problem behaviors. Analyses of the first three aims suggested

that either a four- or a five-class model was appropriate for examining effects.

Because these models differ largely in that the Experimenter class in the four-

class model was split into an Experimenter and Alcohol Use class in the five-

class model, we were concerned about a potential loss in power associated

with having a smaller Experimenter class, so we first conducted power analyses

to examine whether each model had sufficient power to detect an intervention

effect on group membership. Power was assessed using Monte Carlo simulations,

which involved generating 500 data sets from a population with known values.

The proposed model was then fit with each of those data sets. Power was

estimated as the percentage of times that the intervention effect was statistically

significant .p < :05/. The average standard error for the intervention effect and

the sampling variance across all replications also were estimated. In theory, these

two estimates should be very close to each other. One advantage of using Monte

Carlo simulation was that it involved estimating the final model 500 times; any

problems that are likely to occur when the final intervention data are used should

appear in this process.

Data were generated for these Monte Carlo analyses using eight different true

models. Because the CTC intervention might be expected to affect those students

with low to moderate levels of problem behaviors, the treatment effect of interest

was the regression of the latent class means for the Experimenter and Alcohol use



TABLE 7

Comparing Results from the 5-Class Exploratory and Replication Models

5-Class–Exploratory 5-Class–Replication

1 2 3 4 5 1 2 3 4 5

Proportion 51.4% 23.1% 11.1% 10.7% 3.7% 60.7% 19.5% 8.9% 8.5% 2.5%

Cigarettes

Never 0.90 0.13 0.21 0.02 0.12 0.93 0.22 0.27 0.05 0.09

Lifetime 0.09 0.73 0.43 0.31 0.25 0.06 0.66 0.44 0.29 0.23

Current 0.01 0.13 0.36 0.67 0.63 0.00 0.12 0.29 0.66 0.68

Alcohol

Never 0.71 0.14 0.00 0.01 0.07 0.75 0.26 0.01 0.04 0.05

Lifetime 0.23 0.69 0.07 0.14 0.16 0.20 0.60 0.05 0.15 0.13

Current 0.06 0.18 0.93 0.85 0.78 0.05 0.15 0.94 0.81 0.83

Marijuana

Never 1.00 0.71 0.66 0.06 0.16 1.00 0.74 0.77 0.11 0.08

Lifetime 0.00 0.25 0.19 0.23 0.16 0.00 0.21 0.12 0.22 0.15

Current 0.00 0.05 0.16 0.71 0.68 0.00 0.05 0.10 0.67 0.77

Binge Drinking

No 1.00 0.98 0.43 0.33 0.28 1.00 0.96 0.47 0.37 0.23

Yes 0.00 0.02 0.58 0.67 0.72 0.01 0.04 0.53 0.63 0.77

Suspended

No 0.96 0.83 0.89 0.56 0.22 0.97 0.79 0.91 0.61 0.26

Yes 0.04 0.18 0.11 0.44 0.78 0.04 0.21 0.09 0.39 0.74

(continued )

3
1
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TABLE 7

(Continued )

5-Class–Exploratory 5-Class–Replication

1 2 3 4 5 1 2 3 4 5

Carried gun

No 0.98 0.95 0.94 0.89 0.16 0.98 0.94 0.93 0.92 0.36

Yes 0.02 0.05 0.06 0.11 0.84 0.02 0.06 0.07 0.08 0.64

Sold drugs

No 1.00 0.99 1.00 0.67 0.21 1.00 0.99 1.00 0.78 0.23

Yes 0.00 0.01 0.00 0.33 0.79 0.00 0.01 0.00 0.22 0.77

Stole Vehicle

No 1.00 0.98 0.98 0.89 0.33 1.00 0.98 0.99 0.91 0.42

Yes 0.00 0.02 0.02 0.11 0.67 0.00 0.02 0.01 0.09 0.58

Arrested

No 1.00 0.94 0.97 0.72 0.25 1.00 0.94 0.99 0.77 0.28

Yes 0.01 0.06 0.03 0.28 0.76 0.00 0.06 0.01 0.23 0.72

Attacked someone

No 0.93 0.83 0.81 0.52 0.10 0.97 0.83 0.88 0.61 0.11

Yes 0.04 0.17 0.19 0.49 0.90 0.03 0.17 0.15 0.39 0.89

High at school

No 1.00 0.95 0.87 0.25 0.15 1.00 0.96 0.90 0.34 0.12

Yes 0.00 0.05 0.13 0.75 0.85 0.00 0.05 0.10 0.66 0.88

Gun to school

No 1.00 1.00 1.00 0.99 0.47 1.00 1.00 1.00 1.00 0.66

Yes 0.00 0.00 0.00 0.01 0.53 0.00 0.00 0.00 0.00 0.34

Note: The solution reported here is for the random factor model.

3
1
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classes on the treatment status of the community. Lower values for the mean of

the Experimenter class in treatment communities indicate that students in those

communities are more likely to be in the Abstainer class than the Experimenter

class. Power of the intervention to move students from the Experimenter to the

Abstainer class was evaluated for the four-class model. For the five-class model,

power was evaluated to move students from the Experimenter to the Abstainer

class (holding the other classes constant), from the Alcohol Use to the Abstainer

class (holding the other classes constant), and from both the Experimenter and

Alcohol Use classes to the Abstainer class (with the same effect size for each

class). For each of these four conditions, power was estimated for two effect

sizes corresponding to the ability of the intervention to move 25% and 35%

of the students from each class to the Abstainer class. These values were

chosen to represent small and medium effects; other community level prevention

studies have found reductions in substance use of between 20% and 40% (Perry,

Williams, Komro, & Veblen-Mortenson, 2000; Perry et al., 1996). Further, the

CYDS study was powered to detect intervention effects of this size (Murray,

Van Horn, Hawkins, & Arthur, 2006), so it makes sense to evaluate whether

these models have comparable power to multilevel general linear models.

Data generation used the results from the 1998 data set as the starting point

for parameter estimates but included only 24 communities as in the CYDS study.

Data were generated separately for the 12 communities in the intervention and

for the 12 communities in the control condition. Each of the 24 communities

for which data were generated had a different number of students, matching

the number of students for whom data were collected in the first wave of the

CYDS. Item thresholds and the proportion of students in each class in the

control condition were from the 1998 results. The data generation model for the

treatment condition was identical except that the class means corresponding to a

25% or 35% movement of students from the affected class(es) to the Abstainer

class were used instead of the observed class means. It should be noted here

that a movement of students from one class to the reference class resulted in

a change in the means for each class because the means are the odds of being

in one class versus the reference class. The movement of students between

these classes changes the number of students in the reference category and thus

changes all of the odds. After 500 data sets for both intervention and control

communities were generated for each of the eight true models, communities

from the two conditions were combined and the final model was run on each

of the 500 merged data sets. Data was generated for the five-class model such

that the intervention reduced both the Experimenter and Alcohol Use classes,

and two models were run. In one model, the effects were estimated separately

and in the second, intervention effects were constrained to be the same for the

two classes. The rationale for this constraint was that, theoretically, it may be

expected that the intervention will affect both of these classes similarly. We
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wanted to evaluate whether imposing this constraint on the model would result

in an increase in power. The cost of imposing this constraint is that, if the

intervention affects one group more than the other group, the effect may not be

detected. Running the model both ways allowed for an evaluation of the possible

gain made by this trade-off. One final issue is that with 24 communities these

models have more fixed effects (item thresholds are all estimated as fixed) than

clusters. Although theoretically this should not be a problem, it does result in

the first order derivative product matrix being nonpositive definite, which causes

an error message in Mplus. Additional work is needed to evaluate the effects of

having more fixed effects than clusters.

Results from the power analyses in Table 7 indicated that CYDS has fair to

good power to detect an intervention effect of 35%. In the four-class model,

power to detect a movement of 35% of the experimenters to the Abstainer class

is .91. In the five-class model, power is about .75 to detect a 35% reduction

in either the Experimenter or Alcohol Use classes. However, if both classes are

positively affected by the intervention, power is increased, and if both of the

intervention effects are constrained to be the same, power to detect both of the

effects together is .93. Thus, so long as the intervention effect is the same for

the two groups, the constrained model results in an increase in power and a

reduction in the degrees of freedom used to test the intervention effects. As

expected, power is lower when the effect size of the intervention is a more

modest 25% movement in students from a given class to the Abstainer class.

Power for these models ranges from .42 to .67.

Effects of the CYDS Intervention

The final aim of this article is to demonstrate the use of multilevel mixture

models to examine effects of the CYDS intervention on class membership.

Analyses were performed using data collected in 2004 after the 1st year of the

study. The 1st year involved community planning rather than the implementation

of interventions, so no differences were expected between treatment and control

communities in the proportion of students in each class. These analyses test

whether there are differences between the treatment and control communities

in the proportion of students identified as experimenters and/or alcohol users as

compared with those identified as abstaining from substance use. As depicted in

Figure 1, the effect of the intervention is on class membership, and the random-

factor model from Figure 2 was used to capture between-community differences

in the proportion of students in each class.

Because of the large number of thresholds (estimated as fixed effects at

the community level) and the small number of communities typically involved

in group randomized trials, we suggest a specific approach to building multi-

level mixture models. We first estimated fixed-effects models to identify class
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thresholds in the four- and five-class models. Next, we estimated random-effects

models in which the item thresholds were constrained based on the results of the

fixed-effects estimates. The final step was to estimate the thresholds and random

effects simultaneously. The point of this building process is to establish that both

the fixed- and random-effects portions of the model are stable. Estimates of the

thresholds from the first model should be very similar to estimates from the

third model and estimates of the random effects from the second model should

be similar to those obtained in the third model.

The results from our fixed-effects model were substantively the same as

those from the 1998 sample. The four-class model found Abstainer (58%),

Experimenter (26%), Drug Use (12%), and Problem Student (4%) classes, and

the five-class model identified Abstainer (59%), Experimenter (20%), Alcohol

Use (8%), Drug Use (9%), and Problem Student (3%) classes. The second step

involved estimating a multilevel mixture model in which estimates of thresholds

from the fixed-effects model were used to fix the thresholds. In the final step,

the within-level thresholds and between-level random factor model were both

estimated and a treatment effect on the latent class means was included. To

establish the stability of the model, the thresholds from the first model were

compared with those from the third model and were found to be very similar,

never more than one half of a standard error apart. Differences between the

random effects in the second step and third step were also evaluated and no

differences in parameter estimates were found. However, standard errors for the

random effects and intervention effects were up to 20% larger in the analyses

with all parameters estimated. Further work should be conducted to evaluate

which standard errors are more accurate.

To assess differences between intervention and control communities, the latent

class means for each community were regressed on treatment status. Because the

class means capture the proportion of students in a community in a given class

relative to the reference class (Abstainers), negative treatment effects indicate

that there are fewer students in that class relative to Abstainers in the treatment

than in the control communities. Because the power analyses showed a clear

benefit of constraining the Experimenter and Alcohol Use classes to have the

same effect and, given that we do not expect differences in effects between

these classes, those constraints were imposed in these analyses. Results for

both the four- and five-class models are depicted in Table 8. As expected,

none of the intervention effects are significantly different from zero, serving

to confirm that these communities are quite similar in the proportion of students

in each class in 2004, before the intervention focused on youth behaviors began

in the CTC communities. For purposes of illustration we interpret the results

although they are not significantly different from zero. From the four-class

model, students in communities in the treatment condition have an odds of

being in the Experimenter versus Abstainer class of .73 times that of students
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TABLE 8

Power to Detect Treatment Effects for Different Models

25% Reduction 35% Reduction

Model/class affected Beta SE Power Beta SE Power

4-class

experimenter �0.435 0.182 0.480 �0.627 0.183 0.906

5-class

alcohol use �0.342 0.189 0.428 �0.514 0.200 0.754

5-class

experimenter �0.407 0.212 0.424 �0.588 0.215 0.742

5-class–both e&a

alcohol �0.443 0.178 0.666 �0.643 0.181 0.920

experimenter �0.447 0.209 0.518 �0.644 0.212 0.816

5-class—both e&a

e&a (constrained) �0.444 0.174 0.670 �0.642 0.176 0.934

Note: The SE is the average SE across all simulations, e&a is experimenter and alcohol use.

TABLE 9

Effects of the CYDS Intervention on Class Membership in 2004

4-Class 5-Class

Beta SE OR Beta SE OR

Experimenter �0.29 0.18 0.75 �0.23 0.21 0.79

Alcohol Use n/a n/a n/a �0.23 0.21 0.79

Drug Use 0.14 0.25 1.15 0.25 0.33 1.28

Problem Students �0.18 0.26 0.84 �0.21 0.19 0.81

Note: Analyses include 5111 8th grade students from 24 communities.

in the control condition. From the five-class model, students in communities in

the treatment condition have an odds of .77 times that of students in the control

condition of being in either the Alcohol Use or Experimenter classes.

DISCUSSION

This article evaluated the use of multilevel mixture models to detect the effects

of interventions in group randomized trials. This was accomplished using the

Community Youth Development Study as an example of how to estimate the
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number of latent classes, specify between-cluster differences, evaluate validity

of the classes obtained, replicate those classes on an independent data set, use

the resulting data to estimate power to detect intervention effects for each

class, and assess effects of the intervention on the proportion of students in

each latent class after the planning phase of the study. In the discussion, we

review the results of these analyses in the context of the CYDS, comment on

their application to other group randomized trials, and suggest future areas of

research.

Conclusions for CYDS

The model proposed here for assessing the effects of CYDS answers the research

question, “Does the Communities That Care intervention reduce the probability

that students will engage in experimental use of illicit drugs and/or engage in

high levels of alcohol use?” The research question itself was partially deter-

mined by the results of the initial analyses, which examined the number and

nature of the classes capturing differences among students in substance use and

delinquency. The analyses first examined different solutions for the latent class

portion of the model and found that fit criteria and substantive interpretation

of the classes suggested the use of a four-class or five-class solution. Further

work examined the validity and replicability of these two alternatives. The five

latent classes include Abstainers, Experimenters, Alcohol Users, Drug Users,

and Problem Students. The four-class model differed in that Alcohol Users and

Experimenters were combined into one class. The model also estimated random

effects by evaluating differences between schools in the proportion of students

in each class. These results show clearly that the probability that a student

would be in a given class differs between schools and that those differences

vary across latent classes. Schools differ the most with respect to the prevalence

of Problem Students; in the five-class solution the odds of a student being in

this class versus the Abstainer class in schools at the 10th percentile was .02

whereas in schools at the 90th percentile the odds were .13. Results of these

analyses further suggested that the random-factor model adequately captured

between-school differences.

These initial analyses used two data sets collected prior to the CYDS and

contained a larger number of students/communities/clusters. The availability of

these data was a major advantage as they included far more clusters than were

available in the CYDS group randomized trial. Thus, the latent classes and

estimates of between-cluster variance should be more stable and more replicable.

These data sets provided a strong basis for the estimation of power to detect

effects in CYDS. Power analyses demonstrated first that with the appropriate

constraints placed on the model, multilevel mixture analyses could be used to

assess intervention effects in CYDS. The final Monte Carlo simulations also
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found that the proposed models had 93% power to detect a 35% reduction of

Experimenters and Alcohol users and 67% power to detect a reduction of 25%.

In this case, use of the mixture model did not seem to come at the cost of a

loss in power compared with the use of other models (Murray et al., 2006).

Further, results of the power analyses demonstrated that constraining the effects

of the intervention on two classes to be the same helped preserve power. This

is an important finding because researchers may be inclined to select a model

with fewer classes in hopes of increasing power to find effects. The ability to

constrain effects to be the same across classes allows the flexibility to select the

optimal number of classes and then increase power by imposing theoretically

based constraints.

Finally, this article demonstrated that it is possible to estimate these models

with group randomized trials by regressing class membership on community

treatment status after the 1st year of the CYDS intervention. We note that this

model presumes that the treatment does not in fact affect the composition of

the latent classes. If the latent classes themselves differ between treatment and

control communities, it is not possible to assess the effects of the intervention

on class membership. Although not reported, we did test for differences in class

composition between treatment and control communities in our analyses by

running the latent class analyses separately for the treatment and control arms,

finding that the same classes emerge from communities in both conditions. The

findings of no difference between treatment and control communities in the

proportion of students in each class provided evidence for the comparability

of the two conditions with respect to the profiles of problem behaviors before

interventions focused on changing young people’s behaviors began in CYDS

and illustrated methodology for assessing affects later in the study.

Implications for the Use of Mixture Models to Evaluate
Group Randomized Trials

This work has broader implications for the assessment of GRTs. First, it in-

dicates that multilevel mixture models are a strong alternative for assessing

intervention effects on different groups or profiles of students. The models used

in this article are multilevel latent class analyses, a subset of finite mixture

models. Although the use of latent class analysis is well established in the

social sciences, the expansion of these models to multilevel data is new and

has implications that should be more fully explored. There are clear advantages

of using latent classes to identify groups of students who may be differentially

affected by interventions. Latent categorical variables are able to correct for

measurement error and explicitly model class membership as opposed to a

procedure in which respondents are classified based on some cut point of the

outcome variables.
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This study also suggests a specific analytic process for using multilevel

mixture models to examine differential effects of preventive interventions. The

first step involves assessing the fixed effects, determining the number of classes

to be used, and interpreting those classes. The second step centers on assessing

random effects and ascertaining the appropriate model specification to allow

between-cluster variation. In these analyses, the inclusion of random effects did

not change the fixed-effects portion of the model, but that may not always be the

case. Thus, the fixed effects should be reexamined with the final random-effects

specification. Third, we recommend assessing the validity of the results obtained

and replicating the results on an independent sample. Finally, the Monte Carlo

simulations reported provide an effective way to assess power in future evalua-

tions. The example used here asked whether intervention affected the probability

of engaging in experimental substance use or regular alcohol use. Other future

analyses could examine interactions between the latent class variable and an

independent outcome, which would assess whether the intervention effects differ

across classes.

Finally, we note that although this study addresses the use of multilevel

mixtures to test group randomized trials, the results can be applied to any

situation in which clustering occurs, as the intervention status variable is simply

a cluster-level variable. For example, those studying effects of a school- or

community-level variable can use these models to examine individual by context

interactions.

Future Directions

Further work is needed to expand the use of multilevel mixtures. One area

for future efforts involves developing techniques to analyze longitudinal data

at the community level. In the CYDS, for example, cross-sectional data are

being collected from each community every 2 years. Ideally, we would like to

assess whether the intervention affects a change in the proportion of students

in a class rather than assessing differences in class membership at posttest.

Additional research should examine how this might be accomplished. Also, it

would be useful to assess the effects of model misspecification on the estimates

of intervention effects. For example, if the four-class rather than five-class model

were used, how would the intervention effects differ? If a fixed-effects rather

than random-effects model were used, would the standard errors be biased as

expected?

This article demonstrates how these models can be used in a multilevel context

to better understand the effects of interventions targeting students. We believe

that these modeling techniques provide a potentially powerful tool for assessing

intervention effects. We are only beginning to investigate the many ways that

these models may be useful for understanding human behavior.
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