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1 Introduction

The residual variables in a structural equation model (SEM) can be used
to create a secondary structural model. This combination of the primary
and the secondary structural models is what we call the Residual Structural
Equation Model (RSEM). The RSEM model has been discussed previously
in the context of the dynamic structural equation models (DSEM), see As-
parouhov et al. (2018) and Asparouhov and Muthén (2020), and it is gener-
ally referred to as the residual dynamic structural equation model (RDSEM).
The RSEM model has also been used in the context of longitudinal cross-
lagged panel models and is the basis for the random intercept cross-lagged
panel model (RI-CLPM), see Hamaker et al. (2015), and the latent curve
model with structured residuals (LCM-SR), see Curran et al. (2013). In
this article, we provide a formal definition for the RSEM model in the con-
text of the standard single-level SEM model with continuous and categorical
variables. We describe the implementation of this model in Mplus 8.7 and
discuss ML/WLSMV/Bayes model estimation. We illustrate and motivate
the use of the RSEM model with several examples. Among these examples
are the RI-ARMA(random intercept auto-regressive moving average) model,
RI-MEAR(random intercept measurement error auto-regressive) model for
longitudinal panel data, and the LCA model with local dependence for or-
dered categorical variables, which previously have not been available. We
also describe an expansion of the RDSEM model which now includes con-
temporaneous residual modeling in addition to the lagged residual modeling.
Model testing for the RSEM model is discussed and a new Pearson posterior
predictive p-value (PPP) is introduced that can be used in evaluating model
fit for categorical data modeling with Bayesian estimation. The Pearson PPP
is particularly useful in evaluating the model fit for Mixture models.

The article is structured as follows. In Section 2 we introduce the general
formulation of the model and provide details on the model estimation with
the different estimation methods. In Section 3 we provide multiple examples
and Mplus simulation studies which include the Mplus input statements as
well as output statements. We show how the Mplus hats language for model-
ing with residuals, previously available only for RDSEM models, is now used
to simplify the RSEM model specifications. Section 4 concludes.

2



2 The general RSEM model

Let Y be a vector of continuous observed dependent variables, η be a vector
of continuous latent variables and X be a vector of covariates. The basic
SEM model is given by the following two equations

Y = ν + Λη +KX + ε (1)

η = α +Bη + ΓX + ξ, (2)

where ν and α are the intercept parameter vectors and Λ, K , B and Γ are
the regression parameter matrices. The residual variables in this model are ε
and ξ. Denote the vector of all residual variables by R = (ε, ξ). The RSEM
model is then given by the following equation

R = BrR + ζ, (3)

where ζ ∼ N(0,Ψ). The variance covariance matrix Ψ may take any pre-
specified form, i.e., it can be diagonal or it can include covariance parameters
among the secondary residuals ζ. The RSEM model allows us to explore
structural models for the residual variables of a standard SEM model. The
RSEM framework can be viewed as a generalization of the unified longitudi-
nal framework discussed in Usami et al. (2019). To accommodate categorical
observed variables in this model, we simply replace the categorical variable
with the corresponding underlying continuous variables based on the probit
link function as it is typically done in the Mplus framework. The threshold
parameters that categorize the underlying variables into the observed cate-
gories are also included in the model. The underlying continuous variable is
used in the above equations instead of the observed categorical variable.

Note that the RSEM model is equivalent to the standard SEM model
given in equation (1-2) where the variance covariance matrix of the residual
vector R is

((I −Br)
−1)TΨ(I −Br)

−1. (4)

Thus the RSEM model can be viewed as a methodology that provides struc-
tural form for the variance covariance matrix of the residuals.

Here we also define the extended RSEM model, which is slightly more
general than the model defined in equations (1-3). In this model, equation
(3) remains the same, while equations (1) and (2) are replaced by

Y = ν + Λη +KX +B1rR + ε (5)
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η = α +Bη + ΓX +B2rR + ξ. (6)

In the extended RSEM model, the residual variables augment the very same
primary SEM model that is used to define them. Currently, the extended
RSEM model can be estimated with the ML and WLSMV estimators but
not with the Bayes estimator.

The Mplus language that facilitates the structural modeling for the resid-
uals is identical to what has been used for the RDSEM model. For an ob-
served variables Y , the residual variable of Y is referred to as Y ˆ (Y hat) in
the Mplus model statement. Similarly, for a continuous latent variable η, the
variable ηˆ refers to the residual variable of η. The residual variables can be
regressed on each other with the usual ON statement or can be correlated
with the usual WITH statement.

2.1 Model estimation with the ML and the WLSMV
estimators

The maximum-likelihood estimation of the RSEM model simply amounts to
treating the residual variables R as an additional set of latent variables. The
RSEM model is therefore a standard SEM model, where the loading param-
eters for the residuals are fixed to 1. For standard SEM models, the model
formulation includes actual residual variables, which are now converted to
structural latent variables. Therefore the conversion process from RSEM
to SEM includes adding new residuals that are zero. Such addition is non-
consequential for the ML estimator and is accomplished simply by fixing to 0
the variances of the add-on residuals. This estimation approach is illustrated
in the estimation of the RI-CLPM model in Mulder and Hamaker (2021) sup-
plementary materials. The new implementation in Mplus, however, greatly
simplifies the model specification for these models as the residual latent vari-
ables are automatically created.

Note here that the ML estimator can be used only with continuous de-
pendent variables. That is because equation (4) implies that the residuals
are correlated. In the Mplus framework, the residuals of categorical variables
can be directly correlated, i.e., not via a latent variable, only with the Bayes
and the WLSMV estimators but not with the ML estimator.

The WLSMV estimation of the RSEM model mirrors that of the ML es-
timator. The residual variables are treated as latent variables. As in the ML
estimation, add-on residuals are created with zero variances to replace the
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residuals. This step, however, requires the use of the theta parameteriza-
tion, see Muthén and Asparouhov (2002). That is because with the theta
parameterization, we can set the add-on residual variances to 0. With the
delta parameterization, the residual variance of a categorical variable is
not a model parameter. It is a parameter that depends on all other model
parameters and cannot be set directly to any value.

2.2 Model estimation with the Bayes estimator

The Bayes estimator of the RSEM model is somewhat more complicated.
Here, it is not possible to use the estimation approach used with the ML
and the WLSMV estimators. This is because add-on residuals can not have
a fixed residual variance of 0. It is possible to fix the residual variance to a
small positive value, such as 0.001, however, such an approach has several
drawbacks. First, when using a small but positive add-on residual value,
we create an approximate model rather than exact. Second, in practical
applications it is difficult to select a good small value that works well for
all variables in the model. Third, the Bayesian estimation via the MCMC
method converges very slowly due to highly correlated model components
updated at different steps in the MCMC. Therefore we have implemented
direct Bayesian estimation that does not use add-on residuals. This new
estimation method generally follows the estimation methodology described
in Asparouhov and Muthén (2010) for standard SEM models. For standard
SEM models, all structural parameters and intercepts are updated in the
MCMC estimation with a normal conditional distribution, conditional on all
other model parameters and latent variables. In the RSEM model that is not
the case. The structural model parameters and intercepts in equations (1-2)
are estimated in one step and the structural model parameters in equation
(3) are estimated in a separate step. The residual variables R in the RSEM
Bayesian estimation are not stochastically updated in the MCMC, i.e., they
are not treated as latent variables that must be stochastically updated. They
are derived quantities computed from all other model components: model
parameters, observed and latent variables.

To update the parameters in equations (1-2), conditional on the param-
eters in (3), we simply reformulate the RSEM model as a SEM model with
residual variance covariance given in equation (4). We then apply the ap-
proach in Asparouhov and Muthén (2010), which uses a conditional normal
distribution (based on conjugate priors) for the updating these parameters.
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To update the parameters in equation (3), conditional on the parameters
in equations (1-2) and all other quantities, we first compute the residual
variables R. These variables are then used for formulating a standard SEM
model given in equation (3). Using the Asparouhov and Muthén (2010)
method for this SEM model allows us to update the structural parameters
in equation (3) as well as the variance covariance matrix Ψ. This approach
yields fast, efficient and reliable Bayesian estimation for the RSEM model.

3 Examples

3.1 Growth modeling with autoregressive error struc-
ture

Suppose that Yit is an observed variable for individual i at time t = 1, ..., T .
A linear growth model is described by the following equation

Yit = Ii + Si · t+ εit, (7)

where Ii and Si are the normally distributed random intercept and slope.
The autoregressive structure for the residuals can be introduced in several
different ways. One way to introduce that structure is as follows

εit ∼ N(0, θ) (8)

Cor(εit1 , εit2) = ρ|t1−t2| (9)

where θ and ρ are model parameters. To estimate such a model in Mplus,
one can use the model constraint command as in Muthén and Muthén
(1998-2017) example 6.17. Such an approach is generally limited to at most
50 time points because the model is estimated in a wide format and the
size of the manipulated matrices would become too large for larger values
of T . The approach is mainly used with only a single variable observed
across time. Autoregressive error structure for multivariate models would be
difficult to estimate this way because equation (9) would involve matrix power
computation which is impractical to implement with the model constraint
command. In addition, this approach is typically used when the residual
variances and the autoregressive parameters are time invariant. If either of
these are not time-invariant the variance covariance matrix implied by the
non-invariant versions of equations (8-9) becomes impractical to implement
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with the model constraint command. Even with just 10 time points, if the
autoregressive parameters and the residual variances are not time invariant,
one will need to write out 55 different equations in model constraint.

A different modeling approach that is available in Mplus for growth mod-
els with autoregressive error structure is the DSEM and RDSEM modeling
frameworks. Examples are discussed in Asparouhov et al. (2018) and As-
parouhov and Muthén (2020). Equations (8-9) are replaced most typically
by

εit = ρiεi,t−1 + ζit (10)

where ρi and log(V ar(ζit)) are subject-specific normally distributed random
variables, see Muthén and Muthén (1998-2017) example 9.37. In the cross-
classified DSEM framework, the random effects can also be time and subject
specific, see Muthén and Muthén (1998-2017) example 9.39. Such cross-
classified modeling for longitudinal data is also discussed in Asparouhov et
al. (2018) and Asparouhov and Muthén (2016). These modeling approaches
are typically used when the number of time points is larger, i.e., at least
10. However, depending on the model complexity, the number of time points
that is required could be much higher. Because the models are estimated in
long format, the number of time points that can be modeled in unlimited. In
fact, the larger number of times points, the better the estimation is. Because
the DSEM and RDSEM models are intended for use with larger values of
T , the subject-specific and time-specific parameters are modeled as random
effects rather than non-random model parameters. For small number of time
points, T < 10, even without subject-specific or time-specific auto-regressive
parameters, the DSEM and RDSEM models tend to have worse performance
than the wide-modeling approach due to the added level of uncertainty that
comes about from the initial conditions. That refers to the fact that at time
t = 1, the predictor variable εi,0 in (10) is an unmeasured latent variable. The
influence of the initial condition tends to disappear as T increases, however,
for T < 10 it can lead to biases in the estimates.

The RSEM model offers a different alternative to the above two ap-
proaches. It is a wide modeling approach that focuses on time-specific pa-
rameters. Equations (8-9) are replaced by

εit = ρtεi,t−1 + ζit (11)

ζit ∼ N(0, θt). (12)
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Equation (11) is used only for t > 1. The initial condition problem that exist
with small T in the DSEM and RDSEM models is not present here. We
are able to avoid this issue in the RSEM modeling framework because time-
invariance is not needed or assumed. In the RSEM model, the parameters
are cross-sectionally estimated and there are no subject-specific parameters
in the auto-regressive error structure.

One advantage of the RSEM model over the wide-format model (8-9) is
that it allows non-invariance of the parameters. Even when the parameters
are invariant, however, the RSEM model is more compact and easy to use.
Model (11-12) becomes equivalent to (8-9) if the auto-regressive parameters
ρt are held equal across time, the residual variances parameters θt are held
equal across time for t > 1, and the first time point residual variance is
constrained as follows

θ1 = θ2/(1− ρ2). (13)

This last constraint must be added to the model constraint statement in the
Mplus input file to obtain the equivalence between the two models.

An advantage of the RSEM model over the DSEM/RDSEM model is that
the time non-invariance is more flexible. In RSEM, we can estimate partial
invariance models where some of the time points have invariant parameters
and others do not. Invariance and partial invariance of the autoregressive and
residual variance parameters can be tested in Mplus using the model test
command. Note, however, that there is a difference between the autocorrela-
tion parameter Cor(εit, εi,t−1) and ρt = Cor(εit, εi,t−1)

√
V ar(εit)/V ar(εi,t−1).

Testing the invariance of ρt is not the same as testing the invariance of the
correlation parameter. To test the invariance of the correlation parameter,
in the model test command, the autocorrelations must be expressed in terms
of the model parameters.

Another advantage of the RSEM model over the DSEM/RDSEM model is
that it performs better for small T . Furthermore, the RSEM model provides a
chi-square test of fit and Bayesian posterior predictive P-value (PPP), based
on the comparison of the model with the sample statistics of the multivariate
vector Y1,...,YT . This is not available in the long-format modeling approach
used with the DSEM/RDSEM models.

The disadvantages of the RSEM model as compared to DSEM/RDSEM
models is that the model doesn’t allow for subject-specific parameters ex-
cept for the random intercept and slope and that it is limited in terms of
how large T can be. Furthermore, the time-varying RSEM model has a
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much larger number of parameters as compared to the time-varying DSEM
model where the time-specific variations in the auto-regressive parameters
are modeled as random effects. Thus the time-varying DSEM model is much
more parsimonious when compared to the RSEM model. Note, however, that
the RDSEM model currently implemented in Mplus has time-invariant au-
toregressive structure. Only the DSEM model accommodates time-specific
auto-regressive parameters. Since the linear growth model is actually an
RDSEM model, rather than a DSEM model, the time-varying DSEM model
must be transformed into a time-varying RDSEM model through a non-
linear reparameterization. That transformation is described in Asparouhov
et al. (2018) for linear and quadratic growth models. This complexity in the
time-varying RDSEM estimation can be viewed as another advantage of the
RSEM model which achieves this more directly.

All three of the above models are available for categorical data as well.
The observed variable Yit is simply replaced by Y ∗it . The RSEM model and the
model given in equations (8-9) can be estimated with the WLSMV estimator.
The Bayesian estimator can be used for all three models with continuous and
categorical data.

Figure 1 shows the input file for a simulation study for the RSEM linear
growth model for continuous data and with non-invariant autoregressive co-
efficients ρt. We use 7 time points in this simulation study and the times of
observations are set to -1.5, -1, -0.5, 0, 0.5, 1, 1.5. Figure 2 shows the results
of this simulation study for a subset of the model parameters. The results in-
dicate that the Bayesian model estimation performs well. Figure 2 is a direct
extract of the output file produced by Mplus and it allows us to quickly eval-
uate the quality of the estimation. The estimation is considered good when
all of these are satisfied: the point estimates in column 2 show minimal bias
as compared to the true values reported in column 1, the standard deviation
of the point estimates reported in column 3 and the average standard errors
reported in column 4 are relatively small and are comparable to each other
(asymptotically the ratio of the these two columns should be 1), the mean
squared error of the point estimates reported in column 5 is minimal (i.e.
close to 0), the coverage of the confidence or credibility intervals reported
in column 6 is near to the nominal level of 95%, and the majority of the
model parameters are statistically significant in most of the replications (the
percentage of replications where the parameter is significant is reported in
column 7, i.e., we want to see large values in that column on the percentage
scale of 0 to 1).
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Figure 1: Input file for RSEM AR(1) linear growth model

montecarlo:
 names = y1-y7;
 nobs = 1000;
 nreps = 100;

analysis: estimator=bayes; proc=2;

model population:
y1*1 y2-y7*0.75;
i s | y1@-1.5 y2@-1 y3@-0.5 y4@0 y5@0.5 y6@1 y7@1.5; 
i*1 s*0.2; i with s*0.1; [i*2 s*0.3];
y2^-y4^ pon y1^-y3^*0.4;
y5^-y7^ pon y4^-y6^*0.5;

 model:
y1*1 y2-y7*0.75 (v1-v7);
i s | y1@-1.5 y2@-1 y3@-0.5 y4@0 y5@0.5 y6@1 y7@1.5; 
i*1 s*0.2; i with s*0.1; [i*2 s*0.3];
y2^-y4^ pon y1^-y3^*0.4;
y5^-y7^ pon y4^-y6^*0.5;
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Figure 2: Output results for RSEM AR(1) linear growth model

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y2^        ON
  Y1^                 0.400     0.3827     0.0649     0.0606     0.0045 0.930 1.000

 Y3^        ON
  Y2^                 0.400     0.4002     0.0420     0.0462     0.0017 0.970 1.000

 Y5^        ON
  Y4^                 0.500     0.5005     0.0464     0.0434     0.0021 0.950 1.000

 I        WITH
  S                   0.100     0.0961     0.0347     0.0332     0.0012 0.900 0.790

 Means
  I                   2.000     1.9960     0.0367     0.0357     0.0014 0.930 1.000
  S                   0.300     0.3047     0.0219     0.0200     0.0005 0.910 1.000

 Variances
  I                   1.000     1.0026     0.0704     0.0669     0.0049 0.960 1.000
  S                   0.200     0.2059     0.0336     0.0284     0.0012 0.890 1.000

 Residual Variances
  Y1                  1.000     0.9943     0.1320     0.1168     0.0173 0.900 1.000
  Y2                  0.750     0.7410     0.0508     0.0476     0.0026 0.910 1.000
  Y3                  0.750     0.7576     0.0403     0.0411     0.0017 0.960 1.000
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3.2 RI-CLPM

Suppose that Y1,...,YT are a set of outcomes for a variable Y observed at times
1, ..., T . We define the RI-AR (random intercept auto-regressive) model as
follows

Yt = νt + η + Ŷt (14)

Ŷt = ρtŶt−1 + εt. (15)

The latent variable η represents the time-invariant person-specific effect and
is generally referred to as the random intercept. The parameters νt represent
the time-specific mean across the population. The latent variable Ŷt repre-
sents the residual, i.e, the time-specific individual-specific deviation from the
population mean νt and the time-invariant person-specific effect η. Equation
(15) represents the auto-regressive part of the model.

The RI-CLPM (random intercept cross-lag panel model) is the bivari-
ate version of the RI-AR model and is described as follows. Suppose that
Z1,...,ZT is a second set of outcomes observed at times 1, ..., T . For t = 1, ..., T

Yt = ν1,t + ηY + Ŷt (16)

Zt = ν2,t + ηZ + Ẑt. (17)

The latent variables ηY and ηZ represent the time-invariant person-specific
effects, i.e., the random intercepts. The parameters νj,t represent the time-

specific variable-specific mean across the population. The latent variables Ŷt
and Ẑt represent the residuals. An RSEM model can be used to model the
cross-lagged relationships among these residuals as follows. For t = 2, ..., T

Ŷt = β1,tŶt−1 + β2,tẐt−1 + ε1,t (18)

Ẑt = β3,tŶt−1 + β4,tẐt−1 + ε2,t. (19)

The regression parameters βj,t represent the bivariate auto-regression and
show how the deviations from the means persist over time. Time-specific
residual variances can also be estimated V ar(εj,t) = θj,t as well as the con-
temporaneous covariances Cov(ε1,t, ε2,t) = ct.

3.2.1 RI-CLPM with continuous variables

Here we conduct a simulation study to evaluate the performance of the Bayes
estimator for the RI-CLPM model with continuous variables using T = 4
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and sample size of N = 200. Figure 3 contains the input file used for this
simulation and Figure 4 contains the Mplus output results for a selection
of the parameters. The results indicate that the Bayes estimator performs
well for this model. Similar results can be obtained with the ML estimator
if the Mplus estimator=ml option is used in the input file. Note here that
in the Mplus language, the residual variance for a variable actually refers
to the variance of the secondary residual, i.e., variance specification y2*1
implies that V ar(ε1,2) = θ1,2 = 1. The actual residual variance for Y2, which

is V ar(Ŷ2), is not a model parameter but a derived quantity which can be
obtained from equation (18). Figure 5 shows the Mplus input file needed
for the RI-CLPM model estimation with a single data set. This input file is
substantially simpler than the input file used prior to Mplus 8.7, see Hamaker
(2018).
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Figure 3: Mplus input file for RI-CLPM simulation study with continuous
variables

  montecarlo: names = y1-y4 z1-z4;
   nobs = 200; nreps = 100;

  analysis: estimator=bayes; proc=2;

  model population:
  y1-y4*1 z1-z4*1;
  riy by y1-y4@1; riy*0.4;
  riz by z1-z4@1; riz*0.5;
  y2^ on y1^*0.5 z1^*0.2;
  y3^ on y2^*0.3 z2^*0.2;
  y4^ on y3^*0.2 z3^*-0.2;
  z2^ on z1^*0.5 y1^*0.1;
  z3^ on z2^*0.3 y2^*0.3;
  z4^ on z3^*0.2 y3^*0.1;
  riy with riz*0.2;
  y1-y4 pwith z1-z4*0.2;

  model:
  y1-y4*1 z1-z4*1;
  riy by y1-y4@1; riy*0.4;
  riz by z1-z4@1; riz*0.5;
  y2^ on y1^*0.5 z1^*0.2;
  y3^ on y2^*0.3 z2^*0.2;
  y4^ on y3^*0.2 z3^*-0.2;
  z2^ on z1^*0.5 y1^*0.1;
  z3^ on z2^*0.3 y2^*0.3;
  z4^ on z3^*0.2 y3^*0.1;
  riy with riz*0.2;
  y1-y4 pwith z1-z4*0.2;
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Figure 4: Mplus output results for RI-CLPM simulation study with contin-
uous variables

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y2^        ON
  Y1^                 0.500     0.4958     0.1077     0.0943     0.0115 0.950 1.000
  Z1^                 0.200     0.1926     0.0817     0.0939     0.0067 0.990 0.610

 Y3^        ON
  Y2^                 0.300     0.2905     0.0817     0.0860     0.0067 0.970 0.910
  Z2^                 0.200     0.1970     0.0859     0.0868     0.0073 0.950 0.640

 Z2^        ON
  Z1^                 0.500     0.4821     0.0896     0.0981     0.0083 0.980 1.000
  Y1^                 0.100     0.0902     0.1031     0.0924     0.0106 0.920 0.200

 Z3^        ON
  Z2^                 0.300     0.2992     0.0914     0.0920     0.0083 0.940 0.880
  Y2^                 0.300     0.2968     0.0831     0.0840     0.0068 0.950 0.960

 RIY      WITH
  RIZ                 0.200     0.2156     0.0851     0.0869     0.0074 0.940 0.750

 Y1       WITH
  Z1                  0.200     0.1925     0.1057     0.1078     0.0111 0.960 0.460

15



Figure 5: Mplus RI-CLPM input file

variable: names = y1-y4 z1-z4;

data: file is 1.dat;

model: 
riy by y1-y4@1; 
riz by z1-z4@1; 
y2^-y4^ z2^-z4^ pon y1^-y3^ z1^-z3^;
y2^-y4^ z2^-z4^ pon z1^-z3^ y1^-y3^;
y1-y4 pwith z1-z4;
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3.2.2 RI-CLPM with categorical variables

The RI-CLPM can be estimated with categorical variables as well. The
model will generally require somewhat bigger sample sizes as compared to
the continuous variables case. In this simulation we use N = 500. Figure
6 contains the input file used for this simulation and Figure 7 contains the
Mplus output results for a selection of the parameters. The results indi-
cate that the Bayes estimator performs well in this case as well. The model
can also be estimated with the WLSMV estimator using the option esti-
mator=wlsmv; param=theta;. The RI-CLPM model in Figure 6 uses
binary variables, however, the performance of the Bayes and the WLSMV
estimators with ordered categorical variables is similar.

In the continuous case, the residual variance parameters θj,t are estimated
as free and unequal parameters. In the example given in Figure 6 for the cate-
gorical case, the parameters θj,t are all fixed to 1 by default. This is along the
lines of standard probit regression and is generally needed for identification
purposes. In longitudinal studies, however, see for example growth models in
Muthén and Asparouhov (2002), it is possible in principle to identify all but
one of these residual variance parameters because the scale of the variables
is aligned by the random intercept. If the variance parameter for one of the
variables in the longitudinal process is fixed to 1, the variance parameters for
all other variables in the longitudinal process can in principle be estimated
as free parameters. For example, if the residual variance of Y1 is fixed, the
variance of the random intercept is identified from the R2 of Y1 explained by
the time-invariant component in the model. Then, different values of θt for
t > 1, would imply different random intercept based correlations between Y1
and Yt which means that θt is identified.

In the model given in Figure 6, one could fix θ1,1 = θ2,1 = 1 and esti-
mate the remaining 6 residual variances. This modeling approach, however,
is somewhat more advanced and has several caveats. First, the model is
prone to empirical non-identification. The identifiability of these additional
parameters depends on all other model parameters and for some data sets
the parameters cannot be identified. Second, reliable estimation of these
parameters requires much larger sample sizes. Third, even with larger sam-
ple sizes, the standard errors of these parameters are often quite large and
very likely, the residual variance parameters will not be significantly differ-
ent from 1. This defeats the purpose of estimating these parameters as free
model parameters.
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In practical situations, one could explore estimating a small selection of
these residual variances, while still holding the majority of the residual vari-
ances fixed to 1. There are several different strategies that can be employed
in deciding which residual variances should be freed. One strategy is to es-
timate the residual variance for only the first time point. These residual
variances may indeed be bigger than the residual variances for remaining
time points due to the fact that the first residuals are not regressed on any
other variable. In fact, under the assumption of time invariance, where all
coefficients are held equal across time, the first time point residual variances
must be estimated as free parameters because the model for the first residual
is different, see also equation (13).

A different strategy is to estimate the model with all residual variances
fixed to 1 and then consider the standardized loadings of the random in-
tercept. Ideally we would want these loadings to be not too different. If a
particular variable stands out and has standardized loading for the random
intercept that is very different from the rest of the variables, freeing that
variable residual variance may yield standardized loadings that are more eq-
uitable.

A third strategy is to use the modification indices of the WLSMV esti-
mator and free those residual variances that are most promising. A fourth
strategy is to use the Bayes estimator and the BSEM methodology of Muthén
and Asparouhov (2012), which is specifically designed to deal with somewhat
poorly identified parameters and employs the concept of approximately fixed
parameters via stringent prior specifications. This approach can be viewed
as the Bayesian equivalent of the modification indices methodology. Prior
to Mplus 8.7, the residual variances for categorical variables in the Mplus
Bayesian framework were always fixed to 1. This restriction is now elimi-
nated for Bayes and the residuals variances can now be estimated in a prop-
erly specified longitudinal or multiple group study, just as this is done with
the WLSMV estimator.

Regardless of which strategy is utilized, in practical settings, estimating
residual variances for categorical variables requires a more substantial sam-
ple size and carefully weighing the pros and cons of such modeling. Adding
poorly identified parameters to a model can compromise the inference that
can be made from the model as the standard errors of all other model param-
eters would likely be negatively impacted. On the flip side, fixing residual
variances incorrectly to 1 will likely propagate biases in the rest of the model
parameters.
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There are two other issues that should be addressed here regarding the
Bayesian estimation of RSEM models with categorical variables. The first
issue is regarding the RI-CLPM model when the RI is actually not present
in the model and the outcome variables are binary. In that case, the resid-
ual variable Ŷ ∗ and the actual variable Y ∗ are one and the same. However,
due to various complexities in the Mplus algorithm, the autoregressive model
specified as Ŷ 2 on Ŷ 1 is estimated differently by Bayes from the model spec-
ified as Y 2 on Y 1. The difference is related to how the threshold parameters
are updated. In the first case, the thresholds are estimated as the negative
of the mean of Y ∗ and that yields the most efficient algorithm. In the second
case, the less efficient MH algorithm for updating the thresholds is used. The
difference between the algorithms is generally small and in most situations
will not be noticeable beyond the speed of the computation. In more com-
plex models, however, such as Mixture models, the difference between the
algorithms may become more substantial. Even in that case, however, for
larger sample sizes the differences tend to disappear. In all cases, the most
efficient algorithm in Mplus is obtained with the language Ŷ 2 on Ŷ 1.

The second important issue for the Bayesian estimation of RSEM is spe-
cific to models with ordered categorical variables with thresholds held equal
across time. In such situations, Mplus uses the least efficient and only avail-
able algorithm for updating the threshold parameters and the latent variables
Y ∗. This method is referred to as Method 3 in Asparouhov and Muthén
(2010) and its applicability is somewhat limited. In practical applications
where various complexities arise, the method may not perform well. There-
fore, we generally recommenced not holding thresholds equal across time for
models such as RI-CLPM. Even when the thresholds are time invariant, a
more efficient Bayesian estimation can be obtained by estimating time spe-
cific thresholds.
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Figure 6: Mplus input file for RI-CLPM simulation study with categorical
variables

  montecarlo: names = y1-y4 z1-z4;
   nobs = 500; nreps = 100;
   categorical=all;
   generate=y1-z4(1);

  analysis: estimator=bayes; proc=2;

  model population:
  riy by y1-y4@1; riy*0.4;
  riz by z1-z4@1; riz*0.5;
  y2^ on y1^*0.5 z1^*0.2;
  y3^ on y2^*0.3 z2^*0.2;
  y4^ on y3^*0.2 z3^*-0.2;
  z2^ on z1^*0.5 y1^*0.1;
  z3^ on z2^*0.3 y2^*0.3;
  z4^ on z3^*0.2 y3^*0.1;
  riy with riz*0.2;
  y1-y4 pwith z1-z4*0.2;

  model:
  riy by y1-y4@1; riy*0.4;
  riz by z1-z4@1; riz*0.5;
  y2^ on y1^*0.5 z1^*0.2;
  y3^ on y2^*0.3 z2^*0.2;
  y4^ on y3^*0.2 z3^*-0.2;
  z2^ on z1^*0.5 y1^*0.1;
  z3^ on z2^*0.3 y2^*0.3;
  z4^ on z3^*0.2 y3^*0.1;
  riy with riz*0.2;
  y1-y4 pwith z1-z4*0.2;
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Figure 7: Mplus output results for RI-CLPM simulation study with categor-
ical variables

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y2^        ON
  Y1^                 0.500     0.5013     0.1370     0.1236     0.0186 0.940 0.990
  Z1^                 0.200     0.2149     0.1040     0.1155     0.0109 0.980 0.480

 Y3^        ON
  Y2^                 0.300     0.2731     0.1133     0.1040     0.0134 0.920 0.710
  Z2^                 0.200     0.2086     0.1055     0.1067     0.0111 0.950 0.520

 Z2^        ON
  Z1^                 0.500     0.5006     0.1133     0.1300     0.0127 0.950 0.990
  Y1^                 0.100     0.0984     0.1037     0.1100     0.0106 0.980 0.160

 Z3^        ON
  Z2^                 0.300     0.2911     0.1072     0.1131     0.0115 0.960 0.750
  Y2^                 0.300     0.3127     0.1075     0.1064     0.0116 0.970 0.900

 RIY      WITH
  RIZ                 0.200     0.1999     0.0896     0.0883     0.0080 0.930 0.710

 Y1       WITH
  Z1                  0.200     0.2201     0.1141     0.1038     0.0133 0.900 0.510
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3.3 ARMA models

3.3.1 D-RI-ARMA model

The auto-regressive moving-average (ARMA) model is one of the most com-
monly used models for analyzing time series data, see Box and Jenkins (1976).
If Yt is an observed variable at time t, the ARMA(1,1) model is given by the
following equation

Yt = α + ρYt−1 + βεt−1 + εt. (20)

This model is an extension of the basic auto-regressive model. Through
the parameter β, we can predict the dependent variable from the residual
in the previous time period. The model is generally equivalent to an AR
model with infinite lag and can account for correlations that persist in the
data across longer periods of time, without the exponential decay limitation
associated with the AR model. Because the model is conceptually the same
as an RSEM model, where residuals are used in a path analysis sense, we can
adopt the ARMA modeling idea to psychometrics and social science models,
see Du Toit and Browne (2001). Suppose that Yit is an observed variable
for individual i at time t. We define the D-RI-ARMA (dynamic random
intercept auto-regressive moving average) model as follows. For t = 1, the
model starts with

Yi1 = α1 + ηi + εi1. (21)

For t > 1 the model is given by the full ARMA expression

Yit = αt + ηi + ρtYi,t−1 + βtεi,t−1 + εit, (22)

where εit ∼ N(0, θt) and η ∼ N(0, ψ). This model can be viewed as the
univariate version of the GCLM of Zyphur et al. (2020a). If the moving
average parameters βt = 0, we obtain a simpler model which we call the
D-RI-AR model. Just like in the RI-AR model, all the parameters in the
D-RI-ARMA model are time-specific, although they can be estimated as
time-invariant. The latent variable ηi takes the role of the random intercept
(RI) and is the only subject specific parameter. In the RI-AR model, the
random intercept takes the role of the subject specific mean parameter, while
in the D-RI-ARMA model, the random intercept is not the subject specific
mean parameter. The expected value for E(Yit|ηi) depends on the intercept
parameters αt and the autoregressive coefficients ρt, see Usami (2021).
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The model can easily be extended to a multivariate model, like the RI-
CLPM model, by simply using vector and matrix forms in the above equa-
tions. In the univariate case, the number of parameters in the D-RI-ARMA
model is 4T − 1, while the total degrees of freedom is T (T + 3)/2. Therefore
the model would not be identified for T < 5. For T = 5, T = 6 and T = 7,
the model is too close to the saturated model and most likely will often
not be as useful because the standard errors of the parameters will be too
large to establish significance. In these situations, however, imposing some
time-invariance in the model parameters or fixing some of the insignificant
parameters to 0 will likely improve the value of the model. For T > 7, we
can find enough longitudinal evidence to support this more complex auto-
correlation structure with all time-specific parameters. Because the model
is estimated in a wide format, it would be time consuming to estimate it if
T > 50 (or if P · T > 50 in the multivariate case). The D-RI-ARMA model
is likely to be most useful for T between 7 and 50 when the simpler D-RI-AR
or RI-AR models are rejected. In such situations, the added flexibility of the
moving-average component would allow us to find better fitting longitudinal
models for panel data.

The D-RI-ARMA model can also be viewed as a moving-average exten-
sion of the lagged models discussed in Bollen and Brand (2010). In the
D-RI-ARMA model, it is possible to not hold all the loadings of the ran-
dom intercept fixed to 1. Such models are considered in Bollen and Brand
(2010). One can argue that the first loading should be free because the first
equation is different. This should generally be reserved for T > 10, because
adding free loadings would not only diminish the degrees of freedom for the
model but also will very likely increase the standard errors for the rest of the
parameters beyond what is reasonable. Due to such large standard errors,
the free loading may in fact become insignificantly different from 1. Freeing
some of the loadings should be reserved for those situations when a substan-
tial improvement in model fit is achieved by the additional parameters. Note
also that if the first two loadings in the D-RI-ARMA model are free to be
estimated, the model becomes unidentified. The parameter β2 must then be
fixed to 0 to obtain an identified model. Thus, if the first loading is free,
freeing the second loading will not improve the model fit at all.
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3.3.2 Longitudinal evidence

Panel data models, such as D-RI-ARMA and RI-CLPM, are somewhat dif-
ferent from standard SEM models. Similar to the SEM models, these models
can be used to make inference for individuals that were not observed. In
addition, however, these models attempt to make inference to some extent
for time points that were not observed (time points in the future). Therefore
one should be mindful regarding the asymptotics with respect to T and not
just to N . This is what we refer to as the longitudinal evidence. Longitudinal
modeling requires longitudinal evidence. The variance covariance from 4 time
points can be regarded as mostly cross-sectional evidence. That is because
we have many observations in the sample but very little in term of how these
observations evolve across time. When we use such cross-sectional evidence
to build longitudinal models, extreme caution should be applied. Simplest
models should be preferred when T is small. When simple models do not fit
the cross sectional evidence, that may be because the auto-regressive rela-
tions are not the same for all individuals rather than requiring a much more
complex subject-invariant longitudinal model. Consider this as an example.
For any panel data with T = 7, the D-RI-ARMA(2,2) model has 0 degrees
of freedom and is virtually guaranteed to fit (the cross-sectional evidence
of) the data perfectly. This of course doesn’t mean that D-RI-ARMA(2,2)
is a model useful to predict what will happen at T = 8 or that we have
determined the underlying nature of the longitudinal process. Longitudinal
evidence can be claimed when the standard variance covariance chi-square
has a good amount of degrees of freedom (DF) left. We recommend for such
models to have the DF be near or greater than the number of model param-
eters. This way we can avoid over-saturating the model with parameters and
over-extending the cross-sectional evidence implications for the longitudinal
processes. Weak longitudinal evidence can be strengthened by holding pa-
rameters equal across time, by holding parameters equal across neighbouring
periods and by removing insignificant parameters from the model to obtain
a more parsimonious model.

This problem of empirical underidentification when there are not enough
waves of data, is also illustrated by Orth et al. (2021), who analyzed ten
different data sets, most of which consisted of only four waves of data. They
found that all models, except the simplest AR models, failed to converge
for almost all data sets. We regard this as another cautionary tale for the
possible misuse of cross-sectional evidence to inform longitudinal models.
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When a complex longitudinal model is estimated, a very likely scenario
is that some of the residual variances are estimated to be negative. Even if
the model fits the data well, the negative residual variances should be taken
as possible evidence that the model is over-saturated with parameters. As a
result of this over-saturation, a good model fit is found, but the underlying
longitudinal process is not feasible. Residual variance parameters can be
constrained in Mplus to be positive via the model constraint command. Only
when all model parameters are in the admissible parameter space, the fit of
the model should be considered.

3.3.3 RI-ARMA model

As discussed in Asparouhov et al. (2018), the ARMA model is equivalent
to a measurement error auto-regressive model (MEAR), see also Granger
and Morris (1976). If the coefficients in the D-RI-ARMA model are time-
invariant, the model becomes similar to the two-level DSEM-MEAR model
described in Asparouhov et al. (2018). There are several important differ-
ences, however. One difference is that the DSEM-MEAR model equivalence
to the ARMA models is subject to parameter restrictions. The MA parame-
ter must be negative for this equivalence to work. Another difference is that
the DSEM-MEAR model is estimated in long format, which means that it
can be estimated for any T . The D-RI-ARMA model is estimated in wide for-
mat, so it can efficiently accommodate only T < 50. Yet another difference is
the way the two models handle the initial equation at time t = 1, which can
lead to noticeable differences in the parameter estimates for smaller T < 10.
The most important difference, however, is how the random intercept is in-
cluded in the model. In DSEM-MEAR, the random intercept is separate
from the ARMA model, i.e., the ARMA model is defined for the residual
variable which doesn’t include the random intercept.

Here we also introduce a new model, the RI-ARMA (random intercept
auto-regressive moving average) model that uses the same approach to the
random intercept as the DSEM-MEAR and the RI-CLPM models. This
approach can also be viewed as latent centering for the observed variables,
see Asparouhov and Muthén (2019). The random intercept part of the model
is

Yit = αt + ηi + εit. (23)

The ARMA model is then defined for the residual variables εit. The model
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starts with t = 2
εi2 = ρ2εi1 + ε̂i2. (24)

For t > 2 the model is given by the full ARMA expression

εit = ρtεi,t−1 + βtε̂i,t−1 + ε̂it. (25)

The RI-ARMA model has one parameter less than the D-RI-ARMA model,
i.e. 4T − 2, because β2 is unidentified (since εi1 and ε̂i1 are one and the
same variable). The parameters are as follows: T intercept parameters αt, T
residual variance parameters θt = V ar(ε̂it) (assuming εi1 = ε̂i1), T − 1 auto-
regressive parameters ρt for t > 1, T − 2 moving-average parameters βt for
t > 2, and 1 random intercept variance parameter ψ = V ar(ηi). It should be
noted here that if the random intercept loadings are all free parameters, the
RI-ARMA model and the D-RI-ARMA model become equivalent and there
is a simple reparameterization between the two models. This equivalence
hold only in the univariate case and requires the removal of the first moving
average parameter from the D-RI-ARMA model which would be unidenti-
fied when all the loadings are free, just as it is in the RI-ARMA case. In the
multivariate case, an equivalence between the two models can be established
if the loadings and the auto-regressive parameters are time invariant. If the
loadings and the auto-regressive parameters are time specific, however, the
models are not equivalent. Translating the multivariate RI-ARMA model
into a multivariate D-RI-ARMA model, we find that the random intercept
variables will cross-load onto the other variables, i.e., under the restriction
that each variable random intercepts load only on that variable process (di-
agonal loading matrix), the two models are not equivalent. In a more broader
framework, where the time invariant portion of the processes (the random
intercepts) can cross-load freely on all the variables as in EFA, the two mul-
tivariate models would be equivalent when all parameters are time-specific.

In practical applications, there may be a substantive reason to prefer one
of the two models, see Hamaker et al. (2015), Usami (2021) and Orth et
al. (2021), but generally the chi-square test of fit can be used to determine
which of the two models is best suited for the data.

The new Mplus hats language does not allow us to directly code the RI-
ARMA model. Instead it should be done through the creation of the residual
latent variables as in Hamaker (2018), which would then be followed by the
ARMA model for those latent variables using the hats language. Mplus input
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model statements for the RI-ARMA model are illustrated in Figure 8, where
the factors ft correspond to εit in equation (23).

The RI-ARMA and D-RI-ARMA models are examples of the extended
RSEM model given in equations (5-6), rather than the basic RSEM model
given in equations (1-3). Here, the residuals are used to augment the primary
SEM model. Models with continuous variables can be estimated with the ML
estimator, while models with categorical variables can be estimated with the
WLSMV estimator. For categorical data, the RI-ARMA and D-RI-ARMA
models are defined for Y ∗it instead of Yit and the residual variances θt are fixed
to 1 for identification purposes. With the Bayes estimator, it is possible to
estimate the model by introducing latent variables to replace εi1. Such an
approach however will require fixing the residual variance of Yit to small
positive value and will result in slow and inefficient estimation. Therefore
the Bayesian estimation is not recommended for the RI-ARMA/D-RI-ARMA
models at this time. The minimum number of time points needed to estimate
the RI-ARMA/D-RI-ARMA models with ordered categorical variables will
be slightly higher than it is for continuous variables and with binary variables
it will be slightly higher than for ordered categorical.
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Figure 8: Mplus RI-ARMA model statement

Model:
i by y1-y7@1;
f1 by y1@1; y1@0;
f2 by y2@1; y2@0;
f3 by y3@1; y3@0;
f4 by y4@1; y4@0;
f5 by y5@1; y5@0;
f6 by y6@1; y6@0;
f7 by y7@1; y7@0;
f1 with i@0;
f2-f7 pon f1-f6;
f3-f7 pon f2^-f6^;
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3.3.4 RI-MEAR model

Next, we introduce the RI-MEAR (random intercept measurement error
auto-regressive) model which is equivalent to the RI-ARMA model given
in equations (23-25). The random intercept part of the model is the same as
in the RI-ARMA model and is given by the following equation

Yit = αt + ηi + Ŷit. (26)

The MEAR model is then defined for the residual variables Ŷit. The mea-
surement error part of the model is given by

Ŷit = fit + eit (27)

where eit represents the measurement error. The auto-regressive part of the
model is given for t > 1

fit = ρtfi,t−1 + ξit. (28)

For t = 1 we augment the model with fi1 = ξi1 for convenience. This
model has 4T parameters: T intercept parameters αt, T measurement error
variance parameters σt = V ar(eit), T residual variance parameters vt =
V ar(ξt), T−1 auto-regressive parameters ρt, and 1 random intercept variance
parameter φ = V ar(ηi). This means the RI-MEAR model has two extra
parameters as compared to the RI-ARMA model. Note however that vT
and σT are indistinguishable parameters. Both play the same role in the
model implied variance covariance matrix V ar(Y ). Thus one of the two
parameters must be eliminated from the model, otherwise the model will
not be identified. For convenience, we set σT = 0, i.e., the measurement
error at the last measurement occasion cannot be identified separately. The
same thing in fact applies to the first measurement occasion, although the
non-identification there is slightly more complex and it would involve also
the first auto-regressive parameter ρ2. The three parameters v1, σ1 and ρ2
are involved in the following indeterminacy. A set of other parameters v′1, σ

′
1

and ρ′2 would imply exactly the same variance covariance matrix V ar(Y ) if
these two equations are satisfied

v′1 + σ′1 = v1 + σ1 (29)

(ρ′2)
2v′1 = (ρ2)

2v1. (30)

Since these two quantities can not be used to determine 3 parameters, one
of the three parameters is unidentified. We conclude that the measurement
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error at the first occasion also can not be identified and we set σ1 = 0. With
the two necessary identification constraints σ1 = σT = 0, the RI-MEAR
model has the same number of parameters as the RI-ARMA model. The
identification issues for this model are exactly the same as the identification
issues of the quasi simplex model discussed in Joreskog (1978). The RI-
MEAR model reduces to the quasi simplex model if we remove the random
intercept ηi. The identification constraints typically used with the quasi
simplex model are to hold the unidentified variance components to be equal
to the ones in the neighbouring period, that is σ1 = σ2 and σT = σT−1. Such
alternate identification constraints can be used with the RI-MEAR model as
well. The choice of the identification constraints does not affect the model
fit as the models are equivalent and there is a simple reparameterization
between the alternate versions.

The equivalence between the RI-MEAR and RI-ARMA models is estab-
lished in the Appendix. The RI-MEAR model gives an alternative interpre-
tation of the RI-ARMA model. The main interpretation is that the variable
Yit has a measurement error eit. If that measurement error is removed, the
model will be reduced to the simpler RI-AR model. Note, however, that in
practice eit doesn’t necessarily need to be interpreted as measurement error.
It can simply be interpreted as a instantaneous effect that has no carry-over
effect to the next period, i.e., instantaneous input to the process that leave
no trace past the current period. The RI-ARMA model, however, appears to
be more robust in small and medium sample sizes and smaller values of T .
The RI-ARMA model estimation is more likely to converge, it is less likely to
have exploding parameter values, it is less likely to require multiple random
starting values in the estimation procedure, it is less likely to have multiple
solutions, and it is less likely to yield inadmissible solutions, such as negative
variances. The reparameterization formulas given in the Appendix show that
the RI-MEAR model is expected to perform well when all moving average
parameters are negative and all auto-regressive parameters are positive. In
simulation studies, where parameters vary in a certain range, these restric-
tions are likely to be violated, particularly so when T and N are small, when
the range in the parameter estimates is bigger.

There are two different ways to estimate the RI-MEAR model in Mplus.
The first approach is given in Figure 9, where the factors ft correspond
to fit in equation (27) and the residual variance of Yt correspond to the
measurement error eit. The constraints σ1 = σT = 0 are implemented by
fixing the first and the last residual variance to zero for the observed variables.
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The second approach is given in Figure 10, where the factors ft correspond
to the measurement errors eit and the hat variables Ŷt correspond to factors
fit in equation (27). The constraints σ1 = σT = 0 are implemented by not
having factors ft for the first and the last variable. The second approach
appears to have two advantages and is therefore the recommended approach.
Limited experimentation suggests that the second approach is more likely
to converge. Also, the second approach is more efficient with the Bayesian
estimation as it avoids fixing residual variances to 0.

The RI-MEAR model is very similar to the TSE (trait–state–error) model
of Kenny and Zautra (1995) and discussed further by Cole et al. (2005). The
difference between these models is only in the identification of the model
parameters. In the RI-MEAR model, all parameters are time-specific, while
in the TSE model the parameters are time-invariant. The TSE model has just
5 parameters: ρt = ρ, αt = α, σt = σ, vt = v, for t > 1, and v1. An important
difference between the models is in the identification of the variance of the
measurement error. In the RI-MEAR model, the measurement errors in the
first and last time points cannot identified and are thus removed from the
model. On the other hand, the TSE model identifies the variance of the
measurement error by holding it equal across time. Overall, the RI-MEAR
model can be viewed as a more flexible version of the TSE model. The
TSE model is nested within the RI-MEAR model. If time invariance of the
model parameters is not supported by the data, the TSE model is prone to
convergence failures and inadmissible parameter solutions, such as negative
variance parameters.
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Figure 9: Mplus RI-MEAR model statement

Analysis: estimator = ml; model=nocov;

Model:
i by y1-y8@1;
f1 by y1; 
f2 by y2; 
f3 by y3;
f4 by y4;
f5 by y5; 
f6 by y6; 
f7 by y7; 
f8 by y8; 
f2-f8 pon f1-f7;
y1@0 y8@0;
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Figure 10: Alternate (preferred) Mplus RI-MEAR model statement

Analysis: estimator = ml; model=nocov;

Model:
i by y1-y8@1;
y2^-y8^ pon y1^-y7^;
f2 by y2@1;
f3 by y3@1;
f4 by y4@1;
f5 by y5@1;
f6 by y6@1;
f7 by y7@1;
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3.3.5 RI-ARMA and RI-MEAR models for categorical data

Next, we consider the RI-ARMA and the two different ways of writing the RI-
MEAR model for categorical data. Here, the equivalence between the models
is somewhat more complicated. The issue that complicates the comparison
is how the metric is set for the variables. In the RI-ARMA model the metric
is set by fixing the residual variance of the factors fi in Figure 8 to 1, that is
θt = 1. In the RI-MEAR model given in Figure 10, the metric will be set by
fixing the residual variances of Ŷt to 1, that is vt = 1. In the RI-MEAR model
given in Figure 9, the metric will be set by fixing the residual variances of the
factors fi to 1, that is also vt = 1, but one must free the variances of Yt for all
but the first and the last time points (those will be fixed by default). The two
RI-MEAR methods will yield the same model, however, that model will be
different from the RI-ARMA model. The reparameterization formulas given
in the Appendix show that θt = 1 doesn’t translate into vt = 1. To make the
conversion from the RI-ARMA to the RI-MEAR model, the constraint θt = 1
should be translated into a constraint for vt. This is illustrated in Figure 11.
In this figure, we generate data according to the RI-ARMA model and we
estimate the RI-MEAR model using the approach of Figure 10. Instead of
using vt = 1 as the scale setter in the estimation, we use θt = 1 as it is in the
data generating model. That amounts to freeing vt for t > 1 and restricting
these parameters in the model constraints command through the conversion
formulas so that θt = 1. Doing so will result in equivalence of the RI-MEAR
and RI-ARMA models. When we estimate this model over 100 replications,
we obtain an average chi-square value of 26, which with 27 degrees of freedom
results in 3% rejection rate. If we instead use vt = 1 as the scale setter in
this simulation, we obtain an average chi-square value of 44 and a rejection
rate of 54%. We conclude that the RI-ARMA and the RI-MEAR models are
equivalent for categorical data as well, however, in their native scale setter,
the two models are different. In practical settings, both models should be
estimated in their default state as we expect to see different levels of fit.
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Figure 11: RI-MEAR to RI-ARMA conversion for categorical data

montecarlo: names = y1-y10;
nobs = 1000; nreps = 1;
categorical=all; generate=y1-y10(4);

analysis: estimator=wlsmv; param=theta; model=nocov;

model population:
f1 by y1@1; f2 by y2@1; f3 by y3@1; f4 by y4@1; 
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1; 
f9 by y9@1; f10 by y10@1;  
f1-f10@1; y1-y10@0;
f2-f10 pon f1-f9*0.5;
f3-f10 pon f2^-f9^*-0.3;
f by y1-y10@1; f*1;
[y1$1-y10$1*-1.5];
[y1$2-y10$2*0];
[y1$3-y10$3*1];
[y1$4-y10$4*2];

model:
f2 by y2@1; f3 by y3@1; f4 by y4@1; 
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1; 
f9 by y9@1; f2-f9 (s2-s9); 
y2^-y10^ pon y1^-y9^*0.5 (r2-r10);
y2-y10 (v2-v10);
f by y1-y10@1; f*1;

model constraints:
v2=1-s2;
v3=1-s3-r3*r3*s2*(1-s2);
v4=1-s4-r4*r4*s3*(1-s3);
v5=1-s5-r5*r5*s4*(1-s4);
v6=1-s6-r6*r6*s5*(1-s5);
v7=1-s7-r7*r7*s6*(1-s6);
v8=1-s8-r8*r8*s7*(1-s7);
v9=1-s9-r9*r9*s8*(1-s8);
v10=1-r10*r10*s9*(1-s9);35



3.3.6 Simulation studies with continuous variables

To illustrate the D-RI-ARMA model for continuous variables, we conduct
a simulation study using T = 10 time points for N = 1000 observations.
The Mplus input file for this simulation is given in Figure 12 and the re-
sults for some of the parameters are given in Figure 13. The results indicate
that the estimation performs well. In fact, the standard errors for all pa-
rameters are sufficiently small and all the parameters were significant in all
100 replications. The chi-square test of fit has an average value of 26 in
this case which matches the degrees of freedom and yields a rejection rate
of 6%. If we estimate the model without the moving-average parameters βt
on the same data, i.e. using the D-RI-AR model, the autoregressive coef-
ficients are underestimated, the random intercept variance is overestimated
and the average chi-square value is 233. With 35 degrees of freedom the
model is rejected for all 100 replications. If we estimate the RI-AR model on
the same data, the AR coefficients are also underestimated and the random
intercept variance overestimated. In that case the chi-square average value is
690, which with 35 DF also results in 100% rejection rate. If we estimate the
RI-ARMA model on the same data, the chi-square average value is 56, which
with 27 DF also results in 85% rejection rate. Importantly, when the RI-
ARMA model was estimated on the D-RI-ARMA generated data, multiple
local solutions were found. Using 50 random starting values, between 0 and 3
local solutions are found in each replication. In 14% of the replications, the
model estimation did not converge. Therefore, in practical situations, the
RI-ARMA and the D-RI-ARMA models should be estimated in combination
with the starts option in Mplus. In conclusion, the D-RI-ARMA model is
well identified and can be used to improve model fit for those situations when
the RI-AR/D-RI-AR/RI-ARMA models are rejected.
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Figure 12: D-RI-ARMA simulation study

  montecarlo: names = y1-y10;
  nobs = 1000; nreps = 100;

  analysis: estimator=ml; proc=2;

  model population:
  y1-y10*1;
  y2-y10 pon y1-y9*0.5;
  y2-y10 pon y1^-y9^*-0.3;
  f by y1-y10@1;
  f*1;

  model:
  y1-y10*1;
  y2-y10 pon y1-y9*0.5;
  y2-y10 pon y1^-y9^*-0.3;
  f by y1@1 y2-y10@1;
  f*1;
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Figure 13: D-RI-ARMA simulation study results

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y2       ON
  Y1^                -0.300    -0.3016     0.0621     0.0638     0.0038 0.960 1.000

 Y3       ON
  Y2^                -0.300    -0.3012     0.0520     0.0507     0.0027 0.940 1.000

 Y4       ON
  Y3^                -0.300    -0.2982     0.0453     0.0483     0.0020 0.950 1.000

 Y2       ON
  Y1                  0.500     0.4999     0.0537     0.0536     0.0028 0.950 1.000

 Y3       ON
  Y2                  0.500     0.4998     0.0270     0.0311     0.0007 0.990 1.000

 Y4       ON
  Y3                  0.500     0.5010     0.0239     0.0264     0.0006 0.960 1.000

 Variances
  F                   1.000     0.9938     0.0727     0.0781     0.0053 0.980 1.000
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3.3.7 Simulation studies with categorical variables

A simulation study for the D-RI-ARMA model with categorical data using
the WLSMV estimator is shown in Figure 14. The results of the simulation
study are given in Figure 15. Similarly, a simulation study for the RI-ARMA
model with categorical data is shown in Figure 16 and the results are given in
Figure 17. The results indicate that for both models the estimation performs
well with categorical data. The average chi-square value for the RI-ARMA
model in Figure 16 is 26 and with 27 degrees of freedom that yields a rejection
rate of 4%. For comparison, we analyze the RI-ARMA generated data with
the D-RI-ARMA, D-RI-AR and RI-AR models. The D-RI-ARMA model
appears to yield unbiased estimates for the random intercept variance, but
the auto-regressive parameters are underestimated. The average chi-square
in that case is 78 and with 26 degrees of freedom that yields a rejection
rate of 98%. Multiple solutions are found with 10 random starting values
in some of the replications. The average chi-square value for the D-RI-AR
model is 150 and with 35 degrees of freedom that yields 100% rejection
rate. In that case, both the random intercept variance and the autoregressive
coefficients are underestimated. The average chi-square value for the RI-AR
model is 51 and with 35 degrees of freedom that yields 55% rejection rate.
In that case, the random intercept variance is slightly overestimated while
the auto-regressive coefficients are underestimated. Overall, the RI-ARMA
model with categorical variables is clearly distinguishable from the alternative
models and can be pursued in those situations when the simpler D-RI-AR
and RI-AR models are rejected.
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Figure 14: D-RI-ARMA with categorical data simulation study

  montecarlo: names = y1-y10;
   nobs = 1000; nreps = 100;
   categorical=all;
   generate=y1-y10(4);

  analysis: estimator=wlsmv; proc=2;
  param=theta;

  model population:
  y1-y10*1;
  y2-y10 pon y1-y9*0.5;
  y2-y10 pon y1^-y9^*-0.3;
  f by y1-y10@1; f*1;
  [y1$1-y10$1*-1.5];
  [y1$2-y10$2*0];
  [y1$3-y10$3*1];
  [y1$4-y10$4*2];

  model:
  y2-y10 pon y1-y9*0.5;
  y2-y10 pon y1^-y9^*-0.3;
  f by y1-y10@1; f*1;
  [y1$1-y10$1*-1.5];
  [y1$2-y10$2*0];
  [y1$3-y10$3*1];
  [y1$4-y10$4*2];
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Figure 15: D-RI-ARMA with categorical data simulation study results

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y2       ON
  Y1^                -0.300    -0.3061     0.1047     0.0999     0.0109 0.970 0.890

 Y3       ON
  Y2^                -0.300    -0.2990     0.0833     0.0819     0.0069 0.950 0.970

 Y4       ON
  Y3^                -0.300    -0.3059     0.0698     0.0759     0.0049 0.970 0.990

 Y2       ON
  Y1                  0.500     0.5004     0.1023     0.0958     0.0104 0.940 1.000

 Y3       ON
  Y2                  0.500     0.4974     0.0621     0.0634     0.0038 0.970 1.000

 Y4       ON
  Y3                  0.500     0.5053     0.0521     0.0563     0.0027 0.980 1.000

 Variances
  F                   1.000     0.9982     0.1028     0.1098     0.0105 0.970 1.000
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Figure 16: RI-ARMA with categorical data simulation study

montecarlo: names = y1-y10;
nobs = 1000; nreps = 100;
categorical=all; generate=y1-y10(4);

analysis: estimator=wlsmv; param=theta; model=nocov;

model population:
f1 by y1@1; f2 by y2@1; f3 by y3@1; f4 by y4@1; 
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1; 
f9 by y9@1; f10 by y10@1;  
f1-f10@1; y1-y10@0;
f2-f10 pon f1-f9*0.5;
f3-f10 pon f2^-f9^*-0.3;
f by y1-y10@1; f*1;
[y1$1-y10$1*-1.5];
[y1$2-y10$2*0];
[y1$3-y10$3*1];
[y1$4-y10$4*2];

model:
f1 by y1@1; f2 by y2@1; f3 by y3@1; f4 by y4@1; 
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1; 
f9 by y9@1; f10 by y10@1;  
f1-f10@1; y1-y10@0;
f2-f10 pon f1-f9*0.5;
f3-f10 pon f2^-f9^*-0.3;
f by y1-y10@1; f*1;
[y1$1-y10$1*-1.5];
[y1$2-y10$2*0];
[y1$3-y10$3*1];
[y1$4-y10$4*2];
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Figure 17: RI-ARMA with categorical data simulation study results

MODEL RESULTS
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 F2       ON
  F1                  0.500     0.5075     0.0621     0.0529     0.0039 0.960 1.000

 F3       ON
  F2                  0.500     0.5049     0.1019     0.0988     0.0103 0.950 1.000
  F2^                -0.300    -0.3076     0.1162     0.1067     0.0134 0.920 0.830

 F4       ON
  F3                  0.500     0.5464     0.1633     0.1614     0.0286 0.940 0.950
  F3^                -0.300    -0.3461     0.1632     0.1608     0.0285 0.970 0.650

 Thresholds
  Y1$1               -1.500    -1.4863     0.0720     0.0703     0.0053 0.940 1.000
  Y1$2                0.000     0.0093     0.0541     0.0557     0.0030 0.970 0.030
  Y1$3                1.000     1.0027     0.0607     0.0620     0.0037 0.970 1.000
  Y1$4                2.000     2.0012     0.0811     0.0838     0.0065 0.980 1.000
  Y2$1               -1.500    -1.4963     0.0627     0.0704     0.0039 0.960 1.000
  Y2$2                0.000     0.0050     0.0523     0.0593     0.0027 0.980 0.020
  Y2$3                1.000     1.0023     0.0662     0.0639     0.0043 0.950 1.000
  Y2$4                2.000     2.0042     0.0762     0.0814     0.0058 0.970 1.000

 Variances
  F                   1.000     0.9743     0.0944     0.0792     0.0095 0.970 0.990
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3.3.8 Bivariate models

Next we illustrate the bivariate version of the RI-ARMA model where all
cross-lagged relations are present. This model can be viewed as the matrix
version of the univariate RI-ARMA model given in equations (23-25). In
this bivariate version, Yit, αt, ηi, εit, ε̂it are all vectors of size 2, while the
regression parameters ρt and βt are square matrices of size 2. This model can
also be viewed as the moving average extension of the RI-CLPM described in
equations (16-19). As in the univariate case, this model is recommended only
when T > 7, unless time-invariance in some of the parameters is assumed.
Figure 18 shows the input file for a bivariate RI-ARMA model simulation
study with T = 10. The results of the simulation, given in Figure 19, in-
dicate the ML estimation performs well. The average chi-square value in
this simulation study is 107, which with 110 degrees of freedom results in
3% rejection rate. For comparison, using the same data generation, we esti-
mate the bivariate RI-ARMA model without the cross-lagged moving average
components, i.e., restricting the βt regression matrix to be a diagonal square
matrix. In that case, the average chi-square value is 147, which with 126 de-
grees of freedom results in 34% rejection rate. In 66% of the replications, the
bivariate RI-ARMA model without the cross-lagged moving average compo-
nents provides sufficient fit for the data even though the data was generated
with the full bivariate RI-ARMA model. Thus, excluding the cross-lagged
moving average components provides a more parsimonious alternative to the
full bivariate RI-ARMA model, which can be useful in practical applications
and may provide sufficient model fit. For comparison, we also estimate the
RI-CLPM for these data. The average chi-square test of fit for the RI-CLPM
model is 255, which with 142 degrees of freedom results in 100% rejection
rate. To summarize, the bivariate RI-ARMA model can be used in those situ-
ations where the simpler RI-CLPM model is rejected. We also note here that
the bivariate RI-ARMA model is equivalent to a bivariate RI-MEAR model,
just as this is so in the univariate case. The bivariate RI-MEAR model, how-
ever, must include residual cross-correlation between the measurement error
and the observed variables.

The bivariate version of the D-RI-ARMA model has also been discussed
in Zyphur et al. (2020a) and Zyphur et al. (2020b). The GCLM model
defined in these articles, however, has different parameter restrictions. The
loading parameters for the random intercept are all free parameters, except
for one time point, while all auto-regressive and moving-average parameters
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are time-invariant. The new hats language in Mplus can be used to simplify
the specification for the GCLM model as well. Using data from Van Iddekinge
et al. (2009), the GCLM is illustrated in the online materials provided in
Zyphur et al. (2020a). The original Mplus model statement used in Zyphur
et al. (2020a) is given in Figure 20, while the new simplified model statement
is given in Figure 21.
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Figure 18: Bivariate RI-ARMA simulation study

montecarlo: names = y1-y10 z1-z10;
nobs = 1000; nreps = 100;

analysis: estimator=ml; model=nocov;

model population:
f1 by y1@1; f2 by y2@1; f3 by y3@1; f4 by y4@1;
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1;
f9 by y9@1; f10 by y10@1;
g1 by z1@1; g2 by z2@1; g3 by z3@1; g4 by z4@1;
g5 by z5@1; g6 by z6@1; g7 by z7@1; g8 by z8@1;
g9 by z9@1; g10 by z10@1;
f1-f10*1; y1-y10@0; g1-g10*1; z1-z10@0;
f by y1-y10@1; f*1; g by z1-z10@1; g*1;
f2-f10 g2-g10 pon f1-f9*0.5 g1-g9*0.5;
g2-g10 f2-f10 pon f1-f9*0.2 g1-g9*0.2;
f3-f10 g3-g10 pon f2^-f9^*-0.3 g2^-g9^*-0.3;
g3-g10 f3-f10 pon f2^-f9^*-0.2 g2^-g9^*-0.2;
f1-f10 pwith g1-g10*0.3; f with g*0.3;

model:
f1 by y1@1; f2 by y2@1; f3 by y3@1; f4 by y4@1;
f5 by y5@1; f6 by y6@1; f7 by y7@1; f8 by y8@1;
f9 by y9@1; f10 by y10@1;
g1 by z1@1; g2 by z2@1; g3 by z3@1; g4 by z4@1;
g5 by z5@1; g6 by z6@1; g7 by z7@1; g8 by z8@1;
g9 by z9@1; g10 by z10@1;
f1-f10*1; y1-y10@0; g1-g10*1; z1-z10@0;
f by y1-y10@1; f*1; g by z1-z10@1; g*1;
f2-f10 g2-g10 pon f1-f9*0.5 g1-g9*0.5;
g2-g10 f2-f10 pon f1-f9*0.2 g1-g9*0.2;
f3-f10 g3-g10 pon f2^-f9^*-0.3 g2^-g9^*-0.3;
g3-g10 f3-f10 pon f2^-f9^*-0.2 g2^-g9^*-0.2;
f1-f10 pwith g1-g10*0.3; f with g*0.3;
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Figure 19: Bivariate RI-ARMA simulation study results

MODEL RESULTS
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
 F2       ON
  F1                  0.500     0.4950     0.0423     0.0427     0.0018 0.946 1.000
  G1                  0.200     0.2033     0.0443     0.0412     0.0020 0.946 1.000
 F3       ON
  F2                  0.500     0.4984     0.1415     0.1248     0.0198 0.913 0.978
  G2                  0.200     0.2048     0.1194     0.1223     0.0141 0.978 0.380
  F2^                -0.300    -0.3027     0.1369     0.1229     0.0185 0.935 0.707
  G2^                -0.200    -0.2044     0.1088     0.1208     0.0117 0.967 0.380

 G2       ON
  G1                  0.500     0.4959     0.0447     0.0435     0.0020 0.946 1.000
  F1                  0.200     0.1960     0.0424     0.0413     0.0018 0.924 1.000
 G3       ON
  G2                  0.500     0.4907     0.1239     0.1263     0.0153 0.946 0.946
  F2                  0.200     0.2108     0.1290     0.1212     0.0166 0.946 0.402
  G2^                -0.300    -0.2923     0.1238     0.1239     0.0152 0.967 0.674
  F2^                -0.200    -0.2070     0.1292     0.1194     0.0166 0.946 0.391

 F        WITH
  G                   0.300     0.2800     0.1897     0.1266     0.0360 0.902 0.891

 F1       WITH
  G1                  0.300     0.3254     0.1891     0.1236     0.0360 0.924 0.946

 Variances
  F                   1.000     0.9766     0.1927     0.1389     0.0373 0.924 0.978
  G                   1.000     0.9820     0.1904     0.1406     0.0362 0.924 0.967
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Figure 20: Zyphur et al. (2020a) GCLM model specification

  ANALYSIS:  Estimator = ML;

  MODEL:
  ! Unit Effects
  Eta1_X by X6-X1;
  Eta1_Y by Y6-Y1;

  ! Impulses
  u_X6 by X6; X6@0; u_X5 by X5; X5@0; u_X4 by X4; X4@0; u_X3 by X3;
  X3@0; u_X2 by X2; X2@0; u_X1 by X1; X1@0;
  u_Y6 by Y6; Y6@0; u_Y5 by Y5; Y5@0; u_Y4 by Y4; Y4@0; u_Y3 by Y3;
  Y3@0; u_Y2 by Y2; Y2@0; u_Y1 by Y1; Y1@0;

  ! AR Terms
  X6-X2 PON X5-X1 (AR1_X);
  Y6-Y2 PON Y5-Y1 (AR1_Y);

  ! MA Terms
  X6-X2 PON u_X5-u_X1 (MA1_X);
  Y6-Y2 PON u_Y5-u_Y1 (MA1_Y);

  ! CL Terms
  X6-X2 PON Y5-Y1 (CL1_XY);
  Y6-Y2 PON X5-X1 (CL1_YX);

  ! CLMA Terms
  X6-X2 PON u_Y5-u_Y1 (CLMA1_XY);
  Y6-Y2 PON u_X5-u_X1 (CLMA1_YX);

  ! Restrictions
  u_X6-u_X1 WITH Eta1_X@0 Eta1_Y@0;
  u_Y6-u_Y1 WITH Eta1_X@0 Eta1_Y@0;
  u_X6-u_X1 WITH u_X6-u_X1@0;
  u_Y6-u_Y1 WITH u_Y6-u_Y1@0; u_X6-u_X1 WITH u_Y6-u_Y1@0;

  ! Co-Movements
  u_X6 WITH u_Y6;
  u_X5 WITH u_Y5;
  u_X4 WITH u_Y4;
  u_X3 WITH u_Y3;
  u_X2 WITH u_Y2;
  u_X1 WITH u_Y1;
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Figure 21: Zyphur et al. (2020a) GCLM simplified model specification using
RSEM hats language

ANALYSIS: Estimator = ML; model=nocov;

MODEL:
! Unit Effects
Eta1_X by X6-X1;
Eta1_Y by Y6-Y1;

! AR Terms
X6-X2 PON X5-X1 (AR1_X);
Y6-Y2 PON Y5-Y1 (AR1_Y);

! MA Terms
X6-X2 PON X5^-X1^ (MA1_X);
Y6-Y2 PON Y5^-Y1^ (MA1_Y);

! CL Terms
X6-X2 PON Y5-Y1 (CL1_XY); 
Y6-Y2 PON X5-X1 (CL1_YX); 

! CLMA Terms
X6-X2 PON Y5^-Y1^ (CLMA1_XY); 
Y6-Y2 PON X5^-X1^ (CLMA1_YX); 

X6-X1 PWITH Y6-Y1;
ETA1_Y WITH ETA1_X;

49



3.4 Residual variables as predictors

In certain situations it is possible to use the residual variables as predictors
for other variables. As an example we consider a factor analysis model where
the factor and some of the residuals can be used to predict a distal outcome
variable. The factor analysis model is given by the following equation. For
p = 1, ..., P

Yp = νp + λpη + εp (31)

εp ∼ N(0, θp) (32)

η ∼ N(0, 1). (33)

We can now use the latent factor η as well as the residuals εp to predict a
distal outcome variable Z as follows

Z = α + β0η +
P∑

p=1

βpεp + ζ, (34)

where ζ ∼ N(0, ψ). Not all of the βi parameters can be identified. A max-
imum of P regression parameters can be identified in the above equation
and therefore at least one of these must be fixed to zero. Within the BSEM
framework of Muthén and Asparouhov (2012), it is possible to estimate all
of the regression parameters in an exploratory sense where tiny priors are
specified for β1, ..., βP .

The above model allows us explore predictive relations between the indi-
cator variables Yp and the distal outcome variable that go beyond the predic-
tive effect of the measured factor. In principle, in the above model, one can
use Yp directly instead of εp. In certain situations, however, it is preferable to
use the independent predictors εp and η because additional predictors would
not affect the existing regression coefficients.

Note also that equation (34) is equivalent to the following model

Z = α + β0η + Ẑ (35)

Ẑ =
P∑

p=1

βpεp + ζ. (36)

Even though these models are equivalent, they are coded differently in Mplus.
Model (34) would be specified as Z on Y1ˆ -YPˆ while model (35-36) would

50



use the Z ˆ on Y1ˆ -YPˆ specification. There are two important differences
between these two versions. First, the two models will not be equivalent if the
residual of Z is used as a predictor in an another equation. That is because
in model (34) the residual of Z is ζ, while in model (35-36) the residual of
Z is Ẑ. The second difference is specific to the estimators. With the current
capabilities in Mplus, the Bayesian estimation allows residual variables to be
regressed only among each other. That means that only model (35-36) can
be estimated with the Bayesian estimator. The ML estimator can be used
to estimate both models and residual variables can be used as predictors for
all variables in the model.

Figure 22 shows an example of a simulation input file for the above model
where two of the residuals of the factor model are used as predictors for
a distal outcome. Figure 23 shows the results from this simulation for a
selection of the parameters. The results indicate that the model estimation
performs well.

The models discussed in this section extend to categorical variables as
well. The Bayesian estimator as well as the WLSMV estimator can be used
to estimate models where the residuals of categorical variables are used to
predict distal outcomes.
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Figure 22: Input file for a simulation study where residual variables are used
as predictors

montecarlo:
 names = y1-y7 z;
 nobs = 1000;
 nreps = 100;

analysis: estimator=bayes; proc=2;

model population:
f by y1-y7*1; f@1;
y1-y7*1 z*1;
z^ on y3^*.1;
z^ on y4^*.3;
z on f*.5;

 model:
f by y1-y7*1; f@1;
y1-y7*1 z*1;
z^ on y3^*.1;
z^ on y4^*.3;
z on f*.5;
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Figure 23: Output results for a simulation study where residual variables are
used as predictors

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 F        BY
  Y1                  1.000     1.0098     0.0392     0.0406     0.0016 0.950 1.000
  Y2                  1.000     1.0075     0.0378     0.0406     0.0015 0.970 1.000
  Y3                  1.000     1.0040     0.0383     0.0409     0.0015 0.950 1.000

 Z          ON
  F                   0.500     0.5101     0.0444     0.0385     0.0021 0.910 1.000

 Z^         ON
  Y3^                 0.100     0.0975     0.0359     0.0343     0.0013 0.920 0.780
  Y4^                 0.300     0.3020     0.0358     0.0348     0.0013 0.940 1.000
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3.5 Incomplete variance covariance blocks with the
Bayesian estimation

The Bayesian estimation is most efficient when conjugate priors are used for
all model parameters. For the variance covariance parameters, the conjugate
prior is the Inverse-Wishart prior. However, that prior is only available when
the variance covariance matrices are block diagonal, see Asparouhov and
Muthén (2010). If a variance covariance structure is not block diagonal, con-
jugate priors are not available. In such situations, the Mplus Bayesian estima-
tion uses the much less efficient algorithm of random walk based Metropolis-
Hastings (MH). This algorithm is specified in Mplus with the option algo =
gibbs(rw). In simpler models, the MH algorithm performs well, although it
usually takes a very large number of MCMC iterations to converge. In more
complex models, however, where other estimation challenges may exist, the
MH algorithm will simply fail to converge even with a very large number of
MCMC iterations.

The block-diagonal model restriction can be formulated in practical terms
as follows. If a variable Z is correlated with variables Y1 and Y2, then Y1 and
Y2 must also be correlated. In certain modeling situations, however, the
covariance between Y1 and Y2 can not be estimated. If for example Y1 is
regressed on Y2, the covariance between Y1 and Y2 can not be estimated
because the model would become unidentified. In such situations, the only
alternative would be to use the inefficient MH algorithm. The RSEM model,
however, appears to provide a solution to this problem. Regressing the resid-
ual of Z on the residuals of Y1 and Y2 produces a variance covariance matrix
of the desired non-block diagonal pattern. That is, by using Zˆ on Y1ˆ Y2ˆ
model specification, we obtain a variance covariance matrix for the residuals
of Z, Y1 and Y2, where Z is correlated with Y1 and Y2, but Y1 is not correlated
with Y2.

We consider two more practical examples. The first example is related
to auxiliary variables that are used for improving the missing data handling,
see Asparouhov and Muthén (2008). In particular, formula (1) in that article
shows how adding auxiliary variable to a model, for the purpose of improving
the missing data handling, leads to incomplete / non-block diagonal variance
covariance matrices. Consider again the model given in equations (31-36).
For the purposes of this illustration, however, we interpret the variable Z
as an auxiliary variable that may contain information related to the missing
values of the factor indicators Yp. We want Z to be correlated with all
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residual variables εp. If we are to form a complete block diagonal matrix
in such an example, we would have to model all correlations among all the
residual variables εp as well. This of course will make the factor model
unidentified. Thus, it is important to correlate Z with εp without introducing
any correlations among the residuals. The RSEM model in equation (36)
provides exactly that. In fact, the example provided in Figure 22 implies
precisely that kind of incomplete variance covariance matrix between Z, ε3
and ε4. The model implied variance covariance shows that Cov(ε3, ε4) = 0
while both Cov(Z, ε3) and Cov(Z, ε4) are not zero.

The second practical example is related to growth models, similar to the
model given in equation (7). It is a fairly common practice to include in that
model all correlation parameters between consecutive observations, i.e., the
parameters Cov(εi1, εi2), Cov(εi2, εi3), etc. Such a model would technically
not be an autoregressive model but because the correlations in the neigh-
boring observations are the strongest, a vast portion of the autocorrelations
would be modeled with the inclusion of these parameters. The resulting vari-
ance covariance matrix is not block diagonal as the only parameters that are
not zero in that variance covariance matrix are on the diagonal next to the
main diagonal. Estimating such a model would require the use of the MH
algorithm and would frequently become impossible to estimate due to the
inefficiency of the algorithm. We clearly cannot estimate the full variance
covariance matrix for the residuals as the growth model will become unidenti-
fied. The solution to this problem is given precisely in the RSEM model given
in equation (11) and is illustrated in Figure 1. We can replace the neigh-
boring correlation model with a full auto-regressive model. While the two
models are clearly not the same model as the autoregressive model implies
non-zero (but diminishing) correlations even in non-neighboring residuals, for
all practical purposes the RSEM model (11) resolves the problem completely.

3.6 BSEM estimation with unconstrained variance co-
variance for the residuals

The BSEM methodology described in Muthén and Asparouhov (2012) and
Asparouhov et al. (2015) can be used to discover residual correlation in a
general SEM model. Such a methodology is the Bayesian equivalent to the
modification indices methodology used with the ML estimator, see Sörbom
(1989). The method is based on estimating all residual covariance parameters
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within the SEM model. Because the SEM model becomes unidentified when
all residual correlations are included, a very restrictive prior is specified for
the residual variance covariance matrix. The prior would generally hold
the residual correlation near zero, unless, within the estimation, substantial
information is found in the data to indicate that a covariance parameter is
not zero. This is an iterative process that requires multiple model estimations
with varying degree of prior restrictiveness. The process is described in detail
in Asparouhov et al. (2015). Specifying a restrictive prior for a variance
covariance matrix, however, is somewhat difficult. Typically, the Inverse
Wishart prior is used for these parameters as this is the conjugate prior
needed for the most efficient Bayesian estimation. The Inverse Wishart prior
is a multivariate prior which makes the process difficult for two reasons. First,
the prior is specified not just for the covariances but also for the variances
in the variance/covariance matrix. Second, the level of prior restrictiveness
is the same for both the covariances and the variances. Thus, if we want
the covariances to be nearly fixed to 0, then we will need the variances to
also be nearly fixed. The values to which the variances must be nearly fixed
should be carefully picked as to not obstruct the SEM estimation. Within
the BSEM iterative process, this becomes cumbersome as the priors must be
carefully calibrated with every level of prior restrictiveness.

These complexities can be avoided with the RSEM model where conjugate
priors can be specified separately for all the variance covariance parameters
because they are essentially converted to regression among the residuals.
Restrictive conjugate priors for regression parameters are simply the normal
priors with mean zero and small variances. In the RSEM model, restrictive
conjugate priors are not given for the variances.

We illustrate the BSEM methodology utilization of the RSEM model
with a simple factor analysis model with P indicators Yp, p = 1, ..., P and
one factor η. The factor model is given by the following equation

Yp = νp + λpη + Ŷp, (37)

where as usual Ŷp are the residual variables and η ∼ N(0, 1). To explore
possible non-independence between the residuals we introduce the following
RSEM model

Ŷp =

p−1∑
i=1

βpiŶi + ζp. (38)

In this RSEM model, every residual is regressed on all the previous residuals.
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The model is equivalent to estimating the full variance covariance matrix for
the residuals. Next we impose the BSEM style prior on all the regression
parameters βpi

βpi ∼ N(0, σ), (39)

where σ is the intended to be a small value which controls the level of prior
restrictiveness.

We conduct a simulation study to illustrate the above process. We use
P = 7 factor indicators in the simulation study and sample size of N = 1000.
In the data generation we include 3 residual variances between indicators: Y1
and Y3, Y3 and Y5, and Y6 and Y7, as illustrated in Figure 24. This figure also
illustrates the BSEM utilization of RSEM and the tiny priors for the residual
regression parameters with σ = 0.01. As usual, we have to vary the value of
σ in this estimation process. With σ = 0 (i.e. the pure factor analysis model
without the RSEM extension), σ = 0.0001 and σ = 0.001, the PPP rejects all
100 of the replications in this study. With σ = 0.01, the PPP rejects 0 of the
replications. Therefore, we select σ = 0.01 as the level of prior restrictiveness
that would enable us to select the most promising residual covariances. The
results of this simulation study are shown in Figure 25, which contains the
top 6 in order of magnitude residual regression parameters. All other residual
regression parameters are smaller than 0.1 by absolute value. The top 3 of
these are precisely the ones used in the data generation model, i.e., the most
promising residual correlations reported by this BSEM+RSEM analysis are
exactly those that are needed. The final step in such an analysis would be
to include only those top few residual correlations (or residual regressions)
in the factor analysis model, without any restrictive priors.
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Figure 24: BSEM utilization of RSEM simulation study to determine the
residual variances needed for acceptable model fit

montecarlo:
 names = y1-y7;
 nobs = 1000;
 nreps = 100;

analysis: estimator=bayes;

model population:
f by y1-y7*1; f@1;
y1-y7*1;
y1 with y3*0.3;
y3 with y5*0.3;
y6 with y7*0.6;

 model:
f by y1-y7*1; f@1;
y1-y7*1;
y7^ on y1^-y6^*0 (p1-p6);
y6^ on y1^-y5^*0 (p7-p11);
y5^ on y1^-y4^*0 (p12-p15);
y4^ on y1^-y3^*0 (p16-p18);
y3^ on y1^-y2^*0 (p19-p20);
y2^ on y1^*0 (p21);

model prior: p1-p21~N(0,0.01);
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Figure 25: BSEM utilization of RSEM output results

MODEL RESULTS

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 Y5^        ON
  Y3^                 0.000     0.2654     0.0271     0.0584     0.0711 0.000 1.000

 Y7^        ON
  Y6^                 0.000     0.2463     0.0494     0.1161     0.0631 0.360 0.640

 Y3^        ON
  Y1^                 0.000     0.2416     0.0277     0.0574     0.0591 0.000 1.000

 Y6^        ON
  Y3^                 0.000    -0.1420     0.0206     0.0657     0.0206 0.210 0.790

 Y7^        ON
  Y3^                 0.000    -0.1383     0.0218     0.0603     0.0196 0.140 0.860
  Y5^                 0.000    -0.1067     0.0215     0.0594     0.0118 0.460 0.540
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3.7 LCA analysis with conditional dependence

LCA analysis can be combined with the RSEM methodology to explore con-
ditional dependence between the class indicators. Suppose that Y1,...,Yp are
categorical variables that measure a latent class variable C with K categories.
The standard LCA model is given by the following equations

P (Yp = l|C = k) = Φ(τpkl)− Φ(τpk,l−1) (40)

P (C = k) = pk (41)

where l = 1, ..., Lp represents the observed values for Yp and the threshold
parameters τpkl determine the prevalence of every category for every class. As
usual, we assume that τpk0 = −∞ and τpkLp =∞. The standard LCA model
assumes that all observed variables are conditionally independent, i.e., within
each class or conditional on the class variables, the Yp variables are indepen-
dent. This assumption is also sometimes referred to as the local independence
assumption. The latent class variables C is used to model all correlations
among the indicator variables. In practical applications, however, the as-
sumption is often violated. As an unfortunate consequence, spurious classes
that are difficult to interpret are introduced in the model to achieve good
model fit. One way to introduce local dependence, without additional spuri-
ous classes, is via continuous latent variables that influence pairs of variables
to create correlations between them. This approach, however, is limited in
the number of correlations that can be modeled. The ML estimation will
use numerical integration for each continuous latent variable and therefore
the modeling will be limited to a maximum of 3 or 4 correlations. With the
Bayes estimation, it is possible to add more latent variables but the model es-
timation efficiency will decrease as more latent components are added to the
model. With the ML estimation, it is possible to use the association model,
Asparouhov and Muthén (2015), using the Mplus option param=rescov,
however, such a model does not accommodate any additional predictors for
the observed variables at this time and will become computationally inten-
sive when the size of the variance/covariance matrix is larger. In addition,
the parameter estimates of the association model are on a somewhat of a
different metric than the standard LCA model which makes it a bit difficult
to use from a practical perspective. The most straight forward way to ad-
dress the local dependence is to simply add the correlation model for Y ∗, see
Asparouhov and Muthén (2011), as follows. We replace equation (40) by

Yp = l ⇐⇒ τpk,l−1 < Y ∗p ≤ τpkl (42)
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[Y ∗|C = k] = [Y ∗1 , ..., Y
∗
p |C = k] ∼ N(0,Σk) (43)

where Σk is a correlation matrix with 1 on the main diagonal. Currently this
model can be estimated only with the Bayesian estimator. For binary vari-
ables, the model is discussed in detail in Asparouhov and Muthén (2011) and
in Mplus 8.7 it can also be estimated with ordered categorical variables. The
model can also include continuous latent variables which would essentially
amount to estimating the model with Σk being a full variance covariance
matrix rather than a correlation matrix.

The algorithmic advance that allows us to now estimate the model with
ordered categorical variables can be described as follows. When the Y ∗ vari-
ance covariance matrix Σk is diagonal, the most efficient MCMC estimation
method is based on estimating the model by grouping Y ∗ and C in one up-
dating block, using Method 3 in Asparouhov and Muthén (2010) for updating
the latent class variable. This way, the latent class variable is updated di-
rectly from Y . When Σk is not diagonal, C and Y ∗ are not grouped together
because their joint conditional distribution is not explicit. They are two sep-
arate blocks that will be updated conditional on each other. Method 3 is
not available and instead Method 2 is used which is less efficient and has the
potential to create convergence problems due to high correlations between C
and Y ∗. This can happen not just on the population level, where the model is
estimated, but also on the individual level. This would be difficult to detect
as one would have to evaluate the mixing quality of the estimation for each
individual. Furthermore, an individual may be clearly categorized in one of
the classes where the posterior probability is 100%. This leads to no mixing,
i.e., the latent variable remains constant during the MCMC estimation for
that one individual. It would be difficult to distinguish if such an individual
is ”clearly categorized” or the MCMC estimation for that individual involv-
ing Y ∗ and C is ”poorly mixing”, due to for example poor starting values
for C and Y ∗ (neither of which are provided as starting values of the estima-
tion but are randomly generated; starting values can be provided in Mplus
only for the model parameters). Because of these complexities when using
Bayesian Mixture estimation based on Method 2 (which will be used with
residual covariances), it is important to use long MCMC sequences, multiple
chains, and repeating the estimation with a different random seed generation.
The estimation quality can also be evaluated with Montecarlo simulation.

If the variables Y are binary, we can re-parameterize the model by re-
placing the threshold parameter in the model with the mean of Y ∗ (with
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opposite sign), i.e., the threshold parameter can be assumed to be zero and
then [Y ∗|C] ∼ N(µk,Σk), where µk = −(τ1k1, ..., τpk1). The conditional dis-
tribution [C|Y, Y ∗, µk,Σk] is the same as [C|Y ∗, µk,Σk] because Y is deter-
mined by Y ∗. Finally, the conditional distribution [C|Y ∗, µk,Σk] is easy to
compute because Y ∗ is multivariate normal. With ordered categorical vari-
ables, this construction does not carry over as there are multiple threshold
parameters. In Mplus 8.7 we have implemented an approximation method
which is designed to mimic the binary variables implementation. As a mean
for Y ∗ we use the negative of the average threshold value, i.e., we use a
reparameterization where the mean of Y ∗ is estimated but the threshold pa-
rameters are constrained to add up to zero. If τpk. = (τpk1 + ...τpkLp)/Lp is
the average threshold, and τ ′pkl = τpkl − τpk. are the centered thresholds then
[Y ∗|C] ∼ N(µk,Σk) where µk = (−τ1k., ...,−τPk.). With this reparameter-
ization, we approximate [C|Y, Y ∗, µk,Σk, τ

′
pkl] with [C|Y ∗, µk,Σk] and avoid

using the computationally intensive multivariate probit function.
Note also that the non-diagonal Σk can be the result of multiple mod-

eling features: direct modeling of covariances, continuous latent variables
measured by the categorical variables, residual regressions as in RSEM, as
well as combinations of any of the these. While these are different models,
conceptually they result in the same framework when it comes to Bayesian
Mixture estimation.

Next we illustrate the methodology with a simulation study where a 2
class categorical latent variable is measured by 7 categorical variables with
3 categories each. In addition, 3 residual correlations are introduced via
residual regressions as in Figure 26. The results for some of the parameters
are reported in Figure 27. Some small biases are visible in the estimates
and these will not disappear asymptotically. The biases are due to the ap-
proximate nature of the computation, although with binary and continuous
variables the computation is exact. The PPP value based on the chi-square
test of fit within each class, which can detect residual correlations, has 0%
rejection rate. The entropy in this example is 0.9. The Bayesian estimator
appears to work well only when the entropy is on the high end, i.e., the classes
are somewhat well separated. This is particularly so when Method 2 for the
latent class updating is used. When the entropy is low, mixture models tend
to have multiple solutions which are often blurred together by the Bayesian
estimator. Label switching is also a possible estimation problem when the
entropy is low and the sample size is small. Nevertheless, this simulation
example illustrates that the Bayesian Mixture estimation is often feasible
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and is especially valuable for those situations where the maximum-likelihood
estimation is not available.

3.8 Pearson Posterior Predictive P-value

The standard chi-square PPP value can be used to evaluate the fit of RSEM
and RSEM mixture models. With categorical data, however, this test of fit is
limited to testing the model fit to the underlying latent variables Y ∗ and not
to the observed categorical variables Y . In the Bayesian estimation frame-
work, we can construct multiple PPP tests based on different fit functions.
In Mplus 8.7 a new PPP is introduced based on the fit function formed by
summing the Pearson statistics for all univariate and bivariate contingency
tables. This fit function tests the model directly against the observed cate-
gorical data Y . The fit function is given by the following equation

F = N
P∑

p=1

Lp∑
i=1

(opi − epi)2

epi
+N

P∑
p1=1

p1−1∑
p2=1

Lp1∑
i1=1

Lp2∑
i2=1

(op1p2i1i2 − ep1p2i1i2)2

ep1p2i1i2
. (44)

Here N is the sample size, opi is the observed proportion of Yp = i, epi is the
model estimated probability P (Yp = i), op1p2i1i2 is the observed proportion
of Yp1 = i1, Yp2 = i2 in the bivariate observed joint distribution of Yp1 and
Yp2 , and ep1p2i1i2 is the model estimated probability P (Yp1 = i1, Yp2 = i2).
The Pearson PPP can be obtained in Mplus with the specification out-
put:tech10. The Pearson PPP obtained using the Figure 26 simulation
study has 0% rejection rate.

To illustrate the Pearson PPP, using the same data generation as in Fig-
ure 26, we estimate the two-class model excluding the residual correlations.
In that case, the chi-square PPP rejects the model in 100% of the replications
while the Pearson PPP rejects the model in 97% of the replications. Using
the data generation in Figure 26, we also estimate the single class model
where all residual correlations are included in the model. This is essentially
the unconstrained multivariate probit model for the observed variables. This
model represents the most flexible model we can estimate without Mixture
modeling. In that case, the chi-square PPP rejects the model in 0% of the
replications while the Pearson PPP rejects the model in 100% of the repli-
cations. Note here, that such an outcome is not a contradiction. A Bayes
test of fit can be constructed using any meaningful fit function. A model is
acceptable fit for the data if all such tests yield acceptable PPP values. The
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Figure 26: LCA analysis with conditional dependence simulation study

montecarlo:
    names = Y1-Y7; nobs = 2000; nreps = 100;
    generate=Y1-Y7(2); categorical=Y1-Y7;
    genclasses=c(2); classes=c(2);

analysis: estimator=bayes; proc=2; type=mixture;

model population:
    %overall%
    Y1^-Y3^ pon Y5^-Y7^*0.3;
    [c#1*0.5];
    %C#1%
    [Y1$1-Y4$1*-1]; [Y1$2-Y4$2*1];
    [Y5$1-Y7$1*0.5]; [Y5$2-Y7$2*1.5];
    %C#2%
    [Y1$1-Y4$1*0.5]; [Y1$2-Y4$2*1.5];
    [Y5$1-Y7$1*-1]; [Y5$2-Y7$2*0];

 model:
    %overall%
    Y1^-Y3^ pon Y5^-Y7^*0.3;
    [c#1*0.5];
    %C#1%
    [Y1$1-Y4$1*-1]; [Y1$2-Y4$2*1];
    [Y5$1-Y7$1*0.5]; [Y5$2-Y7$2*1.5];
    %C#2%
    [Y1$1-Y4$1*0.5]; [Y1$2-Y4$2*1.5];
    [Y5$1-Y7$1*-1]; [Y5$2-Y7$2*0];

output:tech10;
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Figure 27: LCA analysis with conditional dependence simulation study re-
sults

MODEL RESULTS
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
 Y1^        ON
  Y5^                 0.300     0.2824     0.0414     0.0377     0.0020 0.900 1.000

 Y2^        ON
  Y6^                 0.300     0.2873     0.0346     0.0376     0.0013 0.990 1.000

 Y3^        ON
  Y7^                 0.300     0.2750     0.0386     0.0376     0.0021 0.900 1.000

Latent Class 1
 Thresholds
  Y1$1               -1.000    -0.9679     0.0446     0.0486     0.0030 0.920 1.000
  Y1$2                1.000     0.9624     0.0444     0.0444     0.0034 0.830 1.000
  Y2$1               -1.000    -0.9729     0.0430     0.0484     0.0026 0.930 1.000
  Y2$2                1.000     0.9704     0.0437     0.0449     0.0028 0.920 1.000

Latent Class 2
 Thresholds
  Y1$1                0.500     0.5039     0.0566     0.0569     0.0032 0.950 1.000
  Y1$2                1.500     1.6354     0.0880     0.0866     0.0260 0.670 1.000
  Y2$1                0.500     0.4857     0.0570     0.0561     0.0034 0.950 1.000
  Y2$2                1.500     1.6091     0.0837     0.0837     0.0188 0.740 1.000

Categorical Latent Variables
 Means
  C#1                 0.500     0.5256     0.0562     0.0536     0.0038 0.910 1.000
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unrestricted multivariate probit model is the saturated single class model
and therefore we can expect that the model will never be rejected by the
chi-square PPP value. The model, however, has very few parameters when
compared to full contingency table for the categorical variables. When the
unrestricted multivariate probit model is rejected by the Pearson PPP, the
only option for improving the model fit is to introduce latent classes in the
model. This further emphasizes the need to efficiently estimate LCA models
with conditional dependence.

The Pearson statistic based on the univariate and bivariate contingency
tables can be used to compare models across different estimators. In Mplus,
all estimators (ML, WLSMV and Bayes) compute the Pearson statistic in
the tech10 output. The Pearson PPP in the Bayes estimator is the only
case, however, that provides a direct test of fit procedure. With the ML and
WLSMV estimators, the Pearson statistic is not a chi-square statistic and it
will not provide a formal p-value. Those statistics can be used, however, for
comparative purposes, among different estimators and models, similarly to
how BIC criterion is used. At this time, however, we have no way of deter-
mining what constitutes a significant improvement in the statistic. The full
multivariate Pearson statistic does provide a formal chi-square test but that
procedure is useful only when the multivariate contingency table is smaller.
For larger models, the multivariate contingency table has very large number
of parameters, compared to the estimated model, and the Pearson test will
have very large DF. In that case, the asymptotic argument that supports
the Pearson testing will require extremely large sample size, beyond what is
practical. The tech10 output contains also very detailed information for all
quantities used in (44). Standardized residuals are computed for every cell
in the univariate, bivariate and multivariate contingency tables. These can
be used to pinpoint where a model is inadequate representation of the data.

If data is missing and it is not missing completely at random (MCAR),
the utilization of the Pearson PPP and the standardized residuals in the
contingency tables is somewhat complex. Two things can occur when data
is missing at random (MAR) and not MCAR. First, the observed propor-
tions need not agree with the estimated proportions even when the model
is correct. Observed proportions in the univariate and bivariate tables are
essentially obtained with listwise deletion, i.e., using an inferior estimation
method. We can expect that the multivariate model estimated quantities,
which yields unbiased estimated under MAR, will be more accurate than the
observed proportions. Therefore, discrepancies between the observed and es-
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timated quantities can be due to strong MAR effects rather than to incorrect
model. The second thing that occurs is that the Pearson PPP may not per-
form well. The Pearson PPP is based on comparing the Pearson statistic for
the sample data and for hypothetical (replicated) data generated from the
estimated model. We have no way of producing similar MAR missing data
for the replicated data, since the missing data mechanism is not estimated
with likelihood based approaches. Therefore, the replicated data would have
MCAR missing data and the two data sets would not be entirely comparable.
Thus, if the missing data is MAR, the discrepancy between the observed and
the estimated contingency tables can artificially cause the Pearson PPP to
reject the model, even when the model is correct. In practical applications,
however, this is a relatively unlikely scenario. If the amount of missing data
is relatively small or the MAR effects are not very strong, the Pearson PPP
is expected to perform well. In the rare situation where the amount of miss-
ing data is large and strong MAR effects are suspected, the Pearson PPP
should not be used. Further discussion on Bayesian PPP methodology in
the presence of MAR missing data is available in Asparouhov and Muthén
(2021).

The Pearson PPP and the chi-square PPP may often disagree in terms
of model fit. Consider the case when the Pearson PPP does not reject the
model but the chi-square PPP rejects the model. In this case, the unrestricted
correlation model will fit both the Pearson PPP and the chi-square PPP. That
means that some modifications in the structural model can be implemented
to resolve the chi-square PPP rejection. When the unrestricted correlation
model is not rejected by both PPP procedures we can assume that this model
fits the data well. In that case, i.e., when the multivariate probit model is
true, the chi-square PPP has bigger power to detect misspecifications as it is
more directly connected to the concept of polychoric correlation., which need
to be fitted. The Pearson PPP will consider the fit of many more quantities,
than the chi-square PPP and as a results of that some model misfits will
be washed off as insignificant. In the case when the Pearson PPP does not
reject the model but the chi-square PPP rejects the model, the results can be
traced to the lower power of the Pearson PPP when the multivariate probit
model is correct.

Note also that, models which include categorical and continuous depen-
dent variables may have different PPP outcomes for a different reason. The
Pearson PPP tests the contingency tables for the categorical variables only,
while the chi-square PPP tests the entire model. If the Pearson PPP does not
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reject the model but the chi-square PPP rejects the model, the reason may
be that the continuous part of the model is misfitted or that the part of the
model that correlates the categorical variables with the continuous variables
is misfitted. In that case, the difference between the two PPP procedures
may not be due to the difference in power at all.

Next, consider the case when the Pearson PPP rejects the model but the
chi-square PPP does not. To decide how to proceed in that case, one needs
to estimate the unrestricted correlation model and obtain the Pearson PPP
for that model. If the Pearson PPP does not reject that model, modifica-
tions in the structural model can be implemented to resolve the Pearson PPP
rejection. If, however, the unrestricted correlation model is rejected by the
Pearson PPP, no model modification will be available to resolve the problem.
The cause of the Pearson PPP rejection can then be traced in the failure of
the multivariate probit model. There are two different interpretations in that
case, which are actually mathematically equivalent. The first interpretation
is that the Pearson PPP rejects the model because the underlying continuous
variables Y ∗ does not have a multivariate normal distribution. The second
interpretation is that a single-class structural model does not provide a good
fit for the data and a mixture model with more than one class must be es-
timated. The reason, the two interpretations are equivalent is because any
non-normal multivariate distribution (for Y ∗) can be approximated by a mix-
ture of multivariate normal distributions. Regardless of which interpretation
is used, however, the only option in this case is to use mixture modeling,
i.e., increase the number of classes until the Pearson PPP does not reject the
model. Further discussion on testing categorical variable models is available
in Muthén (1993).

3.9 Mixture RI-AR model with categorical variables

In this section we illustrate the Bayesian Mixture methodology with a more
advanced mixture model: a two-class mixture RI-AR model where all the
dependent variables are ordered categorical variables. In this model, there are
three completely different and competing modeling components attempting
to model the dependencies among the categorical variables. These three
modeling components are: the latent class variable, the random intercept and
the auto-regressive residuals. Separating these three sources of correlational
dependencies generally requires a fairly rich data set and in many practical
situations this might not be available. This kind of analysis, should always be
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preceded by analyzing the data first with one and then two of the modeling
components. In addition, we recommend that any mixture RI-AR analysis
with ordered categorical data be accompanied by a Montecarlo simulation
study that verifies the quality of the estimation.

As in the previous example, the model can be estimated only with the
Bayesian estimator. Figure 28 shows the Mplus input file for a mixture RI-
AR simulation study and Figure 29 gives the results for some of the model
parameters. As in the previous case, small biases are visible in some of the
parameter estimates but the overall performance is satisfactory and all three
of the correlation components were allocated properly. In this simulation
study, we held the auto-regressive parameter equal across time and across
classes. This helps with the model identification, although it is not necessary
in general. Also, in this simulation study, the effect of the latent class variable
and the random intercept on the observed variables are orthogonal to each
other. The random intercept always weighs equally on all indicators. If the
latent class variable does so as well, it will be difficult to distinguish between
the effect of C and the effect of I. In the simulation study given in Figure 28,
the orthogonality is achieved by giving completely different sets of threshold
parameters for indicators Y1−Y4 and Y5−Y8. Because of that, the latent class
variable affects the class indicators differently and it would be distinguishable
from the effect of the random intercept variable.
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Figure 28: Mixture RI-AR with ordered categorical simulation study

montecarlo:
    names = y1-y8; nobs = 2000; nreps = 100;
    generate=y1-y8(2); categorical=y1-y8;
    genclasses=c(2); classes=c(2);

analysis: estimator=bayes; proc=2; type=mixture;

model population:
   %overall%
   Y2^-Y8^ pon Y1^-Y7^*0.225 (ar);
   i by y1-y8@1; [i@0]; i*0.4;
   [c#1*-0.4 ];
   %C#1%
   [Y1$1-Y4$1*-1]; [Y1$2-Y4$2*1];
   [Y5$1-Y8$1*1]; [Y5$2-Y8$2*2];
   %C#2%
   [Y1$1-Y4$1*1]; [Y1$2-Y4$2*2];
   [Y5$1-Y8$1*-1]; [Y5$2-Y8$2*0];

 model:
   %overall%
   Y2^-Y8^ pon Y1^-Y7^*0.225 (ar);
   i by y1-y8@1; [i@0]; i*0.4;
   [c#1*-0.4 ];
   %C#1%
   [Y1$1-Y4$1*-1]; [Y1$2-Y4$2*1];
   [Y5$1-Y8$1*1]; [Y5$2-Y8$2*2];
   %C#2%
   [Y1$1-Y4$1*1]; [Y1$2-Y4$2*2];
   [Y5$1-Y8$1*-1]; [Y5$2-Y8$2*0];
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Figure 29: Mixture RI-AR with ordered categorical simulation study results

MODEL RESULTS
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
 Y2^        ON
  Y1^                 0.225     0.2287     0.0174     0.0191     0.0003 0.960 1.000

 Variances
  I                   0.400     0.3841     0.0269     0.0273     0.0010 0.900 1.000

Latent Class 1
 Thresholds
  Y1$1               -1.000    -0.9250     0.0655     0.0628     0.0099 0.740 1.000
  Y1$2                1.000     0.9864     0.0643     0.0600     0.0043 0.910 1.000
  Y2$1               -1.000    -0.9349     0.0588     0.0636     0.0077 0.820 1.000
  Y2$2                1.000     0.9846     0.0586     0.0604     0.0036 0.920 1.000

Latent Class 2
 Thresholds
  Y1$1                1.000     0.9782     0.0484     0.0520     0.0028 0.940 1.000
  Y1$2                2.000     2.0302     0.0785     0.0801     0.0070 0.920 1.000
  Y2$1                1.000     0.9768     0.0522     0.0522     0.0032 0.940 1.000
  Y2$2                2.000     2.0321     0.0763     0.0784     0.0068 0.950 1.000

Categorical Latent Variables
 Means
  C#1                -0.400    -0.3704     0.0454     0.0493     0.0029 0.930 1.000
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3.10 Structural residual modeling in RDSEM

The residual dynamic structural equation model (RDSEM), as defined in
Asparouhov et al. (2018), allows for lagged modeling of the residuals. The
residuals from the current time period in RDSEM can be predicted by resid-
uals from the previous periods. The model, however, did not allow for the
residuals to be structurally modeled within the same period (contemporane-
ous relations). Such modeling however is sometimes necessary, see Hamaker
et al. (2021). In Mplus 8.7 we have extended the RDSEM model to accommo-
date such structural models among the residuals. This extension applies to
single and two-level RDSEM models. Since the two-level RDSEM model can
be viewed as a generalization of the standard two-level SEM model (where
the lag is 0), this extension can be viewed as the two-level version of RSEM.
Both categorical and continuous variables can be used in this RDSEM ex-
tension.

The RDSEM model allows for contemporaneous relations not just be-
tween the residuals but also between the variables. In principle, this creates
a methodological challenge. When a contemporaneous relationship between
two variables must be modeled, it may not be clear whether the relation-
ship should be between the variables or whether it should be between the
residuals. In some practical applications, a compelling substantive argument
may be available to make that choice. When a substantive argument is not
available, one can use statistical techniques, such as the DIC criterion, for
guidance in that decision.

We illustrate the contemporaneous residual modeling in RDSEM with
a bivariate example that mimics the modeling in Hamaker et al. (2021).
Suppose that Ypit is the p−the variable, p = 1, 2, for individual i at time
t. Suppose that Xit is a covariate for individual i observed at time t. The
RDSEM model is given by the following equations

Ypit = αpi + βpiXit + Ŷpit (45)

Ŷ1it = γiŶ2it + r1iŶ1i,t−1 + ε1it (46)

Ŷ2it = r2iŶ2i,t−1 + r3iŶ1i,t−1 + ε2it. (47)

There are 8 random effects in this model: αpi and βpi are the random intercept
and slope in the regression of Ypit on Xit, γi represents the contemporaneous

relationship between the residuals Ŷ1it and Ŷ2it, and rji represent the lagged
relationships in the residuals. Figure 30 shows a simulation study setup for
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this model. Figure 31 shows the results of the simulation study. The Bayesian
estimation performs well in this example.

4 Conclusion

In this article, we illustrate how the residual variables in a structural equation
model can be used for constructing a secondary structural model. The resid-
ual variables can also be used as additional variables and predictors in the
original model. Using this residual structural equation modeling framework,
we enhance the utility of the primary structural model. The new Mplus hats
language notation, previously used only for RDSEM, is expanded in Mplus
8.7 to standard SEM models. The hats notation allows us to construct RSEM
models in an efficient and compact way. In addition, the hats notation will
guarantee that the most efficient estimation method is used, particularly so
with the Bayesian estimator. This compact presentation will also help with
proper model interpretation and conceptualization.
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Figure 30: Contemporaneous residual modeling in RDSEM simulation study

MONTECARLO:  
NAMES ARE y1-y2 x;
NOBS = 5000; NREP = 100;
NCSIZES = 1; CSIZES = 100(50);
lagged=y1(1) y2(1);
within=x;

ANALYSIS:   TYPE IS TWOLEVEL RANDOM;
         estimator=bayes; proc=2;

MODEL MONTECARLO:

%WITHIN%
y1-y2*1 x*1;
b1 | y1 on x;
b2 | y2 on x;
g | y1^ on y2^;
r1 | y1^ on y1^1;
r2 | y2^ on y2^1;
r3 | y2^ on y1^1;

%BETWEEN%
[y1*1 y2*2 b1*0.8 b2*-0.5 g*0.2 r1*0.3 r2*0.4 r3*0.2 ];
y1*0.5; y2*0.7 b1*0.2 b2*0.2 g*0.02 r1*0.02 r2*0.02 r3*0.02;

MODEL:

%WITHIN%
y1-y2*1;
b1 | y1 on x;
b2 | y2 on x;
g | y1^ on y2^;
r1 | y1^ on y1^1;
r2 | y2^ on y2^1;
r3 | y2^ on y1^1;

%BETWEEN%
[y1*1 y2*2 b1*0.8 b2*-0.5 g*0.2 r1*0.3 r2*0.4 r3*0.2 ];
y1*0.5; y2*0.7 b1*0.2 b2*0.2 g*0.02 r1*0.02 r2*0.02 r3*0.02;
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Figure 31: Contemporaneous residual modeling in RDSEM simulation study
results

MODEL RESULTS
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff
Within Level
 Residual Variances
  Y1                  1.000     1.0035     0.0258     0.0211     0.0007 0.920 1.000
  Y2                  1.000     1.0203     0.1378     0.0215     0.0192 0.920 1.000

Between Level
 Means
  Y1                  1.000     1.0027     0.0771     0.0764     0.0059 0.930 1.000
  Y2                  2.000     1.9938     0.0904     0.0915     0.0081 0.950 1.000
  B1                  0.800     0.8036     0.0504     0.0476     0.0025 0.920 1.000
  B2                 -0.500    -0.5032     0.0474     0.0487     0.0022 0.950 1.000
  G                   0.200     0.2042     0.0185     0.0202     0.0004 0.960 1.000
  R1                  0.300     0.2975     0.0164     0.0205     0.0003 0.990 1.000
  R2                  0.400     0.4009     0.0196     0.0203     0.0004 0.950 1.000
  R3                  0.200     0.2019     0.0203     0.0210     0.0004 0.940 1.000
 Variances
  Y1                  0.500     0.5023     0.0899     0.0851     0.0080 0.900 1.000
  Y2                  0.700     0.7211     0.1156     0.1224     0.0137 0.940 1.000
  B1                  0.200     0.2086     0.0290     0.0338     0.0009 0.960 1.000
  B2                  0.200     0.2189     0.0779     0.0352     0.0064 0.920 1.000
  G                   0.020     0.0222     0.0060     0.0058     0.0000 0.870 1.000
  R1                  0.020     0.0217     0.0052     0.0059     0.0000 0.960 1.000
  R2                  0.020     0.0210     0.0052     0.0055     0.0000 0.930 1.000
  R3                  0.020     0.0243     0.0147     0.0063     0.0002 0.890 1.000
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5 Appendix

In this section we discuss the equivalence of the RI-MEAR and RI-ARMA
models. We determine the parameter space for which this equivalence holds
and show how to obtain the parameters for one model from the parameters of
the other model. Out of the total 4T − 2 model parameters, 2T parameters:
αt, ρt and ψ are identical between the two models. That leaves us with
the 2T − 2 parameters (σt and vt) of the RI-MEAR model and the 2T − 2
parameters (θt and βt) of the RI-ARMA model. We want to show that there
is a reparameterization of these 2T − 2 parameters for which the two models
are equivalent.

The models will be equivalent if the variance covariance matrix for Ŷit in
the RI-MEAR model is the same as the variance covariance matrix for εit
in the RI-ARMA model. This is because the random intercept part of the
model is the same for the two models. For convenience, in this discussion we
drop the index i which refers to the individual i data and we will refer to Ŷit
as simply Ŷt, etc.

First, we algebraically rewrite the RI-MEAR model as follows. For t = 1

Ŷ1 = ξ1. (48)

For t = 2
Ŷ2 = ρ2Ŷ1 + e2 + ξ2. (49)

For t > 2
Ŷt = ρtŶt−1 + et + ξt − ρtet−1. (50)

The RI-MEAR model can be given in matrix form as follows. Define A to
be the following matrix

A =



1 0 0 0 · · · 0 0
−ρ2 1 0 0 · · · 0 0

0 −ρ3 1 0 · · · 0 0
0 0 −ρ4 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −ρT 1


.
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Let Ŷ be the vector of all hat variables Ŷt. The RI-MEAR model becomes

AŶ =



ξ1
ξ2 + e2

ξ3 + e3 − ρ3e2
ξ4 + e4 − ρ4e3

...
ξT + eT − ρT eT−1


.

Similarly, the RI-ARMA model can be written as

Aε =



ε̂1
ε̂2

ε̂3 + β3ε̂2
ε̂4 + β4ε̂3

...
ε̂T + βT ε̂T−1


.

The variance covariance of Ŷ and ε will be the same when the variance
covariance matrices of the RHS vectors in the above two equations are the
same. Both of these vectors have fairly simple variance covariance matrices
and both take the form of MA (moving-average) processes. Inspecting both
vectors reveals that there are precisely 2T − 2 non-zero entries in these MA
variance covariance matrices. If we denote that variance covariance matrix
by Ω, the non-zero entries are the T diagonal entries ω(t, t), and the T −
2 off diagonal entries ω(t, t − 1) for t > 2. All other entries are zero for
both vectors. Setting these 2T − 2 variance covariance elements to be equal
between the two models provides precisely the 2T − 2 equations needed for
the reparameterization between the RI-ARMA and the RI-MEAR models.
These equations are given below. For t = 1

ω(1, 1) = θ1 = v1. (51)

For t = 2
ω(2, 2) = θ2 = v2 + σ2. (52)

For t > 2
ω(t, t) = θt + β2

t θt−1 = vt + σt + ρ2tσt−1 (53)

ω(t, t− 1) = βtθt−1 = −ρtσt−1 (54)
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The RI-MEAR parameters can be obtained from the RI-ARMA parameters
as follows

v1 = θ1 (55)

v2 = θ2(ρ3 + β3)/ρ3. (56)

For t = 3, ..., T − 1

vt = θt(ρt+1 + βt+1)/ρt+1 + (ρt + βt)βtθt−1. (57)

For t = T
vt = θt + (ρt + βt)βtθt−1. (58)

For t = 2, ..., T − 1
σt = −βt+1θt/ρt+1. (59)

Conversely, the RI-ARMA parameters can be obtained from the RI-MEAR
parameters in the following recursive sequence

θ1 = v1 (60)

θ2 = v2 + σ2. (61)

For t > 2
βt = −ρtσt−1/θt−1 (62)

θt = vt + σt + ρtσt−1(βt + ρt). (63)

One key question about this reparameterization is whether all variance com-
ponent parameters will remain positive. The ML estimator, unless restricted,
can estimate negative residual variances, even though such a thing would not
be interpretable. Thus, the RI-ARMA to RI-MEAR conversion can always
be done as long as we allow residual variances to be negative. In general,
however, if one of the two models has negative residual variances but the
other does not, one should clearly prefer the model with all positive residual
variances.

Here we analyze this issue through the above conversion formulas. We
restrict ourselves to the most common scenario ρt ≥ 0. First, we consider the
situation when the RI-ARMA model is estimated and all variance compo-
nents are positive. We want to know under what circumstance the RI-MEAR
variance components will also be positive. Equation (59) implies that all βt
(moving average) parameters in the RI-ARMA model must be negative to
produce positive σt. The situation with vt, however is much more complex.
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In DSEM-ARMA to DSEM-MEAR conversion, one of the parameter require-
ments is that β + ρ > 0. In this situation, however, assuming βt + ρt > 0,
βt < 0 for every t, would not be enough to guarantee positive vt. That is
because in equation (57) the second term is negative. The additional equality
that must be satisfied by the RI-ARMA parameters to guarantee positive vt
is as follows

θt
θt−1

>
ρt + βt

ρt+1 + βt+1

(−βt)ρt+1. (64)

If all parameters are time-invariant and the process is stationary and invert-
ible, i.e. ρ < 1 and β < 1, the above inequality is satisfied.

The opposite situation is simpler. If we estimate the RI-MEAR model
and all variance components are positive, the variance components in the
RI-ARMA model are always guaranteed to be positive. To see this, going
through equations (60-63) we can inductively establish the following inequal-
ities: θt > σt, βt < 0, βt + ρt > 0. Since σt is positive, θt must be positive as
well.

With the Bayesian estimator negative variances can not be estimated.
This means that the RI-MEAR and RI-ARMA equivalence in the Bayesian
framework is subject to the parameter space restriction where the RI-ARMA
to RI-MEAR conversion yields positive variance components. Furthermore,
the inequality constraints must be satisfied for the entire posteriors distribu-
tion and not just for the point estimates. If for a portion of the posterior
distribution of the RI-ARMA parameters, the implied RI-MEAR parame-
ters have negative variances, the equivalence between the RI-ARMA and
RI-MEAR will not hold. This is particularly consequential when the sample
size is small or moderate and the posterior distributions are wide enough
to cross over in the parameter space that doesn’t support the RI-ARMA to
RI-MEAR conversion.

The RI-ARMA and RI-MEAR equivalence is very specific to the model we
discussed above. It applies precisely when all parameters are non-invariant
and there are exactly 4T − 2 parameters. In practical settings, some simpli-
fications of these models may be desirable, such as holding parameters equal
across time or fixing some insignificant parameters to zero. Such simplifi-
cations do not translate from one of the models to the other. A simplified
RI-ARMA model may not result in a simplified RI-MEAR model and vice
versa. The reparametrization formulas given above must be used to de-
termine how parameter restrictions in one model translate into parameter
restriction for the other model. An example of such a situation is given in
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Figure 11. In that figure, the models are applied to categorical data, which
require residual variances to be fixed to 1. Residual variances fixed to 1 in
one of the models then results in a completely different restriction for the
other model.
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