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ABSTRACT

The multiple group alignment methodology is adapted to the general structural equation model. This
includes models with cross-loadings, covariates, and structural relations among the factors. A group-
specific model for the factors can be estimated even when measurement invariance does not hold,
including groups-specific factor means, intercepts, and variances. The methodology is also extended
to the weighted least squares estimation method to accommodate models with continuous, binary,
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and ordered variables. The alignment method is further extended to multiple group EFA and ESEM
models. This is accomplished by combining the alignment loss function with the rotation loss func-
tion. We obtain an EFA/ESEM model with group-specific factor means, variance/covariance, rotation,
and measurement model parameters (loadings and indicator intercepts). Simulation studies and two

empirical examples are used for illustration purposes.

1. Introduction

The alignment methodology was introduced in Asparouhov
and Muthén (2014) for the multiple group factor analysis
model with continuous variables, using the maximum-likeli-
hood (ML) and Bayesian estimators. The method was fur-
ther extended to the multiple group factor analysis model
with binary and ordered categorical variables in Muthén
and Asparouhov (2014). Alignment aims to compare latent
variables across groups without requiring measurement
invariance. The differences in the observed variables across
groups are primarily attributed to differences in the latent
variables. Remaining differences that cannot be explained by
latent variable differences are interpreted as evidence of par-
tial non-invariance. The alignment method automates this
process within a single stage estimation. The model fit is the
same as the model fit of the configural model, i.e., the fit of
the alignment model is as good as or better than any other
measurement invariance model. The alignment method
attempts to minimize the amount of non-invariance without
altering the fit of the model.

Alignment utilizes the EFA methodology in the following
sense. In EFA, an unrotated model is estimated as a first
step which determines the best fitting variance covariance
matrix for the observed variables given a fixed number of
factors. The unrotated model can be rotated with an infinite
number of rotations without altering the model fit. This
provides an indeterminacy in the model, i.e., there is no
information in the data that can illuminate the best possible
rotation for the factors. This indeterminacy is resolved by
specifying a rotation criterion. The role of the rotation cri-
terion is to eliminate the indeterminacy in the model by
quantifying our preference for simple loading structures.

These are the loading structures where each observed vari-
able loads primarily on one factor only and the number and
size of cross-loadings is minimized. Alignment uses the
same logic. The configural model plays the role of the unro-
tated solution, i.e., this is the best fitting model given the
number of factors and factor structure. The configural
model can be reparameterized to include arbitrary values for
the factor means and variances, without altering the model
fit. The factor means and variances are unidentifiable. This
indeterminacy is resolved by specifying an alignment criter-
ion. The role of the alignment criterion is to eliminate the
indeterminacy in the model by quantifying our preference
for measurement invariant structures. The alignment
method gives preference to as many invariant parameters
and as few non-invariant parameters as possible. This paral-
lelism between EFA and alignment can be very useful in
understanding the alignment methodology.

In this article, we extend the alignment methodology in
several important ways. First, the alignment method is
extended to the WLS estimator with the delta and theta
parameterizations for categorical variables. This extension is
valuable for those situations where the ML estimation is
slow due to numerical integration, i.e., factor models with
categorical indicators that have more than 1 or 2 factors.
Furthermore, the WLS estimators can accommodate residual
correlations between all factor indicators, including categor-
ical indicators, which is not available with the ML estima-
tion for categorical indicators. The WLS alignment
estimation for the two parameterizations also allows us to
study the effect of the parameterization on the measurement
invariance across groups. WLS alignment also includes a
test of fit and modification indices which simplifies the
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overall analysis in terms of the number of steps that need to
be taken in analyzing multiple group measurement models.

The second important generalization of the alignment
method we introduce here is the possibility of complex
loading structures. Previously, the alignment method was
available only for factor models with simple loading struc-
tures, i.e., models without cross-loadings. Most practical
examples however include multiple factors where the load-
ing structure is not pure/simple and cross-loadings are pre-
sent. This generalization therefore allows us to apply the
alignment method in most practical situations.

Another important generalization of the alignment
method, we introduce here is the possibility to apply the
methodology to the general structural equation model. This
includes SEM models with factor predictors/covariates,
models with direct effects from the covariates to the factor
indicators, models where the factors are correlated with
other dependent variables, and models with structural rela-
tions among the factors. This approach resembles the ESEM
extension of the EFA model to a general structural model,
see Asparouhov and Muthén (2009), where the measure-
ment part of the model becomes exploratory rather than
confirmatory. With this extension, we simplify the overall
analysis by reducing the number of steps and models that
must be estimated in practical settings. Previously, adding a
factor predictor to a factor analysis alignment required the
AwC two-stage estimation described in Marsh et al. (2018).
With this new automated approach, a single model estima-
tion is conducted that includes both the alignment of the
measurement model as well as the factor predictors or other
SEM features. Thus, the perils of multistage estimation are
avoided. We abbreviate the aligned SEM model as ASEM.

Another alignment generalization described here is the
possibility to align multiple group EFA and ESEM models
with continuous variables (ML estimation) and with the
combination of continuous and categorical variables (WLS
estimation). We abbreviate the aligned ESEM model
as AESEM.

These alignment extensions are implemented in Mplus
for the ML and WLS estimators while the Bayes estimator
currently can be used for the alignment of a simple factor
analysis model only. Also, the Bayes estimator cannot
accommodate complex survey data features, such as sam-
pling weights, cluster sampling and stratification, which are
available with ML and WLS.

The article proceeds as follows. In Section 2, we describe
the technical details of the various alignment generaliza-
tions. In Section 3, we illustrate the quality of the alignment
estimation with several simulation studies. We find that in a
wide variety of models the methodology works sufficiently
well for all practical purposes. We also show here that the
alignment methodology can work well even if half of the
parameters (across all groups) are not invariant. Such a
finding is in stark contrast to what is currently widely used
as a recommendation: a maximum of 20% of non-invariant
parameters. In Sections 4 and 5, we illustrate the method-
ology with empirical examples. We compare the model fit
of several multiple group factor analysis models: SEM(CFA-

scalar), ESEM(EFA-scalar), ASEM and AESEM, with various
rotation and alignment options. We find that the new align-
ment models fit better. This is an important finding which
illustrates the need for these models in practical situations.
Section 6 describes the alignment R-square measure of
invariance in the generalized settings. The alignment R-
square is a very desirable summary statistic that can be used
to classify a parameter as invariant or non-invariant as well
as the extent of the non-invariance. This statistic, however,
frequently produces values that are somewhat difficult to
understand and interpret. In this section, we discuss the
potential pitfalls of using the alignment R-square in practical
settings. General practical guidelines are provided in Section
7. Such guidelines may help readers in adopting the new
methodology for their own needs. Section 8 concludes. The
Appendix includes Mplus 8.9 scripts used for the simulation
studies and the empirical examples.

2. The Alignment Methodology

In this section, we describe the alignment methodology.
First, we review the alignment methodology for the factor
analysis model with one factor. We then describe several
extensions and generalizations.

2.1. The Simple Alignment Model

In this section, we review the basic alignment model for a
factor analysis model with one factor. Consider the mul-
tiple-group factor analysis model with a single factor n
measured by p observed variables in G groups. Let Yj,, be
the p-the observed variable for individual i in group g. The
factor model is given by the following equation.

Yipg = Vpg + Apgllig + Eipgs (1)

where v,, and /,, are the intercept and loading parameters,
eipg~N(0,0p;) is the residual variable, and 17;,~N(o, ) is
the factor for individual 7 in group g The alignment method
estimates all of the parameters v, Ayg tp Yo and 0,4 as
group specific parameters. In particular, the method esti-
mates group specific factor mean and variance without
assuming measurement invariance.

The first step in the alignment method is the estimation
of the configural model. In the configural model o, =
0, Y, = 1 for every g and all loading, intercept and residual
variance parameters are estimated as group-specific parame-
ters. Denote the configural model estimates by v, 0, Zpg,0
and 00, and let the configural factor be 7;, ,. Because the
aligned model has the same model fit as the configural
model the following relationships must hold

Mg = % + \/Vgllig, 05 (2)
V(Vipg) = ;Lf)g Vg + Op = )‘]Zag,O + Opg.05 3)
E(yipg) = Vpg + Apg % = Vpg,05 (4)

where E(Yj,) and V(Yjy,) are the model estimated mean
and variance for Yj,,. Setting 0,5 0 = 0,,, we get that



2
= (5)

’IPg: \/Jg’

)
e (6)

Vpg = Vpg,0— % ‘
VW

The aligned model chooses o, and i, as to minimize the
amount of measurement non-invariance, i.e., the differences
in A, and v,, across groups.

To formalize this, we minimize with respect to o, and V.
the alignment function F which accumulates all measure-
ment non-invariance

F= Z Z Weraof (Upes=2pe) + Z Z Waeof (Voo =Vpgs)>

P &1<& P &<&
(7)

where f is a component loss function and wg, ,, are weights.
The weights wy, ¢, are set to reflect the group size and the
amount of certainty we have in the group estimates for a
particular group. We use wy, 4 = With these
weights, bigger groups will contribute more to the total loss
function than smaller groups. The component loss function
is set to

flx)=Vx:+e (8)

where € is a small number such as 0.0001. This function is
approximately equal to /[x|. We use a positive ¢ so that F
has a continuous first derivative which makes the optimiza-
tion easier and more stable. This choice of f, as compared to
other choices such as |x| and x°, has the advantage that it
overemphasizes the penalty for medium size losses/non-
invariance and underemphasizes the penalty for larger
losses/non-invariance. Thus, the optimal invariance losses
are expected to be either close to zero (invariant parameters)
or not zero (non-invariant parameters). The medium range
losses are meant to be eliminated with this choice of f. This
is a key feature of the alignment methodology that distin-
guishes the method from other methods. BSEM measure-
ment invariance or multilevel models with random
intercepts and slopes tend to minimize mean squared error
functions which can lead to many parameters with medium
sized non-invariance. The alignment method typically will
result in many approximately invariant measurement
parameters, a few large non-invariant measurement parame-
ters, and no medium-sized non-invariant measurement
parameters. This is similar to the fact that EFA rotation
functions aim for either large or small loadings, but not
mid-sized loadings. Minimizing the loss function F will gen-
erally identify the parameters o, and v, in all but the first
group. In the first group, these parameters remain fixed to 0
and 1, respectively.

The alignment methodology works very well when most
of the measurement parameters are invariant. The method
will automatically separate the invariant and non-invariant
parameters and all estimates will be consistent. It is some-
what difficult to quantify, however, the amount of non-
invariance for which the alignment method will perform
well. A rule of thumb is that as long as the number of
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non-invariant parameters is less than 20%, we can expect
the alignment method to work correctly. However, the exact
percentage of non-invariant parameters is not really what
determines the alignment performance. Rather, the align-
ment performance is determined by the following question.
Is the true parameter set, i.e., the data generating parameter
set the simplest and most invariant representation of the
data? Alignment will always pick o, and ¥, that produce the
smallest amount of non-invariance. If a data-generating
parameter set has a simpler alternative we cannot expect
alignment to produce estimates consistent with the data-
generating parameter set. Alignment will converge to the
simpler alternative instead. If 100% of the data generating
parameters are not invariant, we know that a simpler repre-
sentation exists (at least one indicator can be made group
invariant by adding factor means and variances) and so
alignment will not recover the data generating parameters.
On the other hand, in most situations when less than 20%
of the data generating parameters are non-invariant, a sim-
pler alternative will likely not exist and the alignment esti-
mates will be consistent.

Consider as an example the situation where data is gen-
erated using intercept and loading parameters that are
group-specific random effects, see Muthén and Asparouhov
(2018). In this case, all parameters are non-invariant and
the data-generating parameters will have a simpler (more
invariant) alignment alternative. Alignment is not expected
to recover the data-generating parameters. This phenom-
enon is exactly as in EFA. EFA produces simple loading
structures. If the data-generating loadings include a large
amount of cross-loadings, EFA will not recover the parame-
ters and will produce a simpler loading structure instead.
Alignment and EFA parameters in such situations are not
biased. Both methods would produce more optimal (in
terms of their optimization criterion) representation of the
data than the data-generating parameters. Furthermore,
because the intercepts and slopes are random, the alignment
results are expected to show many non-invariant parame-
ters, which probably will become challenging to interpret.
The alternative methodology of estimating the model with
random intercepts and loadings will in fact recover the
data-generating parameters and will provide a simpler
model interpretation. Thus, we conclude that the alignment
methodology is not universally applicable for all measure-
ment invariance studies. If the amount of non-invariance
found with alignment is so large that model interpretation
is challenging, alternative measurement invariance method-
ologies should be pursued.

Extensive simulation studies on the alignment method-
ology can be found in Flake and McCoach (2018) and prac-
tical illustrations can be found in Munck et al. (2018) and
Lomazzi (2018). A brief tutorial on the alignment method is
provided in Rudnev (2019).

2.2. Extending Alignment to the WLS Estimators

This extension of the alignment method simply parallels the
alignment method for IRT models described in Muthén and
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Asparouhov (2014). The configural model is estimated with
the WLS estimator. The configural estimates are then used
in the minimization of Equation (7) to determine the factor
mean and variance in each group. The threshold parameters
for all categorical indicators are treated as the intercept
parameters for continuous variables. Categorical variables
with more than two categories are treated as having more
than one mean parameter, i.e., alignment is conducted for
every level of these categorical variables.

As with the ML alignment, the model fit of the WLS
alignment is the same as the model fit of the configural
model. If the WLS alignment model is rejected, the correct
interpretation of that rejection is that the configural model
is rejected. Thus, model misfit is never due to poor align-
ment, it is always due to configural model misfit. As usual,
such misfit can be addressed using model modification indi-
ces, by adding additional factors, or by adding residual
covariances between the factor indicators.

There are two separate parameterizations available for a
factor analysis model with the WLS estimator: the theta
(unstandardized) and the delta (standardized) parameteriza-
tions, see Muthén and Asparouhov (2002). With the theta
parameterization, the residual variance parameters for all
categorical variables are fixed to 1 for identification pur-
poses, while in the delta parameterization the total variance
is fixed to 1. The configural factor analysis model can be
estimated in either one of these two metrics and the models
will be equivalent in terms of data fit (i.e., the models are
reparameterizations of each other). The alignment method-
ology is implemented for both parameterizations. In mul-
tiple group situations, scalar measurement invariance in one
metric does not translate into scalar measurement invari-
ance in the other metric. Since alignment’s goal is the meas-
urement invariance, the alignment results will depend on
the metric. The metric may affect which parameters are
considered invariant and which are not. This leads to the
question regarding which metric alignment should be used
with. One way to determine the most optimal metric is to
estimate the model in both metrics and the more invariant
metric would be preferred. Some further practical guidelines
may be necessary in this regard.

The WLS alignment with the theta parameterization is
equivalent in terms of the estimated model to the alignment
for the ML estimator with numerical integration method
and the probit link function. We can expect these estimation
settings in Mplus to behave similarly. The ML and Bayes
estimators in Mplus are currently available only for the theta
parameterization.

Another important issue regarding alignment with cat-
egorical data with the WLS estimators is related to estimated
residual variances in the theta parameterization and esti-
mated delta parameters in the delta parameterization.
Currently, for alignment models with categorical variables,
these parameters remain fixed to 1 (for the aligned models).
Conceivably, however, allowing the alignment function to
be minimized with respect to these parameters as well, one
could find an even better measurement invariance. In fact,
measurement invariance models for categorical data without

the alignment methodology and the WLS estimators typic-
ally involve estimating these parameters for all but the first
group and is done by default in Mplus for the scalar invari-
ance model. Our attempts to pursue this idea in the context
of alignment, however, have fallen short so far. It appears
that the sample size requirements make such an approach
impractical and the additional parameters are rarely signifi-
cantly different from 1, i.e., categorical variables alignment
with residual variances fixed to 1 is expected to be sufficient
in most situations. It should be noted, however, that in the
configural model, the theta and delta parameters are always
fixed to 1. This means that the alignment models, which
have the same data fit as the configural models, do not suf-
fer from suboptimal data fit due to fixed theta and delta
parameters. For the scalar invariance model, this is not the
case. Fixing the theta and delta parameters in the scalar
invariance model may result in worse model fit. The align-
ment models, however, will not. From this point of view,
the benefit of free delta and theta parameters for the align-
ment models is somewhat marginal. It affects only the clas-
sification of invariance and not the model fit.

Furthermore, consider the case of binary factor indica-
tors. The alignment procedure must align the threshold and
the loading parameter for that indicator and extract some
information out of this process for the estimation of the fac-
tor mean and variance. If a free theta parameter is intro-
duced in the alignment optimization, which is indicator
specific, either the threshold or the loading parameter can
be made invariant by the free theta parameter. The conse-
quence of that is as follows. If the threshold is made invari-
ant, the information from that variable is essentially used to
estimate the theta parameter and not the factor mean.
Similarly, if the optimization function uses the free theta
parameter to align the loading parameter fully, this indicator
will contribute nothing to estimating the factor variance. All
the information will be used to estimate the theta parameter.
This line of argument points to two conclusions. If align-
ment is used with free theta/delta parameters, models with
only binary indicators are unlikely to be able to extract
much information regarding the scale of the parameters.
Second, adding free theta and delta parameters to alignment,
with binary and ordered categorical variables, will greatly
diminish the ability of the alignment optimization to extract
information regarding the factor scales, which generally is
expected to be seen in large standard errors for most model
parameters. This again leads to the conclusion that the free
theta and delta models are somewhat incompatible with
alignment because of the large sample sizes that would be
needed for such models. In a practical context, if alignment
estimation is to be converted to a standard CFA model as
for example it is done in Marsh et al. (2018), the practical
issue arises regarding the estimation of the theta/delta
parameters. We recommend that such parameters are con-
sidered carefully. These parameters should be included in
the model only if they are significantly different from 1. If
they are not statistically different from 1, they should
remain fixed to preserve the parsimony and power of
the model.



2.3. Extending Alignment to the General Factor Analysis
Model with Complex Loading Structures

The alignment procedure implemented in Mplus prior to
version 8.8 applies only to factor analysis models with mul-
tiple factors and simple loading structures, i.e., without
cross-loadings. In Mplus 8.8, the alignment procedure is
extended to factor models with complex loading structures,
i.e., models with cross-loadings and bi-factor models. To
accommodate such models, Equation (6) is replaced by

M
/
‘pmg, 0
Vpg = Vpg,0— Z Olmg . 9)
m=1 lpmg

where M is the number of factors, ,, and V,, are the
m—th factor mean and variance in group g, while 4, is
the loading of the p—th variable on the m—th factor. The
rest of the procedure remains unchanged. The alignment of
the loading parameters remains unchanged while the align-
ment of the intercept parameters now must account for the
mean effect of all factors. Without the cross-loadings, the
alignment optimization can be performed for each factor
separately. With the cross-loading extension the alignment
optimization must be done for all factors simultaneously.

2.4. Extending Alignment to the General Structural
Equation Model

The extension of the alignment methodology to the general
SEM model is fairly simple. The first step is again the esti-
mation of the configural SEM model. This configural model
is defined as follows. All loading parameters are estimated
as group-specific. The intercepts of all factor indicators are
estimated as free and group specific. All factor intercepts are
fixed to 0 and all residual factor variances are fixed to 1. All
other parameters in the configural SEM model are specified
as they are specified in the original SEM model. The param-
eters of the configural SEM model are estimated as well as
their asymptotic variance covariance matrix. Next, the align-
ment procedure is used to align the loadings and intercepts
of all factor indicators. In this process, we obtain the factor
means o,,, and residual variances ,,, which minimize the
alignment loss function and maximize the amount of invari-
ance in the SEM model. Note that only the configural model
intercepts and loadings participate in the alignment. All
other structural parameters are ignored in this stage of the
estimation. The joint asymptotic variance covariance matrix
of e, Yimg and all configural parameters is obtained by the
same implicit methodology used in the simple alignment
method in Asparouhov and Muthén (2014).

At this point, the parameters of the ASEM model are
obtained from the parameters of the configural SEM model,
Omg and Y,,,.. The ASEM model is a simple rescaling of the
configural SEM model. The log-likelihood value and data fit
is preserved. Changing the scales of the factors affects some
of the SEM parameters but not all. The factor indicator
intercepts and loadings are again adjusted according to
Equations (5) and (9). The factor covariance parameters are
adjusted as follows. If ;,, is the configural model

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 173

covariance parameter for factors »; and #;, the correspond-
ing aligned parameter is computed as

lpijg = 'wbijg, 0 lpiglpjg'

If Oij,0 is the configural model covariance parameter
between an observed variable Y; and factor 1, the corre-
sponding aligned parameter is computed as

Oiig = Oijg,0 ‘pj :

Regression parameters of a factor f; on a covariate X; in
group g are adjusted as follows. The configural SEM model
estimates the equation

fi= it BijgoXj + ...

The ASEM model regression parameter is computed as

Big = ﬁijg,oﬂl‘?‘

The same transformation is used when the factor is
regressed on a dependent variable. All other parameters
remain unchanged. The above transformation equations are
then used with the delta method to obtain the asymptotic
variance covariance matrix for the parameters of the
ASEM model.

Note also that the parameters in the transformation
Equations (10), (11), and (13) must be free and unequal
across groups. That is because any equality constraints in
the configural model will not hold for the aligned model.
The same applies to parameters that are fixed to non-zero
values. Note, however, that the parameters in Equations
(10), (11), and (13) can be fixed to 0 because the transfor-
mations will not alter such a constraint. This is important
for example in the case of the bi-factor model where factor
covariances are fixed to 0. Model parameters that are not
altered by the above transformation can be held equal across
groups or be fixed.

The ASEM model also allows the regressions of one fac-
tor on another factor. Suppose that a factor f; is regressed
on a factor f; in the configural SEM model as follows

fi= it Bigdi +

The ASEM model regression parameter is computed as

ﬁijg = ﬁijg,O\/lp»ig/ l//jg'

Furthermore, a secondary parameter transformation is
required to adjust the factor means o;, obtained from the
alignment optimization to preserve the model equivalence
between the ASEM and the configural model. The actual
ASEM mean for f; in group g is now o, which is obtained
as follows

(10)

(11)

(12)

(13)

(14)

(15)

/

g = ocig—...—ﬁ,jgocjg—... . (16)
In the ASEM model, all variables regressed on a factor

are interpreted as factor indicators. Consider the situation

where the model contains a distal outcome regressed on a

factor. The distal outcome is not a measurement for the fac-

tor and we usually are not interested in the invariance of
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that regression parameter. The alignment optimization,
however, will treat the distal outcome as another factor indi-
cator. The implication of this is as follows. The alignment
procedure will attempt to align the distal outcome regres-
sion parameters just as it would do so for any loading par-
ameter, even if that is not intended. This also means that
the distal outcome will have an effect on the scale of the
factor. With the current implementation in Mplus, it is not
possible to separate the distal outcome from the measure-
ment indicators. In principle, however, this should not cause
any estimation problems. Even when the regression parame-
ters are group-specific, alignment will not make these
regression parameters group-invariant because the alignment
procedure accommodates non-invariance. Furthermore, if
there are enough factor indicators that can identify the fac-
tor scale well, the addition of the distal outcome will affect
the alignment only marginally. If the number of indicators
is small, however, or the measurement model has a substan-
tial amount of non-invariance, the addition of the distal
outcome may negatively affect the identification of the fac-
tor scales. In such situations, the Marsh et al. (2018) two-
step estimation might be preferable.

Residual covariances among the factor indicators can be
included in the ASEM model and those parameters are not
adjusted by the factor scales, i.e., these parameters will be
identical to the configural model parameters. This also
applies to the direct effects from a predictor to the fac-
tor indicators.

In summary, the alignment extension to the general SEM
model is intended to make the alignment procedure an inte-
gral part of multiple-group SEM modeling. It appears that
adding alignment to SEM has no serious drawbacks and it
has the advantage of capturing the group effect on the fac-
tors in a way that is simple and easy to interpret.

2.5. Extending Alignment to the ESEM/EFA Models

The alignment extension to the ESEM/EFA models parallels
the alignment extension of the SEM model. First, the config-
ural ESEM model is estimated in every group. Such an esti-
mation consists of two steps. First the unrotated configural
ESEM model is estimated. Then, in a second step, the esti-
mated model is rotated with an optimal rotation matrix
selected by minimizing a simplicity criterion, such as the
geomin or quartimin criteria. Finally, the configural rotated
ESEM model is aligned as if it is a regular SEM model.
Such an estimation approach clearly has three distinct steps.
The Mplus implementation encompasses all three steps and
thus it can be viewed as a one-step approach.

The AESEM method can also be viewed as an estimation
with a joint simplicity function. The simplicity rotation
function is added to the alignment loss function to form a
joint simplicity function. The joint simplicity function is
then minimized as a function of the factor means, the factor
variances and the factor rotation. The key issue in the joint
simplicity function is how to weigh the two components.
The approach implemented in Mplus essentially uses an
infinitely large weight for the rotation part. This is to reflect

the fact that we rotate the configural model without consid-
ering the alignment loss function. Conditional on these
rotated results, the alignment is then conducted. It is in
principle possible to combine rotation and alignment in a
more equitable way. However, such an estimation will be
more complex and it would still have the uncertainty about
how to weigh the two components. Presumably, a more
equitable rotation/alignment approach can have an MSE
advantage in some situations. However, we can view the
equitable rotation/alignment procedure as an estimation
with an alternative simplicity function, which more or less
is going to yield similar results in most situations.

2.6. Fixed vs. Free Alignment

The fixed and free alignments are introduced in
Asparouhov and Muthén (2014). With fixed alignment, the
factor means and variances in the reference group are fixed
to 0 and 1, respectively. With free alignment, the factor
means in the reference group are estimated and only the
factor variances are fixed to 1. Alternatively, with the free
alignment, the factor means and variances can both be esti-
mated in all groups but the product of all factor variances
across groups is fixed to 1. With this alternative parameter-
ization, a reference group does not exist. We refer to this
parameterization as the product metric. The free alignment
can generally be estimated as long as approximate metric
invariance does not hold, ie., as long as there is sufficient
loading non-invariance across groups. If metric invariance
holds approximately, the standard errors in the free align-
ment become substantially larger as compared to the config-
ural model and thus inference can be compromised. Mplus
will produce a warning if this occurs and it is imperative
that the free alignment is replaced with fixed alignment in
such situations. Furthermore, if metric invariance holds
approximately, not only is free alignment inference compro-
mised, but also free alignment is not needed. The gains in
the free alignment invariance as measured by the alignment
function F in Equation (7) will be negligible, i.e., the opti-
mal value of the loss function for the free and the fixed
alignments will be nearly identical. In practice, the free
alignment can usually be estimated without any problems
except in the case where the number of indicators is small,
the number of groups is small and the sample size within
groups is small as well. The combination of these three con-
ditions is likely to lead to approximate metric invariance.
There are several advantages of the free alignment as
compared to the fixed alignment. First, the free alignment
loss function is always better than the fixed alignment loss
function, i.e., the free alignment model will always be more
invariant than the fixed alignment. Second, the free align-
ment is independent of the reference group. Changing the
reference group in the free alignment does not alter the
alignment loss function. The alignment loss function plays
the role of the log-likelihood when the various alignment
models are compared. Although it cannot be used for model
comparison testing, it can be used to compare the level of
invariance of the various models. The alignment loss



APPROXIMATE MEASUREMENT INVARIANCE (NONINVARIANCE) FOR
GROUPS

Intercepts/Thresholds

Y1$1 12
Y2$1 12
Y3$1 12
Y4$1 12
Y5$1 12

Loadings for F1

Y1 12
Y2 12
Y3 12
Y4 12
Y5 (1) (@)

Figure 1. Output for alignment with the delta parameterization showing load-
ing non-invariance for the fifth loading in brackets.

function is always computed on the product metric scale
which makes the values directly comparable. Third, when
the reference group is changed in the free alignment model,
the new solution is a simple reparameterization of the
model. All parameters can be deterministically derived. That
is, the parameters of the free alignment with reference
Group 2 can be derived deterministically from the parame-
ters of the free alignment with reference Group 1. Fourth,
changing the reference group in free alignment is asymptot-
ically guaranteed to not alter the inference in invariance
parameter testing. Unfortunately, the fixed alignment does
not possess these properties. Changing the reference group
of the fixed alignment affects the loss function value, the
aligned parameters based on one reference group cannot
determine the aligned parameters based on another refer-
ence group, and inference can change not just in finite sam-
ple size but also asymptotically. To alleviate these
dependencies of the fixed alignment, a new fixed alignment
algorithm has been implemented in Mplus 8.9 which opti-
mizes the alignment loss function not just in terms of the
model parameters but also in terms of the reference group.
The reference group will be determined automatically and it
will be selected on the grounds of yielding the most invari-
ant measurement model. This new fixed alignment approach
does not resolve the above issues completely but it does so
to a large extent.

The free alignment becomes even more consequential in
the context of the generalized alignment models described
above. Consider the following example. If a fixed alignment
is used for a simple factor analysis model, where the first
group is used as a reference group, the factor mean in the
first group is fixed to 0. If we now add a factor predictor to
this model, the factor mean in the first group will depend
on the mean of the predictor and the regression coefficient.
That is because the fixed alignment sets the intercept of the
factor to 0 and not the total mean. The overall factor mean
will no longer be zero and it will be a function of the mean
of the predictor. From that point of view, adding a factor
predictor affects the model the same way the model is
affected by a reference group change, i.e., the alignment
structure may change in a surprising way. If the predictor is
centered, the alignment will be preserved, although the fixed
alignment may still be inferior to the free alignment if
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approximate metric invariance does not hold. The free
alignment on the other hand will remain unchanged,
regardless of whether or not the predictor is centered.

Additional discussion on the free vs. fixed alignment in
the context of practical applications can be found in Byrne
and Van de Vijver (2017), Coromina and Bartolomé Peral
(2020), and Marsh et al. (2018).

3. lllustrations

3.1. Invariance Depends on the Theta/Delta
Parameterization

In this section, we demonstrate that the concept of invari-
ance depends on the parameterization (delta or theta) used
for models with categorical data. Consider a two-group fac-
tor analysis model with 1 factor and P binary indicators.
With scalar invariance and the theta parameterization the
model is defined as follows. For i = 1,...,P and g=1, 2

P(Yjg = 0[ng) = @(ti—1in,) (17)
where @ is the standard probit function. Here
Y, = Aillg + &g (18)
where £;g~N(0, 1), n,~N (0, ) and
P(Yjg = 0[ng) = P((Yiy<ig|ng) (19)

We also set a; =0 and tﬁg = 1. This model is scalar
invariant in the theta parameterization. If the model is sca-
lar invariant in the delta parameterization as well then the
delta parameterization loadings must be equal between the
two groups

;“i _ )"i V lp2/¢2
VEHL 20

where ¢, is the factor variance in the second group in the
delta parameterization. Simple algebra then concludes that
either y, = ¢, =1, or Y, = ¢, = 0, or all loadings 4; must
be equal across indicators and must be equal to

(20)

_ V=9,
Yaldy — 1)
We conclude that in general scale invariance in one met-
ric does not translate into scalar invariance in another met-
ric. When it comes to statistical significance, however, the
issue is slightly more complex. Consider the case where sca-
lar invariance holds in the theta metric. To be able to reject
scalar invariance in the delta metric, all three of these
hypotheses must be statistically rejected

i 21)

¢2 =1 (22)
¢2 =0 (23)
M=l =..=lp. (24)

The larger the loading differences across indicators and
the more distant the factor variance is from 0 to 1, the
more likely the scalar invariance assumption is to break in a
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statistically significant way when the parameterization is
changed to the delta metric.

Since alignment is attempting to approximate the scalar
invariance model, we can expect that alignment results will
be different across the two parameterizations as well, not
just in the estimated parameter estimate, but also in the
inference regarding the invariance of individual parameters.
If there is no substantive reason to prefer one parameteriza-
tion over another, the results of both parameterizations
should be assessed and the most easily interpretable model
should be preferred. Unless some substantive reasoning is
available, the most easily interpretable model will be the one
that has the fewest number of non-invariant parameters.
This amounts to counting the number of non-invariant
parameters, i.e., the number of parameters in round brackets
in the Mplus output depicted in Figure 1.

Next, we illustrate the dependence of alignment on the
parameterization with some simulated examples. Figure A2
in the Appendix shows the Mplus input for a simulation
study where we generate data from a two-group one-factor
scale invariant factor analysis model with 5 binary indicators
using the theta parameterization. We use a very large sam-
ple size for this simulation to ensure that significance will
be archived for the three hypotheses (Equations (22-24))
needed to establish a difference between the two parameter-
izations. Smaller sample sizes will not have enough power in
this small example. The data is analyzed with the theta par-
ameterization alignment method over 100 replications and
the results are presented in Table 1. The loading parameter
for Y; is denoted by A; and the threshold parameter by 7.
The factor mean and variance in the first group are fixed to
0 and 1, respectively, while in the second group are esti-
mated as o and . The results indicate that the alignment
estimation works very well. Next we analyze the first data
set from that simulation with both the theta and the delta
parameterizations with the alignment method. The Mplus
input files for these analyses are given in Figures A3 and A4
in the Appendix. The chi-square test for the two models is
the same, however, only the theta parameterization con-
cludes that the scalar invariance holds. The delta parameter-
ization concludes that the fifth loading is not invariant. The
delta parameterization output seen in Figure 1, places the
fifth loading in round brackets which means that the load-
ings are not invariant. The details of the invariance param-
eter  analysis can  be  obtained using  the
OUTPUT:ALIGN option.

Next, we repeat this experiment by generating the data
with the delta parameterization scalar invariance model.
Figure A5 in the Appendix shows the Mplus input for this
simulation study which also analyzes the data with the delta
parameterization alignment. To properly set up the simula-
tion study the residual variances for the dependent variables
must be included here and we must make sure that the total
variance for each variable in every group is 1. The results of
the simulation are shown in Table 2 and the parameter esti-
mates are recovered well. The first data set of this simula-
tion is then analyzed with the theta and delta
parameterization alignment using again the input files in

Table 1. Montecarlo alignment results for a theta parameterization scalar
invariant factor analysis model.

Parameter True value Abs. bias Coverage

Group 1
2 0.6 0.00 0.97
A2 0.8 0.00 0.93
A3 1.0 0.00 0.94
A4 1.2 0.00 0.99
As 1.4 0.00 0.96
T 0 0.00 0.95
T, 0 0.00 0.94
T3 0 0.00 0.96
T4 0 0.00 0.93
Ts 0 0.00 0.93

Group 2
A 0.6 0.00 0.98
A2 0.8 0.00 0.99
A3 1.0 0.00 0.95
o 1.2 0.00 0.96
As 14 0.00 0.97
T 0 0.00 0.94
Ty 0 0.00 0.92
T3 0 0.00 0.91
Ty 0 0.00 0.93
Ts 0 0.00 0.96
o 0 0.00 0.92
v 1.8 0.00 0.97

Table 2. Montecarlo alignment results for a delta parameterization scalar
invariant factor analysis model.

Parameter True value Abs. bias Coverage

Group 1
A 0.4 0.00 0.95
A2 0.5 0.00 0.95
A3 0.6 0.00 0.95
A4 0.7 0.00 0.95
As 0.8 0.00 0.96
T 0 0.00 0.95
T, 0 0.00 0.94
T3 0 0.00 0.97
T4 0 0.00 0.93
Ts 0 0.00 0.93

Group 2
M 0.4 0.00 0.96
A 0.5 0.00 0.98
A3 0.6 0.00 0.97
A4 0.7 0.00 0.99
As 0.8 0.00 0.97
T 0 0.00 0.95
Ty 0 0.00 0.93
T3 0 0.00 0.93
T4 0 0.00 0.97
Ts 0 0.00 0.91
o 0 0.00 0.92
W 0.5 0.00 0.96

Figures A3 and A4. Here, we find that the delta parameter-
ization concludes that the scalar invariance holds while the
theta parameterization alignment concludes that the fifth
loading is not invariant.

In summary, the delta and theta parameterization align-
ments are not equivalent. Furthermore, chi-square cannot
be used to determine which parameterization to use because
both of these aligned models have identical chi-squares.
Note, that this is different from the situation of the standard
unaligned scalar model estimation. The scalar unaligned fac-
tor analysis models have different chi-square values, and if
the scalar model is assumed, the chi-squares can be used to
select the better metric for the estimation. If one of the two



alignment models has a clear advantage in terms of the level
of non-invariance that it reaches, it will be easy to select
that metric. However, the distinction between the two met-
rics appears to require bigger sample sizes, which might not
be feasible in practical situations. If the above simulation is
repeated with half the sample size, the parameterizations are
not distinguishable.

In this section, we did not include non-invariant
measurement parameters because we wanted to illustrate the
difference between the delta and theta parameterizations.
Non-invariant measurement parameters can be added to the
simulation setups given in Figures A2 and A5.

3.2. Factor Analysis with Cross-Loadings

In this section, we illustrate the performance of the align-
ment method for factor analysis models with cross-loadings.
Here we use a 3-group, 2-factor analysis model with a total
of nine indicators. Each factor has three pure indicators,
labeled Y; for the first factor and Z; for the second, and
three of the indicators load on both factors, which are
labeled as W, The estimated ASEM model is given by the
following equations. For i =1,...,3, g =1,...,3, and j= 1, 2

Yig = lyig + Zyingh + &yi (25)
Zig = Wi + Azinghr + & (26)
Wig = twig + Awitght + Awingfa + €wi (27)

8)/iNN(O> Hyig): SZiNN(()) Hzig), SWiNN(O) 9Wig)>f}NN(Ongy w]g)
(28)

The factor intercept and variance in the first group are
fixed to oy =0, Y;; = 1. All other parameters are free and
unequal across-groups.

The input file for this simulation study is given in
Figure A6 in the Appendix. The data are generated with
three non-invariant intercepts and three non-invariant load-
ings. The lines marked with! NI in Figure A6 specify the
non-invariant parameters within the group-specific state-
ments. These statements are placed in the MODEL
POPULATION and the MODEL parts of the input file.
Note however, that group-specific statements are generally
not needed in the MODEL part. In the simulation study,
the group-specific models are used purely for starting value
purposes and for the computation of the coverage of the
confidence intervals. In practical applications, only the main
MODEL part is needed as in Figures A2 and A3. The
group-specific models are needed only in simulation studies.
The model in Figure A6 also features a cross-loading pre-
sent only in some of the groups. This is specified by setting
“f1 by wl@0;” in group 1.

Table 3 contains the results of this simulation study for
some of the model parameters. We see that the alignment
procedure is able to estimate well all invariant and non-
invariant measurement parameters as well as the factor
means and variances.
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Table 3. Alignment simulation results for a 2-factor analysis model with
cross-loadings.

Parameter True value Abs. bias Coverage
Group 1
11 1 0.00 0.96
Aw21 0.5 0.00 1.00
A2 0.5 0.00 0.93
Awaz * 0.5 0.00 0.97
Aw32 0.5 0.00 0.94
Hyq * 1 0.01 0.96
o 0 0.01 91
Group 2
11 1 0.00 0.95
A1 * * 0.5 0.00 0.95
Aw21 0.5 0.00 0.93
Awi2 0.5 0.00 0.97
w2z * 1 0.01 0.93
Aws2 0.5 0.01 0.94
By * 0 0.00 0.96
Ly * -1 0.01 0.96
o4 0.4 0.01 0.99
o 0.6 0.01 0.96
W 14 0.01 0.95
V2% 1.2 0.03 0.98
Group 3
M1 1 0.00 1.00
A1 * * 0.5 0.01 0.93
Aw21 0.5 0.00 0.98
A2 1 0.02 0.98
Az22 * 0.5 0.01 0.91
Az32 1 0.02 0.94
1 0 0.00 0.98
[T 0 0.00 0.95
My * 1 0.01 0.90
o -1 0.00 0.93
o —-0.5 0.03 0.90
W 1.4 0.01 0.98
V2% 1.2 0.05 0.89

Note. Non-invariant measurement parameters are marked with*. Parameters
existing in only some of the groups are marked with**,

3.3. Bi-Factor Models

In this section, we illustrate the performance of the align-
ment methodology for the bi-factor models. The bi-factor
model is technically just another factor analysis model with
cross-loadings. However, the model is somewhat special
because all indicators load on more than one factor. In add-
ition, there are certain identifiability issues related to the bi-
factor model that are somewhat special. The covariances
among the factors must be fixed to 0 in the bi-factor model.
To some extent, the bi-factor model can be considered to be
an extreme version of the factor analysis model with
cross-loadings.

Figure A7 in the Appendix shows the input file for a 2-
group 3-factor bi-factor model with 10 indicators Y; and Z,
i=1,..,5. All 10 indicators load on the general factor f;.
There are also two specific factors f, and f;, f, is the specific
factor for Y; and f; is the specific factor for Z;. The model is
given by the following equations. For i =1,...,5,j =1,...3,
and g=1, 2

Yig = Wyig + Ayitght + Ayingfa + &y (29)
Zig = g + Aaingh + Ayisghs + & (30)
8),,'NN(0, Oyig)) SZI‘NN(O, Hzig))ijN(ajg) lﬁjg> . (31)
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The factor intercept and variance in the first group are
fixed to o =0, y;; = 1. All other parameters are free and
unequal across-groups.

We generate data with two non-invariant intercepts, one
non-invariant general factor loading and one specific factor
loading. The lines containing the non-invariant parameters
in Figure A7 are marked with “/NL.” One of the important
identifiability conditions of the bi-factor model is that the
specific factor loadings must not be proportional to the gen-
eral factor loadings. If the loadings are proportional, a local
non-identification condition exists. In this example, we gen-
erate data with equal general factor loadings and unequal
specific factor loadings. This ensures that the parameters of
the bi-factor model are not close to these local non-identifi-
ability conditions.

In this simulation study, we use the TOLERANCE
option, which refers to the e value in Equation (8). The
default value for € is 0.01. By lowering the value to 0.0001,
we reduce the bias in the point estimates. However, lower-
ing the value of € is often associated with an upwards bias
in the standard errors. The bi-factor model is somewhat
more challenging for the alignment procedure than standard
factor analysis models. Thus, the 0.0001 value is beneficial
here. The bias in the standard error appears to be minimal.
We do not recommend using epsilon values outside of the
range 0.0001-0.01. Smaller values will make the computa-
tion less stable because of divisions near 0 in the derivatives
of the loss function. In addition, the standard error estima-
tion which is based on these derivatives will not be as accur-
ate. Larger values of e have the effect of spreading non-
invariance beyond the source, which is also undesirable.

The results of the simulation study for a selection of the
parameters are given in Table 4. The alignment method
appears to work well for the bi-factor model as well.

3.4. Factor Analysis with Covariates

In this section, we illustrate the performance of the align-
ment methodology for a factor analysis model with covari-
ates. We use a 3-group analysis with one factor f and five
ordered categorical indicators Y;, i = 1,...,5, with three cat-
egories 0, 1, and 2; and one covariate X. The covariate pre-
dicts the factor in every group and also directly the first
indicator in the first and the third groups. A residual covari-
ance is also estimated for the second and the third indica-
tors in the second and the third groups. We estimate the
following ASEM model. For g =1,...,3

Yy, = Jagf + X + &1, (32)
and for i =2,...,5
Y;‘; = digf + &
f=o,+pX+e
&i~N(0,1),e~N(0,,), Cov(ez, &3) = O3,
Yig=k<= 11, < Yifg<fi,k+1,g-

(33)
(34)
(35)
(36)

The factor intercept and variance in the first group are
fixed to oy =0 and Y, =1. The direct effect is not

Table 4. Alignment simulation results for a bi-factor model.

Parameter True value Abs. bias Coverage

Group 1
M1 1 0.00 0.92
My * 15 0.00 0.93
21 1 0.00 0.95
Azt 1 0.01 0.94
Az 1 0.01 0.94
My32 1 0.00 0.96
Mya2 1.2 0.01 0.95
Ays2 * 1.4 0.00 0.97
Aza3 1.2 0.01 0.95
Azs3 1.2 0.01 0.97
Hyq * 1 0.00 0.94
Iy * 0 0.00 0.97

Group 2
11 1 0.01 0.95
Mya1 * 1 0.02 0.94
My21 1 0.02 0.97
Azt 1 0.02 0.96
A 1 0.02 0.98
My32 1 0.02 0.98
Mya2 1.2 0.02 0.95
Aysg * 1 0.02 0.98
243 1.2 0.01 0.95
Azs3 1.2 0.01 0.97
By * 0 0.00 0.96
Ly * 1 0.00 0.96
o 0.3 0.01 0.96
o —04 0.01 0.98
o3 0.5 0.01 0.98
/R 14 0.04 0.95
Vs 1.4 .05 .92
V3 14 0.02 0.95

Note. Non-invariant measurement parameters are marked with*.

estimated in the second group, so 7y, is also fixed to 0.
Similarly, the residual covariance is not estimated in the first
group so 0,3, is also fixed to zero. The threshold parameters
Tigg and T3, are as usual set to —oo and +oo. Two thresh-
old parameters are therefore estimated for every indicator in
every group: T;j, and Tiyg.

We generate data according to the above model with two
non-invariant factor loadings and two non-invariant thresh-
olds. The full Mplus input for this Montecarlo simulation is
given in Figure A8. We analyze the above ASEM model
with the theta parameterization of the WLSMV estimator. It
takes only 7s to complete 100 replications of this study. The
model can also be analyzed with the ML estimator if the
residual covariance parameter 0,; is not included in
the model.

The results of this simulation study for a subset of the
parameters are shown in Table 5. The biases in the parame-
ters estimates are minimal and the coverage is near the
nominal level of 95%. We conclude that the alignment
method can easily accommodate factor predictors as well as
other features of the general SEM framework.

3.5. AESEM Simulation Study

In this section, we illustrate with a simulation study the per-
formance of the alignment methodology for a 2-factor
ESEM model with a covariate. The full model is given in
Figure A9 in the Appendix. The two factors are measured



Table 5. Alignment simulation results for a factor analysis with a covariate.
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Table 6. Results for an AESEM model with a covariate.

Parameter True value Abs. bias Coverage  Parameter True value Abs. bias Coverage
Group 1 Group 1
A3 1 0.00 0.92 M1 1 0.00 0.93
Ag * 1 0.00 0.95 21 1 0.00 0.90
As * 1 0.00 0.97 hy31 * 1 0.00 0.92
p 0.7 0.01 0.98 Az31 * 04 0.01 0.98
Y 0.4 0.01 0.94 Az32 1 0.00 0.98
T * —1 0.01 0.96 12 0 0.00 0.99
Typ * 1 0.00 0.94 i 0.3 0.00 0.94
Group 2 P —0.2 0.00 0.94
I3 1 0.04 0.98 Vs 0.5 0.00 0.95
Mg * 0.6 0.03 0.94 Group 2
As * 0.6 0.02 0.97 M1 1 0.01 0.99
p 0.4 0.01 0.94 My21 1 0.01 0.97
Tqp % 0 0.02 0.97 hy3p * 0.7 0.01 0.95
Tip * 1.5 0.04 0.92 g3t * 0 0.00 0.97
o 0.4 0.03 0.97 b —0.3 0.00 0.95
1] 0.8 0.04 0.92 b 0.2 0.00 0.94
053 03 0.01 0.92 Vs 0.3 0.00 0.93
Group 3 o 0.5 0.01 1.00
A3 1 0.00 0.96 o 0.8 0.01 0.99
g * 1 0.01 0.98 W 1.2 0.03 0.92
As * 1 0.01 0.99 V2% 1.5 0.02 0.98
p 0.7 0.00 0.96 Group 3
Y 0.4 0.00 0.95 M1t 1 0.00 1.00
Ty % —1 0.02 0.98 My21 1 0.00 0.98
Typ * 1 0.00 1.00 hy31 * 1 0.00 0.96
o —0.3 0.00 0.99 g3t * 0.4 0.01 0.95
W 1.2 0.02 0.99 o —0.5 0.01 0.98
023 0.3 0.01 0.94 oy 03 0.01 0.92
Note. Non-invariant measurement parameters are marked with*. ¥ 1.5 0.01 099
Vs 12 0.00 0.98
1y * 1 0.00 0.94

by a total of six indicators, where each of the two factors is
measured by three main indicators. We generate the data so
that factor f; has main(large) loadings for Y3,..., Y3 and fac-
tor f, has main loadings for Zi,...,Z;. Factor f; has a main
loading non-invariance for Y3 and in groups 1 and 3 has a
non-zero cross-loading for Z;. Intercept non-invariance is
introduced in group 3 for Z,. Both factors are regressed on
the covariate X.

The estimated AESEM model is given by the following
equations. In group g, fori =1,...,3

Yig = Wyig + Ayingh + Ayingfa + &y (37)
Zig = g + Aaingh + zingfs + &2 (38)
&i~vN(0, Oyig), £2i~N(0, 05) (39)
For j=1, 2 in group ¢
fi=tg+ X+ (40)
where
ej~N(0, ), Cov(er, ez) = 1y, (41)

The alignment method fixes the factor intercept and vari-
ance in the first group: o1 = 0, ;; = 1. All other parame-
ters are free and unequal across-groups. However, the
parameters of the AESEM model are implicitly constructed
from the parameters of the unrotated contextual model
through the optimization of the rotation and the alignment
loss functions.

For the purposes of the chi-square and the BIC computa-
tion the number of free parameters in the AESEM model is
the number of free parameters in the unrotated contextual
model. In this example, that model has 25 parameters in
each group for a total of 75 parameters. Here is how these

Note. Non-invariant measurement parameters are marked with*.

parameters can be counted: 6 intercepts, 12 loadings, 6
residual variance, plus 2 regression parameters for the 2 fac-
tors regressions on the covariates. From this quantity, we
subtract the loadings that are fixed to 0 in the unrotated
model, which are the loadings above the main diagonal. In
this example, just one of the loadings is fixed to 0. As usual,
the unrotated model parameter specification can be found
in techl. As with all ESEM models, there are two sets of
techl. The second version of techl is the actual AESEM
model where all parameters are given. In this example, the
additional parameters are the 2 factor variances, 1 factor
covariance, 2 factor means, as well as the 1 loading that is
fixed in the unrotated solution. This yields 6 additional
parameters, which give a total of 31 parameters in each
group and a total of 93 parameters that are reported in the
output for the model results. The additional 18 parameters
are not free parameters. These additional parameters are
dependent parameters that are identified through the rota-
tion and alignment loss function optimization. For the pur-
pose of chi-square testing and BIC computations, the model
has 75 parameters. The important thing to understand for
the AESEM model is that the loading parameters are all free
and unequal across groups so that the EFA measurement
invariance is accommodated, and in addition to that the
scale parameters for the factors are estimated in all but the
reference group.

The results of the simulation study for some of the
parameters are given in Table 6. The parameter estimates
are unbiased and the coverage is near the nominal level of
95%. This includes all non-invariant loadings and intercepts
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as well as the factor means and variances. The average chi-
square value across the replications is 25.1 and with 24° of
freedom this yields a rejection rate of 0.07 which is suffi-
ciently close to the nominal rejection rate of 0.05. We con-
clude that the AESEM methodology works well. The entire
simulation study on the 100 generated data sets takes only
8s to complete. It should be noted, however, that models
with more groups, indicators, and factors will not be as fast
to estimate. The number of parameters that must be
handled in such estimation grows linearly with the number
of groups, indicators and factors. Thus, larger models are
expected to have slower estimation.

For comparative purposes, we also estimate the scalar
ESEM model which assumes measurement model invari-
ance. To obtain this estimation, we have to remove the
alignment option from the input file given in Figure A9 as
well as the group specific measurement and intercept state-
ments in the model statement. In this model, the loading
and indicator intercept parameters are held equal across
groups and the rotation is group invariant. The factor
means and variances are also estimated with the exception
of the reference group. The results are given in Table 7. We
see biases and coverage problems in almost all of the
parameters. This is somewhat of a surprising result since the
model has only 3 non-invariant parameters (1 main loading,
1 cross-loading, and 1 intercept). Nevertheless, the non-
invariance in this simulation is not small. Clearly, the larger
size of the non-invariance propagates to most model param-
eters. The average chi-square value in this simulation is
1,392.3 and with 48° of freedom the model is rejected in all
replications. The average CFI and TLI values are 0.93 and
0.90. Despite the larger number of parameters, the AESEM
model has a much better average BIC value than the scalar
ESEM model. This simulation study further emphasizes the
importance of the AESEM model which can accommodate
measurement non-invariance.

3.6. Models with Large Amount of Non-Invariance

Asparouhov and Muthén (2014) present several simulation
studies to evaluate the alignment methodology with different
levels of non-invariance. Up to 20% non-invariance has
been used in these simulation studies. Subsequently, the
question has arisen regarding the level of non-invariance
that the alignment methodology can handle. In this section,
we illustrate the performance of the alignment method with
a large amount of non-invariance.

Multiple factors play a role in the quality of the align-
ment estimates. The most important of these is whether the
generating measurement parameters is the most invariant
pattern that represents the data. The interpretation of the
“most invariant” concept in this regard is that the set of
generating parameters represents a minimum of the align-
ment loss function (Equation (7)). If the generating parame-
ters do not represent a minimum of the alignment loss
function, then alignment will replace the generating parame-
ters with a set of parameters that represents a minimum.
This essentially means that the alignment procedure will

Table 7. Scalar ESEM results.

Parameter True Value Abs. Bias Coverage
Group 1
M1 1 0.03 0.79
dy31 % 1 0.07 0.09
Az11 0 0.01 0.00
Az 0 0.19 0.00
Az31 * 04 0.11 0.00
A2 1 0.00 0.96
Az22 1 0.13 0.00
Az32 1 0.00 0.98
12 0 0.01 0.99
1 0.3 0.00 0.95
P —0.2 0.03 0.66
(129 0.5 0.07 0.11
1 0 0.07 0.12
Iy, * 0 0.18 0.00
I3 0 0.13 0.00
0y3 1 0.05 0.66
0,1 1 0.04 0.82
0, 1 0.01 0.94
03 1 0.08 0.50
Group 2
b1 —0.3 0.04 0.39
i 0.2 0.00 0.93
VPP 0.3 0.06 0.45
o 0.5 0.06 0.52
oy 0.8 0.05 0.73
U 12 032 0.00
V2% 1.5 0.15 037
Group 3
b1 0.3 0.00 0.98
i 0.2 0.02 0.86
VPP 04 0.13 0.06
o —-05 0.06 0.65
o 0.3 0.28 0.00

Note. Non-invariant measurement parameters are marked with*.

align the parameters better to a set of parameters that has
greater non-invariance than the generating parameters.
Thus, if the generating parameter set is not an alignment
loss function minimum, we cannot expect the generating set
to be recovered by alignment. This concept is similar to
what happens in EFA. If a set of generating loading parame-
ters does not represent a minimum of the rotation function,
we cannot expect the EFA procedure to reproduce these
parameters. The parameters will be rotated further to an
actual minimum that yields simpler loading structure.

If the configural set of parameters is estimated by the
ML/WLS estimators without any error, the alignment esti-
mates of o, and Y, are considered the” most invariant” if
these yield the smallest loss function (Equation (7)), i.e.,
they minimize the loss function. When the amount of non-
invariance is small, i.e., less than 20%, this usually ends up
to be the case, especially when the non-invariance is spread
around the groups. However, there are exceptions to this
rule. Consider the situation where there are G groups and
the first G — 1 groups are fully invariant while the last group
is not invariant in any of the parameters. Such a situation
represents 1/G non-invariance, i.e., with G=10 groups, the
amount of non-invariance would be 10%. In that case, how-
ever, the factor mean and variance in the last group can be
adjusted to make at least two (one intercept and one load-
ing) parameter invariant and likely reducing the loss func-
tion. In this hypothetical case, the true parameters do not



represent the most invariant pattern, even though there is
only 10% non-invariance, and the alignment procedure is
not expected to recover the estimates even with large sample
size.

In every situation where the alignment optimization has
converged and there is a sufficient number of random starts
used in the procedure (Mplus default is 30), one can be
assured that the reported alignment results represent the
most invariant pattern, ie., a loss function minimum.
Suppose that a real data alignment model has been esti-
mated successfully. The natural question in this case is to
see if the reported solution can be recovered in a simulation
study. The answer to that question is that the aligned solu-
tion will be recovered if the simulation study is conducted
with a large sample size. The large sample size will ensure
that the configural parameters are the same as the configural
parameters in the real data. At that point, the alignment
optimization between the real data and the simulated data
will be the same, thereby producing the same outcome.
When the sample size is small the configural estimates in
the simulated data and the real data will differ. Depending
on the circumstances, some replications may be aligned to
the same “most invariant” solution and some may be
aligned to a different “most invariant” solution, thereby cre-
ating the illusion that the parameter estimates are not recov-
ered. Such a result however is not a reason to disregard the
actual data analysis. Even if the sample size is small, the
aligned solution still represents the “most invariant” choice.

When the amount of non-invariance is larger, it would
not be easy to verify that the true values represent the “most
invariant” solution. However, if the solution is obtained
from a real data run, then by definition the aligned solution
is “most invariant.” In principle, there is no upper limit on
the amount of non-invariance that the alignment method-
ology can handle successfully. Here we provide a simulation
study where 50% of the measurement parameters are not
invariant. The input file for this simulation study is given in
Figure A10. The model has one factor measured by six indi-
cators, Y; and Z; for i = 1,...,3 and predicted by a covariate
X. The indicators Y; have fully invariant measurement
parameters while the indicators Z; are not invariant. Thus,
50% of the measurement parameters are non-invariant. The
estimated ASEM model is given by the following equations.
Fori=1,..,3

Yig = tyig + Ayigf + &y (42)

Zig = Ugig + 2zigf + &2 (43)
f=og+fX+e (44)

SyiNN(()) 9yig)> SziNN(Oa gzig): eNN(0> l//g) (45)

where in the first group o; = 0 and ;. The parameters p,,q
and A, are invariant, while p;, and 7, are not invariant.
In the ASEM estimation, all parameters are group specific.
The results of the simulation study for a selection of the
parameters are given in Table 8. We see here that the align-
ment method performed well even when the amount of
non-invariance is substantial.
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Table 8. Alignment results with large amount of non-invariance.

Parameter True value Abs. bias Coverage
Group 1
M1 1 0.01 0.93
)2 1 0.01 0.93
My3 1 0.01 0.93
Agp * 1 0.01 0.92
Az * 1 0.00 0.95
Ag3 * 1 0.00 0.93
p 0.4 0.00 0.91
Hy1 0 0.00 0.93
Hyo 0 0.00 0.94
Hy3 0 0.00 0.92
Ly * 0 0.00 091
Iy * 0 0.00 0.94
L * 0 0.00 0.96
Group 2
o 1 0.01 0.96
M2 1 0.01 0.95
My3 1 0.01 0.96
A * 0.5 0.01 0.97
Az * 0.8 0.01 0.95
Ag3 * 1.2 0.01 0.94
B 0.7 0.01 0.94
My 0 0.01 0.94
Hyo 0 0.01 0.98
Hy3 0 0.01 0.97
Ly * 03 0.01 1.00
Iy, * 0.5 0.01 0.96
I3 * 03 0.01 095
Group 3
M 1 0.01 0.94
)2 1 0.01 0.95
My3 1 0.01 0.96
Agp * 0.8 0.00 0.94
Az * 1.2 0.01 0.96
g3 * 0.5 0.00 0.99
p 0.2 0.00 0.95

Note. Non-invariant measurement parameters are marked with*.

We conclude this section with the following observation.
The result of the alignment optimization is that the invari-
ant measurement parameters are typically very close across
the groups, but they are not identical. The small differences
across groups are generally not of practical significance. For
situations with large sample sizes, however, these practically
insignificant differences may become statistically significant.
In that regard, parameters that for all practical purposes can
be considered invariant may be reported in the Mplus out-
put as having some non-invariance. This should be taken
into consideration. Large sample sizes are often the source
of non-invariant results. Substantive judgment should be
exercised in such situations to properly depict the amount
of non-invariance. The simulation study described in this
section is not of this type because the differences in the
parameters across groups are substantial. When the sample
size is large, the amount of non-invariance reported in the
Mplus alignment output is likely overestimated and some
subjective assessment must be done to obtain a more realis-
tic account for the level of non-invariance.

4, Empirical Example: PISA

In this section, we illustrate the AESEM model with an
empirical example. We utilize the student background
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questionnaire data of PISA 2006, which contains eight scales
measuring a variety of motivational and engagement con-
structs in science as described in Marsh et al. (2018). The
data contain nationally representative samples of 15-year-old
students from 30 OECD countries/groups with a total sam-
ple size N= 249, 840. Sampling weights are included in this
data as well as the school identification, which is also the
primary sampling unit. Complex sampling methodology is,
therefore, utilized in the analysis, see Asparouhov (2005).
Nagengast and Marsh (2013) establish a fairly well-defined
eight factor CFA model based on 44 indicators and pure
loading structure. For this illustration, we will use only the
first 4 factors which are measured by 22 indicators. The
four factors we consider here are Enjoyment, Instrumental
motivation, Future-oriented motivation, and self-efficacy.
The data also include three covariates that are used to pre-
dict the four factors: gender, socioeconomic status, and sci-
ence achievement. The last two covariates are standardized
in this analysis while the gender variable is not. Since we
use the free alignment in the analysis, the impact of the
standardization of the covariates is only a matter of con-
venience and it does not affect the actual alignment results.
Complex practical applications often also include stratifica-
tion as well as missing data imputation. The alignment esti-
mation can accommodate such features as well.

We consider four different models. The first model is the
scalar measurement invariance SEM model which does not
use alignment and utilizes pure loading structure, ie., no
EFA rotation/cross-loadings. The second model is the
ASEM model which uses alignment, i.e., does not assume
scalar measurement invariance, but relies on the pure load-
ing structure, i.e., does not use EFA rotation/cross-loadings.
The third model is the ESEM model which assumes scalar
measurement invariance but utilizes EFA rotation/cross-
loadings, i.e., it does not assume pure loading structure. The
fourth model is the AESEM model which utilizes both align-
ment and EFA rotation/cross-loadings, ie., it does not
assume scalar measurement invariance or pure load-
ing structure.

Model fit comparison is given in Table 9. The various
measures of fit show that the AESEM model fits best for
this data, followed by the ASEM model, followed by the
ESEM model. The added parameters, needed for the
groups-specific aligned measurement model, and the added
cross-loadings parameters, obtained with the EFA rotation,
are well justified for this data. Despite the substantial
increase in the number of parameters, the AESEM model
yields the best BIC. The Mplus input file used for the

Table 9. Model fit comparison for PISA empirical example: 22 indicators, 4
factors, and 3 covariates.

Model SEM ESEM ASEM AESEM
Number of parameters 1,476 1,530 2,520 4,140
Chi-square 162,449 145,919 85,308 62,943
Degrees of freedom 8,754 8,700 7,710 6,090
BIC 10,404,759 10,376,631 10,286,767 10,268,659
CFI 0.92 0.93 0.96 0.97
TLI 0.92 0.93 0.95 0.96
SRMR 0.049 0.045 0.029 0.019
RMSEA 0.046 0.044 0.035 0.034

estimation of the AESEM model is given in Figure All. The
only difference between the input file for the ESEM and
AESEM model is the specification of the alignment option:
ALIGNMENT = FREE. The DEFINE statement in this input
is needed to ensure that the school identification numbers
are different across all the countries.

Overall, the results across the models are fairly consist-
ent. For example, if we compare the 30 factor means for the
AESEM and the SEM models, the correlation between these
estimates for the four factors are 0.997, 0.995, 0.985, and
0.996. If we compare the rankings of groups by their factor
means, in the AESEM and ASEM models, nearly half of the
groups preserved their rankings and those that did not,
changed ranking only slightly. The percentage of non-invari-
ant factor loadings in the AESEM model for the four factors
is 17%, 14%, 17%, and 12%. The percentage of non-invari-
ant intercept parameters is at 31%. The most invariant indi-
cator has invariant intercepts in all 30 groups while the least
invariant indicator has invariant intercepts in 13 groups.
The cross-loadings in the AESEM model are generally small
and the pure structure holds up quite well. In 20 of the 30
groups there are no cross-loadings with Z-score above 10, in
7 of the groups there is only 1 such cross-loading, and in 3
of the groups there are 2 such cross-loadings. The size of
these more substantial cross-loadings amounts to about 25%
of the main loadings by size.

5. Empirical Example: ESS Human Value Scale

For this illustration, we use the European Social Survey
(ESS) Human Values Scale which consists of 21 ordered cat-
egorical items with values from 1 to 6. Detailed description
of the instrument can be found in Schwartz (1992) and
Davidov et al. (2008). For this analysis, we use data from
ESS-2018 which contains 29 European countries for a total
sample size of N=49,038. The data include sampling
weights, cluster sampling, and stratification. The instrument
is designed to measure 10 different values, i.e., 10 different
latent variables via a confirmatory CFA analysis where 9 of
the latent variables have 2 indicators and one latent variable
has 3 indicators.

Ideally, this data should be analyzed as categorical but
given the large number of latent variables, the ML estima-
tion is not feasible. The WLSMV estimation in Mplus would
be suitable, however, despite the large sample size, 5 of the
groups have item categories that do not occur. The WLSMV
estimator currently requires that all categories are present in
all groups for any multiple group analysis and thus the esti-
mator is not available for this illustration. One possibility is
to eliminate rare categories by combining them with neigh-
boring categories over the entire population but such an
approach requires some substantive expertise. In this illus-
tration, we will instead treat the data as continuous.

Here, we attempt to analyze the data with AESEM, i.e.,
we replace the confirmatory structure in favor of explora-
tory analysis. As a first step, we conduct an EFA model for
the entire population without accounting for the multiple
groups. The CFI values for this model with 1 through 7



EFA factors are: 0.43, 0.69, 0.91, 0.94, 0.95, 0.96, and 0.98.
The EFA analysis with 8 factors yields negative residual var-
iances, and with 9 and 10 factors the unrotated estimation
did not converge. From these results, we conclude that the
EFA with four factors provides a sufficient approximation
for this data. The top four eigenvalues for the correlation
matrix are 4.3, 2.7, 2.2, and 1.0. All other eigenvalues are
less than 1.

The 4-factor EFA solution appears to match the estab-
lished 10 factor CFA in the following sense. If we retain
only the largest standardized EFA loading for each indica-
tor, we obtain a solution where the 10 CFA factors are com-
bined down to 4 factors. Using the notation of Table 2 in
Davidov et al. (2008), factors SD, UN, and BE are combined
to form the first EFA factor (i.e., the indicators for SD, UN,
and BE are exactly the same as the indicators for the first
EFA factor), factors PO and AC form the second EFA fac-
tor, factors TR, CO, SEC form the third EFA factor, and
factors HE and ST form the fourth EFA factor. There are,
however, a number of mid-size cross-loadings which justify
the need for EFA rather than a 4-factor CFA with pure
loading structure.

In this section, we compare the following five models:
the scalar invariance ESEM model with target rotation and
four AESEM models using target and geomin rotations
combined with free and fixed alignment. For the fixed align-
ment, we use the first group as the reference group. For the
target rotation, we use the structure suggested by the pre-
liminary analysis that conforms with the original human
value scale. For the first EFA factor, we use the indicators
for SD, UN, and BE, while all other indicators have a target
of zero, etc., see Figure Al12. The geomin rotation also takes
advantage of the preliminary analysis. We order the indica-
tors so that the indicators for SD, UN, and BE, i.e., the indi-
cators for the first EFA factor, come first, etc. This
guarantees that the order of the factors will be the same in
all groups and parameters will be aligned correctly.

The four AESEM models have the same fit. The BIC for
the AESEM models is 3017632 and for the ESEM model is
3039802. The CFI for the AESEM models is 0.93 and for
the ESEM model is 0.76. Both of these confirm that the
AESEM model provides a substantially better fit than the
ESEM model. The CFI for the AESEM model is nearly iden-
tical to the CFI for the 4-factor EFA model which fits the
total population variance covariance matrix. This is inter-
preted as evidence that the 4-factor model holds up well
across all groups and not just for the overall population.
The AESEM model has 3,480 parameters while the ESEM
model has 1,100. The better BIC value for the AESEM
model justifies the need for the large number of add-
itional parameters.

Using the target rotation, the free alignment yields only
403 non-invariant measurement parameters out of the total
3,045, ie., 13% non-invariance. Target rotation with fixed
alignment yields 430 non-invariant measurement parame-
ters. We interpret this as follows. The free alignment
appears to have some advantage over the fixed alignment
but that evidence is not very dramatic. Agreement between
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the two models on which parameters are not invariant is
substantial. For example, the first indicator has 17 non-
invariant measurement parameters out of 145 with both the
fixed and the free alignment and these parameters are
exactly the same model parameters, i.e., if a loading param-
eter is not invariant with fixed alignment it is not invariant
with free alignment as well. Geomin rotation with free
alignment yields 645 non-invariant parameters and with
fixed alignment 669. Clearly, the target rotation should be
preferred over the Geomin rotation. We conclude that the
target rotation with the free alignment is the best among
the five models.

Next, we compare the models by evaluating the agree-
ment in the model estimated factor means. A simple way to
measure this agreement for two of the models is to compute
for each factor the correlation between the group-specific
factor means, as we did in the previous example, and then
average the four correlations. We obtained the following
results. The correlation between AESEM(target, free) and
ESEM-scalar is 0.84. For comparison, in the previous empir-
ical example, that correlation is 0.99. This clearly indicates
that the ESS human value scale has much more depth in
terms of intercept, main loadings, and cross-loadings non-
invariance across countries and can benefit substantially
more from the alignment methodology than the PISA illus-
tration. The correlation between AESEM(target, free) and
AESEM(target, fixed) is 0.95, which is still surprisingly low.
We interpret this as an advantage of the free alignment. If
free alignment was not needed, this correlation would be
higher. Finally, the correlation between AESEM(target, free)
and AESEM(geomin, free) is 0.56. This is even more sur-
prising. Closer inspection of the geomin results show that in
some of the groups, the EFA structure is not what we
expect. For example, in the smallest sample size country
(Cyprus, N= 779), the standardized loadings >0.4 for the
first EFA factor are quite different for the two rotations.
The Geomin rotation yields 10 such loadings and only half
of those are the ones we intended. In the target rotation
there are 7 such loadings and those are exactly the ones we
intended. It may be the case that adding more random start-
ing values to the geomin optimization algorithm can resolve
this issue, however, clearly the target rotation is easier to
facilitate. In those situations where the target rotation is not
available, EFA structures should be inspected across groups
to confirm that there is no substantial divergence in some
groups. If there is such a divergence, the alignment results
should be considered unreliable for that group.

6. The Alignment R-Squared

After the alignment estimation has been completed, Mplus
produces a detailed invariance analysis for all measurement
parameters. The differences between every pair of parame-
ters are evaluated for significance. A subset of the parame-
ters is declared as an invariant set and the remaining
parameters are declared as non-invariant. Verbose details of
this analysis can be obtained with the option

OUTPUT:ALIGN. The computation is outlined in
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Asparouhov and Muthén (2014). This procedure is some-
what ad-hoc because of the large number of comparisons
that are analyzed; however, it appears to work fairly well for
most situations.

For every measurement parameter, Mplus also produces
an R-squared value, which is meant to be interpreted as the
amount of variation in the parameter explained by the
alignment. This R-squared value is reported under the title:
“R-square/Explained variance/Invariance index.” The R-
squared value is between 0 and 1. Values close to 1 are asso-
ciated with invariant parameters, while values closer to 0 are
generally associated with non-invariant parameters. In prac-
tical applications, however, the R-squared value appears to
frequently deviate from these general guidelines and it
becomes a source of confusion. In this section, we elaborate
somewhat on the properties of this quantity and show how
it is computed for the general ASEM model.

For the loading parameters, the computation of R’
remains unchanged and is as in formula (14) in Asparouhov
and Muthén (2014)

R%‘W =1-Var (ﬂvo,pmg, [V g ipm) /Var(Zo,pmg).  (46)

Here /g, pmg is the configural loading for the p—th indica-
tor and the m—th factor in group g, /,, is the average
aligned loading across the groups, 1/, is the alignment fac-
tor variance in group g. The configural loading Ao pme is
interpreted as the observed value. The quantity , /1, Apm is
the predicted configural loading in group g while
20,gpm— 1/ Wmg Apm 1s the residual. If the aligned loadings are
identical, then the observed and the predicted values will be
identical and the R? value will be 1, i.e., for a fully invariant
loading parameter, the R? value is 1.

For the intercept parameter, the R* value is computed as
follows

R, = 1-Var(E(Y,g|Mo)—E(¥,|M,))/ Var(E(Ye | Mo)),

(47)

where model M, is the configural model while model M is
the aligned model where the measurement parameters for
Yy, are invariant. More specifically, M, is the same as the
aligned model except that the measurement parameters for
Y, are replaced by their average aligned values. In the gen-
eral factor analysis model this translates to

M
R} = 1=Var(vo,pe—vp— Y thmg Zpm)/ Var(vo,p),

m=1

(48)

where v e is the configural intercept of Yy, v, is the aver-
age across groups aligned intercept, 4,, is the average
across groups aligned loading for the m—th factor, o, is
the mean of the m—th factor in group g. In this case, v g
is E(Ypg|Mo), vp 4>y Omg Apm s E(Ypg|My), 1ie., the
aligned model predicted value, under the invariant measure-
ment model assumption for Yoo and
M . .
V0, pg=Vp— D me1 Omg Apm is the residual
E(Ypg|Mo)—E(Ype|My). If scalar invariance holds for that
indicator, then R* is 1. The further away R” is from 1, the
less invariant the intercept parameter is.

The R® measure has a number of caveats that should be
taken into account when the value is used in practical appli-
cations. First, the R* value is based on variance estimates. It
is somewhat difficult to rely on such estimates when the
number of groups is small. Second, the R* value does not
reflect statistical significance. It is a common occurrence to
see a low R” value and at the same time the parameter esti-
mates across groups to be invariant because the parameters
are not statistically significant from each other. This can
occur for example in those situations where the sample size
is small and the power to establish statistical significance is
low. Third, the R* value is not mathematically constrained
to be above 0, as in regression analysis. It is not uncommon
for one reason or another to obtain estimates for which the
variance of the “predicted” or the “residual” values are big-
ger than that of the configural parameters. In that case, R*
is simply reported as 0. The fourth instance in which the R?
is not a meaningful measure of invariance is the situation
where all the variances in the computation are very small.
This would occur when the variation across groups in the
factor means is small and when the variation in the configu-
ral intercepts is very small. Similar issues can occur also for
the loading parameters. If the variation in the factor vari-
ance across groups is negligible and the variation in the
configural loadings is negligible, it would be difficult to
make some inference from the 0/0 ratio that the R* is based
on. The final issue with R* we want to mention here is the
fact that for an intercept parameter, the R*> computation
also involves the loading parameters. This implies that even
if the intercept is invariant, but the loading parameters are
not, the R? may not be 1.

In summary, the R* invariance index is a rough measure
for how far we are from a scalar model on the level of indi-
vidual parameters. Low R* occurs for a specific reason, but
that reason cannot be universally identified. In general, we
do not recommend using the R* measure as a criterion for
which parameter can be considered invariant. This should
be properly done as in the pairwise comparisons that Mplus
uses. The proper interpretation of the R* measure is that
this is the proportion of variation that can be explained by
the variation in the factors. If R* is small, the parameter is
somewhat different from what can be observed for scalar
invariance model parameters. As a general rule of thumb,
we can expect that high R* are usually obtained for invari-
ant parameters and low R’ are usually obtained for non-
invariant parameters. The five situations we listed above,
however, are all exceptions to this rule of thumb.

7. Practical Guidelines
7.1. Constructing a Well-Fitting ASEM Model

The fit of the ASEM model is the same as the fit of the con-
figural SEM model. If the substantively suggested configural
SEM model does not provide an acceptable fit, the model
can be modified. This should be done before the alignment
procedure is used. If the number of groups is small, it may
be feasible to use modification indices for the configural
SEM model to guide in the model adjustments needed for



an acceptable fit. Analyzing every group separately or as a
part of the configural model, we can add residual correla-
tions and cross-loading parameters suggested by the modifi-
cation indices output. The modifications need not be the
same in every group.

If the number of groups is large, for example, more than
5, such a process may not be realistic and may compromise
the replicability of the statistical analysis. In that situation,
we recommend to settle the SEM model on the population
as a whole (using a single group analysis). Analyzing the
entire population as one group, the SEM model can be
modified with residual correlations and cross-loadings sug-
gested by the modification indices, until the fit of the model
is acceptable. In this step, we can use either an approximate
fit criteria, such as CFI/TLI or an exact fit criteria such as
the chi-square test of fit. Given that the number of groups
is large, however, which is associated with a large total sam-
ple size, the approximate fit criteria are likely more appro-
priate. Once the SEM model is settled, the alignment
procedure can then be used to estimate the group-specific
ASEM model.

7.2. The 2-Step ASEM Model

If there are just a few groups in the sample, a two-step
approach can be used to conduct the multiple-group ana-
lysis. In the first step, alignment can be used to discover
which parameters are invariant and which are not. In the
second step, we can construct a CFA model without align-
ment where the invariant parameters are held equal across
groups and those that are not invariant are free and unequal
across groups. Since a large portion of the parameters will
be held equal across groups, the factor means and variances
can be estimated in all but the first group as in the scalar
invariance and the ASEM models. We call this model the 2-
step ASEM model. The 2-step ASEM model may not be
feasible in the case where there is a large number of groups
or a large number of non-invariant parameters. This is sim-
ply because the input file would be too tedious to write
down and interpret. In principle, however, the 2-step ASEM
model is valuable even if the number of groups is large.
There are three competing models that essentially pur-
port to do the same thing: estimate a SEM model that
includes group-specific factor means and variances. The
three models are: ASEM, the 2-step ASEM, and the scalar
invariance model. The ASEM model will have a much larger
number of parameters as compared to the 2-step ASEM and
the scalar invariance models. The question then arises,
whether this large number of parameters is supported by
the data. A formal chi-square can be conducted between the
three models since the models are nested within each other.
Alternatively, the three models can be compared with the
BIC criterion. The 2-step ASEM model is generally expected
to have a better BIC than the scalar invariance model if
there are statistically significant non-invariant parameters.
Furthermore, if the group sizes are small, the ASEM model
is expected to lose in the BIC comparison because of the
much larger number of parameters relative to the sample
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size. Therefore, the 2-step ASEM model is expected to have
the best BIC in most situations.

7.3. Considering the Size of the Model

In the AESEM model, a large portion of the analysis is auto-
mated. In the absence of covariates for example, the only
decision that must be made is how many factors are in the
model. The model statement itself is a single line. Because
of this simplicity, it may become increasingly tempting to
estimate bigger and bigger AESEM models without much
consideration. This in turn may lead to a variety
of problems.

An AESEM model with a large number of variables and
groups will have a very large number of parameters and
may become difficult to estimate in terms of computational
time. A number of preliminary steps can be taken to better
understand the effect of the number of variables and factors
on the computational time. For example, the model can be
estimated with a smaller number of variables or with a
smaller number of groups.

Furthermore, the power of the model may be reduced
because of the large number of parameters. A reasonable
approach that could address this issue is to convert the
AESEM model to a SEM model where non-significant load-
ings are removed and the invariant parameters are held
equal across the groups, thereby obtaining a 2-step
AESEM model.

Finally, a large AESEM model may lead to convergence
problems. A number of preliminary steps can be taken to
resolve such issues. For example, the configural model can
be estimated in each group separately. Convergence prob-
lems will surely be easier to resolve in a single-group ana-
lysis than in the full AESEM model. More generally, the
AESEM model can be estimated with a smaller number of
variables and/or with a smaller number of groups. Such an
approach may provide a path to identifying and resolving
convergence problems that occur in the full AESEM model.

7.4. Factor Permutation and Sign

The sign of the factor is generally an unidentified quantity.
A factor f provides the same model fit as the factor—f when
the loadings are also reversed. The alignment procedure
must have the same factor direction in all groups.
Otherwise, the alignment becomes meaningless. This is
achieved by constraining the sum of all loadings to be posi-
tive for every factor and group. Such a constraint is also
implemented for ESEM models. Therefore for AESEM,
ESEM, and ASEM models, the uncertainty of the sign of the
factors is technically removed. However, that is not the case
for SEM models. SEM models are more general than
AESEM/ESEM/ASEM models. For example, factor loadings
can be fixed to 1 in SEM models but they cannot be fixed
to any value in models with rotation or alignment. Being
more general, however, also leads to the fact that the sign of
the factor is not completely removed from the SEM model
(as that is not possible in the general SEM model). This
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becomes important if the parameter estimates are compared
between the SEM model and the AESEM/ESEM/ASEM
models. It is necessary to manually check that the SEM
model has a positive sum of loadings in all groups and fac-
tors. If random starting values have not been used, this is
generally assured by the starting values of the SEM model.
With random starting values the picture may become a little
more complex and multiple runs might be necessary with
various manually entered starting values.

If an alignment model contains factors that have both
positive and negative large loadings, it may happen that the
sum of the loadings is near zero. In that case, the direction
of the factor may switch between the groups and the align-
ment may become invalid. To avoid this problem, the factor
indicators showing large negative loadings can be reversed.

The ESEM model and the AESEM model also have to
deal with factor permutation. Reordering of the EFA factors
yields equivalent models. This model non-identification is
resolved by ordering the factors according to the average
index of their large loadings, see Appendix D, Asparouhov
and Muthén (2009). This becomes somewhat of a critical
issue in AESEM. We have to make sure that all groups yield
the same EFA factor order. If they do not, the alignment
again becomes meaningless as we would be aligning the
loadings of different factors. A simple way to ensure that
the order stays the same in all groups is to order the factor
indicators according to the desired order of the factors. The
primary indicators of the first factor should be placed first
in the USEVAR option, the primary indicators of the second
factor should be placed next, etc. If we do not know what
the primary indicators are, it may be necessary to estimate
an ESEM model for all groups combined as one and use
such a model to determine which the primary indicators are
for every factor. An alternative way to resolve the factor
permutation problem for AESEM, which is also our recom-
mended approach, is to use the target rotation.

8. Conclusion

Expanding the alignment methodology to the general SEM
and ESEM models provides a much broader application
area for the multiple group analysis. Multiple groups SEM
and ESEM models can now be estimated without assuming
measurement invariance. Adopting the methodology to the
WLS type estimators, in addition to the ML estimator, com-
pletes the availability of alignment for the most commonly
used SEM and ESEM frameworks. Alignment models with
continuous, binary, and ordinal dependent variables and
any number of latent variables can be estimated with the
WLS estimators. Improvements in the Mplus language and
implementation also facilitate greater ease of use. The differ-
ence between the scalar model specification and the ASEM
specification is only in the addition of the alignment option.
Also, a test of fit and modification indices is now obtained
within the alignment estimation, which simplifies the overall
multiple-group analysis.

The alignment procedure can also be used with panel/
longitudinal CFA models where measurement invariance

does not necessarily hold across time. Such models cannot
be formulated as multiple group models because the varia-
bles are correlated across time. The upcoming release of
Mplus 8.9 will include the possibility to use the alignment
method in single-group panel CFA models, where the align-
ment is performed on the measurement model across time
and not across groups.

The alignment methodology parallels the Bayesian SEM
(BSEM) described in Muthén and Asparouhov (2012). Both
of these techniques attempt to capitalize on substantive
beliefs while allowing the data to take priority and override
these beliefs. Thus, the alignment methodology can be tai-
lor-made to tackle other applications of BSEM that go
beyond measurement invariance. Such methods will be fre-
quentist based and will be easier to use than BSEM.
Furthermore, BSEM results for measurement invariance
tend to be slightly less accurate than alignment results, see
Muthén and Asparouhov (2013), and such benefits could be
expected in other applications as well. The alignment meth-
odology can also be viewed as a penalized maximum likeli-
hood method, see Hastie et al. (2009), where the alignment
loss function acts as the penalty that is added to the likeli-
hood. The development of new alignment style methods
would require finding new loss functions that can address
specific methodological issues. It is clear, however, that a
variety of structural modeling solutions can be enhanced
with the addition of alignment or penalty methodology.

Data availability statement

ESS-2018 data can be downloaded from -europeansocialsurvey.org.
PISA 2006 data can be downloaded from oecd.org/pisa/pisaproducts.
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Appendix

MONTECARLO:
NAMES = yl-y5;
NGROUPS = 2; NOBSERVATIONS = 2(10000); NREPS = 100;
generate=yl-y5(1); categorical=all;
SAVE=1.dat;

ANALYSIS: alignment=fixed; parameterization=theta;

MODEL POPULATION: f1 BY yl*@.6 y2*0.8 y3*1 y4*1.2 y5*1.4;
f1*1;
MODEL POPULATION-G2: f1*1.8;

MODEL: 1 BY y1*0.6 y2*0.8 y3*1 y4*1.2 y5*1.4;
f1*1;
MODEL G2: f1*1.8;

Figure A2. Generating data with theta parameterization scalar invariance.
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VARIABLE: NAMES = yl-y5 g; categorical=all;
grouping=g(1-2);

DATA: file=1.dat;

ANALYSIS: alignment=fixed; parameterization=theta;

MODEL: f1 BY yl-y5;

OUTPUT: align;

Figure A3. Input file for alignment with the theta parameterization.

VARIABLE: NAMES = yl-y5 g; categorical=all;
grouping=g(1-2);

DATA: file=1.dat;

ANALYSIS: alignment=fixed;

MODEL: f1 BY y1-y5;

OUTPUT: align;

Figure A4. Input file for alignment with the delta parameterization.

MONTECARLO:
NAMES = y1-y5;
NGROUPS = 2; NOBSERVATIONS = 2(10000); NREPS =
generate=yl-y5(1); categorical=all;
SAVE=1.dat;

100;

ANALYSIS: alignment=fixed;

MODEL POPULATION:
f1 BY yl1*0.4 y2*0.5 y3*.6 y4*.7 y5*.8; f1*1;
y1*0.84 y2*0.75 y3*0.64 y4*0.51 y5*0.36;

MODEL POPULATION-G2:
f1*0.5;
y1*¥0.92 y2+%0.875 y3*0.82 y4*@.755 y5*0.68;

MODEL :
f1 BY yl*0.4 y2*0.5 y3*.6 y4*.7 y5*%.8; f1*1;

MODEL G2:
f1*0.5;

Figure A5. Generating data with delta parameterization scalar invariance.
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MONTECARLO:
NAMES = yl-y3 z1-z3 wl-w3;
NOBSERVATIONS = 3(1009);
NGROUPS = 3; NREPS = 100;

ANALYSIS: alignment=fixed;

MODEL POPULATION:
y1l-w3*1;
f1 BY yl-y3*1 wl-w3*0.5;
f2 BY z1-z3*1 wl-w3*0.5;

MODEL POPULATION-G1:
f1-f2*1; f1 with f2*0.4;
f1 by wl@o; [yl*1]; INI

MODEL POPULATION-G2:
f1*1.4 £2*1.2; f1 with f2*-0.4;
[f1*0.4 f2%0.6];
f2 by w2*1; [z1*-1]; INI

MODEL POPULATION-G3:
f1*1.4 £2*1.2; f1 with f2*0.3;
[f1*-1 f2*-0.5];
f2 by z2*0.5; [w3*1]; INI

MODEL :
yl-w3*1; [yl-w3*0];
f1 BY yl-y3*1 wl-w3*0.5;
f2 BY z1-z3*1 wl-w3*0.5;

MODEL G1:
f1-f2*1; f1 with f2*0.4;
f1 by wl@o; [y1*1]; INI

MODEL G2:
f1*1.4 £2*1.2; f1 with f2*-0.4;
[fi1*e.4 f2*0.6];
f2 by w2*1; [z1*-1]; INI

MODEL G3:
f1*1.4 f2*1.2; 1 with f2*0.3;
[f1*-1 f2*-0.5];
f2 by z2*0.5; [w3*1]; INI
Figure A6. Alignment simulation for a 2-factor analysis model with
cross-loadings.

MONTECARLO:

NAMES = yl-y5 z1-25;
NOBSERVATIONS = 2(2000);
NGROUPS = 2;

NREPS = 100;

ANALYSIS: alignment=fixed; tolerance=0.0001;

MODEL

MODEL

MODEL

MODEL :

MODEL

MODEL

POPULATION:

f1 by yl-y5*1 z1-z5%1;

f2 BY y1*0.4 y2*0.6 y3*1 y4*1.2 y5*1.4;
f3 by z1-z2*%0.6 z3-z5*%1.2;

y1l-z5*%1;

POPULATION-G1:
f1-f3*1;
[y1*1]; f1 by y2*1.5; ! NI

POPULATION-G2:
f1-f3*1.4;

[f1*0.3 f2*-0.4 f3%0.5];
[z1*1]; f2 by y5*1; ! NI

f1 by yl-y5*1 z1-z5%1;

f2 BY y1*0.4 y2*0.6 y3*1 y4*1.2 y5*1.4;
f3 by z1-z2*%0.6 z3-z5*%1.2;

y1l-z5*%1;

f2 with f3@0;

f1 with f2-f3@0;

G1:
f1-f3*1; [yl-z5*0];
[yl*1]; f1 by y2*1.5; | NI

G2:

f1-f3*1.4; [yl-z5*0];
[f1*0.3 f2*-0.4 £3%0.5];
[z1*1]; f2 by y5*1; ! NI

Figure A7. Alignment simulation for a bi-factor model.
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MONTECARLO: MONTECARLO:
NAMES = y1-y5 x; NAMES = yl-y3 z1-23 Xx;
NOBSERVATIONS =3(1000); NGROUPS = 3; NOBSERVATIONS = 3(3000);
NGROUPS = 3; NREPS = 100; NREPS = 100;

generate=yl-y5(2);

categorical=y1-y5 ANALYSIS: alignment = fixed; tolerance=0.0001;

MODEL POPULATION:
f1 BY yl-y3*1 z1-z3*@ (*1);
f2 BY z1-z3*1 yl-y3*0 (*1);
y1l-z3*1; x*1;

ANALYSIS: alignment=fixed; parameterization=theta;
tolerance=0.0001;

MODEL POPULATION: f1 on x*0.3; f2 on x*-.2;

f1 by yl-y5*1; x*1;

f1l on x*0.7; Model population-Gi:

[y1$1-y5$1%-1]; F1-£2%1; f1 with £2*0.5;

[y1$2-y5$2*17; £1 by z3%0.4;

yl on x*0.4;

y2 with y3*0.3; Model population-G2:

[f1*¥0.5 f2%0.8]; f1*1.2 f2*¥1.5; f1 with 2%0.3;

MODEL POPULATION-G1: 1 by y3%0.7;

£1%1; f1 on x*-0.3; f2 on x*.2;

y2 with y3@e; Model population-G3:

[f1*-0.5 f2%0.3]; f1*1.5 f2*1.2; f1 with f2%0.4;

MODEL POPULATION-G2: [22%1]; f1 by z3+%0.4;

[f1*e.4]; f1%0.8; f1l on x*0.3; f2 on x*.2;
f1l on x*0.4;
yl on x@o; MODEL :
fl by y4-y5*@.6; ! NI f1 BY yl-y3*1 z1-z3*@ (*1);
[y1$1*e y1$2*1.5] INI f2 BY z1-z3*1 yl-y3*0 (*1);
y1-z3*1;
MODEL POPULATION-G3: f1 on x*0.3; f2 on x*-.2;
f1*1.2; [f1*-0.3];
Model G1:
f1 by yl-y5*1; f1 by z3*0.4;
f1l on x*0.7;
Model G2:
- *_17:
[y1$1 y5$1* 115 [f1*0.5 £2%0.8]; f1*1.2 f2%1.5; f1 with f2%0.3;
[y1$2-y5$2*1]; f1 by y3*0.7;
yl O? X*0.4; f1 on x*-0.3; 2 on x*.2;
y2 with y3*0.3;
Model G3:
MODEL G1: [f1*-0.5 f2*0.3]; f1*1.5 f2*1.2; f1 with f2%0.4;
F1*1; [22*%1]; f1 by z3*@.4;
y2 with y3@0; f1 on x*0.3; f2 on x*.2;
Figure A9. AESEM model with a covariate.
MODEL G2:
[f1*0.4]; f1*0.8;
f1 on x*0.4;
yl on x@e;

f1 by y4-y5*0.6; ! NI
[y1$1*@ y1$2*1.5] INI

MODEL G3:
f1%1.2; [f1*-0.3];

Figure A8. Alignment simulation for a factor analysis with a covariate.
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MONTECARLO:
NAMES = yl-y3 z1-z3 X;

NGROUPS = 3; NOBSERVATIONS

NREPS = 100;

ANALYSIS:

alignment = fixed; tolerance=0.0001;

MODEL POPULATION:
f1 BY yl-z3*1;
[yl-z3*0]; yl-z3*.5;
f1 on x*0.4; x*1;

MODEL POPULATION-G1:
[f1*0]; f1*1;

MODEL POPULATION-G2:
[f1*e.3]; f1*1.5;
f1 on x*0.7;
[z1*-0.3 z2*0.3 z3*0.5];

f1 BY z1*@.5 z2*0.8 z3*1.

MODEL POPULATION-G3:
[f1*e.3]; f1*1.2;
f1 on x*0.2;
[z1*0.3 z2*0.5 z3*-0.3];

f1 BY z1*0.8 z2*1.2 z3*0.

MODEL:
f1 BY yl-z3*1;
[yl-z3*0]; yl-z3*.5;
f1 on x*0.4;

MODEL G1:
[fi*e]; f1*1;

MODEL G2:
[f1*%0.3]; f1*1.5;
f1 on x*0.7;
[z1*-0.3 z2*0.3 z3*0.5];

f1 BY z1*@.5 z2*0.8 z3*1.

MODEL G3:
[f1*0.3]; f1*1.2;
f1 on x*0.2;
[z1*0.3 z2*0.5 z3*-0.3];

f1 BY z1*0.8 z2*1.2 z3*0.

Figure A10. Large amount of non-invariance.

DATA: FILE = pisa@6_alignment_fiml_data_r.dat;
VARIABLE:

NAMES = schoolid stidstd country oecd w_fstuwt st16q@l-st16q05
st17901-st17908 st18g01-st18q10 st19g01-st19906 st21q01-st21ge8
st29g01-st29g04 st35g01-st35905 st37q01l-st37qe6
pvlscie gender ses cntgen zpvlscie zgender zses;

USEVARIABLES = st16g@1-st16g05 st35g01-st35g05 st29q0l-st29q04
st17g01-st17q08 gender zses zpvlscie;

WEIGHT = w_fstuwt;
CLUSTER = schoolid;
MISSING=.;

GROUPING = country(30);

DEFINE: schoolid=(country*10000)+schoolid;
ANALYSIS: TYPE= COMPLEX; ALIGNMENT=FREE;
MODEL :

fl-f4 BY st16g01-st17ge8 (*1);
f1-f4 ON gender zses zpvlscie;

Figure A11. AESEM input file for PISA empirical example.
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data: file=esshvs.dat;

variable:

name=cntry gndr agea yl-y21 anweight stratum psu;
usevar=yl-y21;

missing=y1-y21(7 8 9);

grouping=cntry(29);

weight=anweight;

cluster=psu;

strat=stratum;

analysis: alignment=free; estimator=mlr; rotation=target; type=complex;
model:

F1 BY yl y2~0 y3 y4~0 y5~0 y6~0 y7~0 y8 y9~0 yl0o~0
y1ll y12 y13~0 yl1l4~0 yl5~0 yl6~0 yl7~0 yl8 yl9 y20~0 y21~0 (*1);

F2 BY yl~0 y2 y3~0 y4 y5~0 y6~0 y7~0 y8~0 y9~0 yl0~0
y11~0 y12~0 y13 yl4~0 yl5~0 yl6~0 yl7 yl8~0 yl9~0 y20~0 y21~0 (*1);

F3 BY yl~0 y2~0 y3~0 y4~0 y5 y6~0 y7 y8~0 y9 ylo~0
y11l~0 y12~0 y13~0 yl4 yl1l5~0 yl6 yl7~0 yl8~0 yl9~0 y20 y21~0 (*1);

F4 BY yl~0 y2~0 y3~0 y4~0 y5~0 y6 y7~0 y8~0 y9~0 ylO
y1l1l~0 y12~0 y13~0 y14~0 yl5 yl6~0 yl7~0 yl8~0 yl9~0 y20~0 y21 (*1);
Figure A12. AESEM input file with target rotation for ESS empirical example.



	Abstract
	Introduction
	The Alignment Methodology
	The Simple Alignment Model
	Extending Alignment to the WLS Estimators
	Extending Alignment to the General Factor Analysis Model with Complex Loading Structures
	Extending Alignment to the General Structural Equation Model
	Extending Alignment to the ESEM/EFA Models
	Fixed vs. Free Alignment

	Illustrations
	Invariance Depends on the Theta/Delta Parameterization
	Factor Analysis with Cross-Loadings
	Bi-Factor Models
	Factor Analysis with Covariates
	AESEM Simulation Study
	Models with Large Amount of Non-Invariance

	Empirical Example: PISA
	Empirical Example: ESS Human Value Scale
	The Alignment R-Squared
	Practical Guidelines
	Constructing a Well-Fitting ASEM Model
	The 2-Step ASEM Model
	Considering the Size of the Model
	Factor Permutation and Sign

	Conclusion
	Data availability statement
	References


