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The interpretation of the Wechsler Intelligence Scale for Children—Fourth Edition (WISC–IV) is based on a
4-factor model, which is only partially compatible with the mainstream Cattell–Horn–Carroll (CHC) model
of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor
analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-
loadings between latent variables and measures are fixed to zero in order to allow the model to be identified.
However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased
factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these
methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation
modeling (BSEM), among a sample of 249 French-speaking Swiss children (8–12 years). With BSEM,
zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on
informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors
plus a general intelligence factor better represented the structure of the WISC–IV than did the 4-factor
structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was
concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because
it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM
allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation
of the subtest scores.
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The last decade has seen the emergence of the Cattell–Horn–
Carroll (CHC) theory as the mainstream approach in the field of
intelligence assessment. This model was influential in the de-
velopment and interpretation of several cognitive batteries, such
as the KABC–II (Kaufman & Kaufman, 2008) and the
Woodcock–Johnson–III (Woodcock, McGrew, & Mather,

2001). The CHC taxonomy is actually the best validated model
of human cognitive abilities (Ackerman & Lohman, 2006). The
current CHC framework is composed of three distinct stratums
with a general factor of intelligence at the top, about 16 broad
abilities in the middle, and about 100 narrow abilities on the
bottom (McGrew, 2009; Newton & McGrew, 2010).

Since the creation of the Wechsler–Bellevue scale in 1939,
the interpretation of the Wechsler intelligence scales has moved
from a two-factor to a four-factor structure. The current version
of the Wechsler Intelligence Scale for Children—Fourth Edi-
tion (WISC–IV; Wechsler, 2005) distinguishes four index
scores: Verbal Comprehension Index (VCI), Perceptual Rea-
soning Index (PRI), Working Memory Index (WMI), and Pro-
cessing Speed Index (PSI; see Figure 1a). The present study
addressed three goals: Our first objective was to determine the
most adequate model for describing the French WISC–IV. The
second goal was to ascertain the exact nature of the constructs
measured by each subtest score by estimating the relationship
between every latent variable and subtest score. The third and
final goal was to test the competing theories of superordinate
general intelligence versus breadth general intelligence.

Even if the four factors of the WISC–IV are more attuned to
contemporary theory, they were not aligned with the consensual
CHC model of intelligence measurement (Flanagan, Ortiz, &

Philippe Golay, Faculty of Psychology and Educational Sciences, Uni-
versity of Geneva, Geneva, Switzerland, and Faculty of Psychology, Dis-
tance Learning University, Sierre, Switzerland; Isabelle Reverte, Faculty of
Psychology and Educational Sciences, University of Geneva; Jérôme
Rossier, Institute of Psychology, University of Lausanne, Lausanne, Swit-
zerland; Nicolas Favez, Faculty of Psychology and Educational Sciences,
University of Geneva, and Faculty of Psychology, Distance Learning
University, Switzerland; Thierry Lecerf, Faculty of Psychology and Edu-
cational Sciences, University of Geneva, and Faculty of Psychology, Dis-
tance Learning University, Switzerland.

This research was supported by Swiss National Science Foundation
Grant 100014-118248 to Thierry Lecerf, Nicolas Favez, and Jérôme
Rossier.

Correspondence concerning this article should be addressed to Philippe
Golay, FPSE-Psychology, University of Geneva, 40 Boulevard du Pont
d’Arve, CH-1205 Geneva, Switzerland. E-mail: philippe.golay@unige.ch

Psychological Assessment © 2012 American Psychological Association
2012, Vol. 24, No. 4, 000 1040-3590/12/$12.00 DOI: 10.1037/a0030676

1



Alfonso, 2007; Golay & Lecerf, 2011; Grégoire, 2009). However,
confirmatory factor analytic studies conducted on the WISC–IV
demonstrated that, in comparison to the standard four-factor struc-
ture, models based on the CHC framework better fitted the North
American data (Keith, Fine, Taub, Reynolds, & Kranzler, 2006)
and the French data (cf. Figure 1b; Lecerf, Rossier, Favez, Reverte,
& Coleaux, 2010). It should be noted that confirmatory factor
analyses conducted on the Wechsler Adult Intelligence Scale—
Third Edition (WAIS–III) and the Wechsler Adult Intelligence
Scale—Fourth Edition (WAIS–IV) also indicated that a CHC-
based model was more adequate for both the North American data
(Benson, Hulac, & Kranzler, 2010) and the French data (Golay &
Lecerf, 2011). However, the four indexes of the WISC–IV could
still be related to the CHC ability classification: VCI (Similarities,
Vocabulary, Comprehension, Information, and Word Reasoning
subtest scores) can be considered theoretically close or identical to
the Gc factor (comprehension-knowledge) from the CHC frame-

work, but PRI (Block Design, Picture Completion, Matrix Rea-
soning, and Picture Concepts subtest scores) is not represented per
se in the CHC theory. According to the latter model, PRI should be
split into both Gf (fluid reasoning: Matrix Reasoning plus Picture
Concepts subtest scores) and Gv (visual processing: Block Design
plus Picture Completion subtest scores) factors. Finally, WMI and
PSI are related to respectively the Gsm (short-term memory) and
the Gs (processing speed) CHC factors. Thus, the interpretation of
some of the subtest scores and index scores may substantially
differ depending on the reference theoretical model. Our first
purpose in the present study was to compare the four-factor struc-
ture of the WISC–IV with a five-factor CHC-based model.

Following this first question regarding the factor structure of the
WISC–IV, a second controversy remains on the nature of the
constructs measured by each subtest score. Some of the subtests
theoretically associated with one latent variable could in fact be
associated with other latent variables (i.e., cross-loadings). This

Figure 1. Four-factor higher order and CHC-based higher order models for the French WISC–IV. CHC �
Cattell–Horn–Carroll; WISC–IV � Wechsler Intelligence Scale for Children—Fourth Edition; Gc � compre-
hension-knowledge; Gv � visual processing; Gf � fluid reasoning; Gsm � short-term memory; Gs � processing
speed.
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issue brings into question the clinical utility and the interpretation
of the subtest scores of the WISC–IV, because each subtest score
could measure additional specific abilities. For instance, the Arith-
metic subtest score has been shown to load on the short-term
memory (Gsm) factor, on the fluid reasoning (Gf) factor, or on
both factors (Keith et al., 2006). For the French version of the
WAIS–III, the Arithmetic subtest score loaded on both the Gf
factor and the Gsm factor (Golay & Lecerf, 2011), a finding that
was consistent with results obtained with the French WISC–IV
(Lecerf et al., 2010). Similarly, many other cross-loadings have
been hypothesized: The Symbol Search subtest score may load not
only on Gs but on Gv; the Word Reasoning score may measure Gc
and Gf; the Block Design score may load on both Gf and Gv, and
the Picture Completion score may load on both Gv and Gc (Keith
et al., 2006). In line with these hypotheses, our second goal in this
paper was to address the issue of the interpretation of the subtest
scores in a straightforward manner, hence considering every cross-
loading. The purpose was to determine whether secondary inter-
pretation of some subtest scores is supported by the data. This is a
critical issue because with confirmatory factor analysis, alternative
models with different loadings and/or cross-loadings can show
very close levels of fit to the data and ultimately all be considered
plausible. Additionally, when trying to determine if some inter-
pretation of the subtest scores is more correct than other alterna-
tives, researchers may rely on multiple model modifications and
comparisons, a process that may capitalize on chance. The meth-
odology used in this paper, Bayesian structural equation modeling
(BSEM), was chosen because it can deal with this methodological
limitation by estimating all cross-loadings simultaneously.

Factor Analysis Techniques

Two basic types of factor analytic techniques have been used to
evaluate the structure of intelligence and the factor structure of
batteries like the Wechsler intelligence scales: exploratory factor
analysis (EFA) and confirmatory factor analysis (CFA). In brief,
EFA is used when the relations between scores and latent variables
are doubtful or unknown. EFA models are weakly specified, and
the main question is to determine the number of factor that should
be retained (even if several criteria could be used). With EFA, all
loadings between measures and latent variables are freed and
estimated simultaneously. Unlike in CFA, no factor loadings are
fixed to zero. The necessary number of restrictions for model
identification is achieved by rotating the factor-loading matrix and
fixing factor variances. The main advantage of EFA is that “it lets
the data speak for themselves” (Carroll, 1995, p. 436). Because all
loadings are simultaneously estimated, EFA models are classically
considered to be closer to the data than their CFA counterparts
(Marsh et al., 2010).

In the majority of the recent studies examining the factor struc-
ture of the Wechsler intelligence scales or other intelligence tests,
CFA instead of EFA was used. CFA is mainly used when the
researchers have prior knowledge about the relationships between
measures and latent variables. The main difference with EFA is
that only some parameters of the model are estimated on the basis
of theoretical and empirical considerations. CFA is most fre-
quently used with a maximum-likelihood estimation procedure
(ML-CFA), and it allows researchers to specify the measurement
and the structural part of the model with greater flexibility. One

another important advantage of CFA is the possibility of conduct-
ing statistical tests of different hypotheses and of assessing to what
extent the model fit the data. These statistical goodness-of-fit
indexes allow the researcher to compare alternative models and to
select the hypothesized model that best represents the data. In
some situations, the researcher can be tempted to test many mod-
ifications in order to achieve acceptable fit to the data. Alternative
models can also demonstrate very close goodness of fit. However,
because many models are tested, improvements are susceptible to
capitalization on chance characteristics of the data: “A number of
writers have cautioned that extensive specification searches can
lead to unjustified overfitting of data, with loss of meaning for
indices of statistical significance” (Carroll, 1995, p. 438). The
selection of the best model on solid statistical ground may ulti-
mately be illusory because different sets of hypotheses often
appear to be equally plausible for a given data set (Carroll, 1995).
Such a data-driven process casts doubt on whether the modifica-
tion of the initial model could be generalized to other samples or
to the population (MacCallum, Roznowski, & Necowitz, 1992;
Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). This
practice might contribute to the lack of consensus between studies
and is especially relevant to the question of the Wechsler scales
when the influence of each of the latent variables on the subtest
scores has to be estimated.

Most important, it should be mentioned that CFA imposes some
restrictions in order to achieve model identification with standard
estimation procedures like maximum-likelihood estimation. With
typical ML-CFA, many cross-loadings between latent variables
and measures are fixed to be exactly zero, which does not always
faithfully reflect the researchers’ hypotheses (Muthén & Asp-
arouhov, 2012). Indeed, small but nonzero cross-loadings could be
equally compatible with theory. In order to determine the exact
nature of the constructs measured by each subtest score, it may be
necessary to estimate many cross-loadings, one at a time. Further-
more, unnecessarily strict models and inappropriate zero cross-
loadings can contribute to poor model fit, distorted factors, and
biased factor correlations (Marsh et al., 2010). For instance, the
last issue has raised a great debate in the domain of personality
research: ML-CFA has been considered overly restrictive because
the independent cluster model requires each indicator to load on
one factor only (McCrae et al., 2008). In consequence, the model
involves a large number of zero cross-loadings. Thus, residual
correlations between the Big Five dimensions (supposed to be
independent) have been considered to be method artifact: A mod-
est relation between a specific item and a nontarget factor cannot
be accounted for by the cross-loadings and is represented instead
through the correlations between the factors. These factor corre-
lations are then very likely to be overestimated (Marsh et al.,
2010). It is fair to say that mediocre goodness of fit has not
generally been an issue with ML-CFA conducted on the Wechsler
scales. However, researchers are often left with the dilemma of
whether to keep many meaningful alternatives untested or to risk
overfitting their model to the data. BSEM, as is described below,
offers a rather elegant solution to this limitation.

As mentioned, EFA and CFA are used to better understand the
structure and the constructs measured by each subtest score of the
WISC–IV. Nevertheless, in addition to the debate about the num-
ber of factors and the existence of some cross-loadings, there
remains another debate about the structure of the Wechsler scales
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and other intelligence tests: Developers claim that the French
WISC–IV measures four cognitive dimensions beyond the general
intelligence factor and that the four factor index scores are the
primary level of score interpretation. However, several studies
demonstrated that subtest scores reflected both second-order and
first-order factors. It is therefore necessary to assess the relative
importance of the general factor and index scores relative to
subtest scores (Canivez & Watkins, 2010a, 2010b; Carroll, 1993;
Gorsuch, 1983). Otherwise, there is a risk of confounding general
and specialized abilities (Gustafsson & Balke, 1993). One solution
is to use the Schmid and Leiman orthogonalization transformation
(SLT) of oblique factors (Schmid & Leiman, 1957). This proce-
dure, based on EFA, has been extensively used and advocated by
Carroll in his seminal study of cognitive abilities (Carroll, 1993,
1995). The first-order factors are modeled orthogonally to each
other and to the general factor. SLT allows one to derive a
hierarchical factor model from higher order models and to decom-
pose the variance of each subtest score into the general factor and
the first-order factors. The SLT was applied to several intelligence
tests—among them, the Stanford–Binet Intelligence Scales (SB-5),
Reynolds Intellectual Assessment Scales (RIAS), Wide Range
Intelligence Test (WRIT), Wechsler Abbreviated Scale of Intelli-
gence (WASI), and WAIS–IV. Results indicated that most vari-
ance of the subtest scores was associated with the general factor
and that the first-order factors accounted for small portions of the
total and the common variance (Canivez, 2008; Canivez & Wat-
kins, 2010a, 2010b; Golay & Lecerf, 2011; Watkins, 2006, 2010).
It was concluded that Wechsler scales provided mainly a measure
of general intelligence and that clinical interpretation should be
primarily at that level.

When confirmatory factor analyses are used, as it was the case
in the present study, direct hierarchical models are more adequate
than higher order models for assessing the relative importance of
the general factor and index scores relative to subtest scores
(Gignac, 2008). With a direct hierarchical model, the g factor has
no direct effects on the first-order factors, which are modeled
orthogonally to each other (i.e., uncorrelated first-order factors),
and all subtest scores directly load onto a general factor and also
onto one first-order group factor. In contrast to higher order
models, in which the relationship between the general factor and
each subtest score is mediated only by the broad abilities, direct
hierarchical models include a direct relationship between the gen-
eral factor and each subtest score. Let us remember that Holzinger
and Swineford (1937) first referred this model as the bi-factor
model, whereas Gustafsson and Balke (1993) described it as a
nested factor model. More recently, it was referred as the direct
hierarchical model by Gignac (2008). The use of higher order or
direct hierarchical models has substantive theoretical implications.
Although the higher order models are more consistent with a
superordinate conceptualization of g, direct hierarchical models
involve a breadth conceptualization of g (Gignac, 2008; Golay &
Lecerf, 2011; Watkins, 2010). Therefore, direct hierarchical mod-
els were tested in the present study to estimate the relative influ-
ence of the general factor and index scores on the WISC–IV
subtest scores. Consequently, our third purpose in this study was to
test the competing theories of higher order superordinate g versus
breadth g. We assumed, in accordance with Gignac’s results
(2008), that our data would support a breadth conceptualization of

g (direct hierarchical model) rather than a superordinate concep-
tualization of g (higher order model).

The Bayesian Structural Equation Modeling (BSEM)
Approach

The method used here closely draws on the approach described
by Muthén and Asparouhov (2012). This paragraph does not
provide a detailed overviewed of BSEM estimation. Instead, we
focus on some of the most important advantages of BSEM over
standard maximum-likelihood CFA estimation. First of all, it is
important to remember that ML-CFA and BSEM are not different
statistical models: ML-CFA and BSEM represent two different
estimation procedures used in the general context of confirmatory
factor analysis. However, we will see that the Bayesian estimator
used with BSEM allows one to test more complex structures.

CFA, whether estimated through ML-CFA or through BSEM,
relies on the distinction between the measurement model and the
structural model. The former specifies the relationships between
the latent and the observed variables, and the latter specifies the
relationships among the latent variables; both measurement and
structural models reflect theory. In other words, knowledge based
on previous studies is incorporated in the definition of the model.
For instance, on the basis of the literature, a researcher could
assume that the score of the subtest Symbol Search of the
Wechsler Intelligence Scale measures the processing speed factor
and should demonstrate little or no relation with the visualization
factor.

However, it should be noted that ML and BSEM, the statistical
estimation procedures used with CFA models, differ in several
ways (cf. Table 1). First of all, although parameters are considered
as constants with typical maximum-likelihood estimation, BSEM
and Bayesian statistics see parameters as variables (Yuan &
MacKinnon, 2009). The second and third main important differ-
ences between ML-CFA and BSEM are reflected in the parameter
specification (cross-loadings and major loadings). With classical
ML-CFA, the major loadings for parameters (i.e., processing speed
to Symbol Search) are freely estimated, and the unexpected cross-
loadings (i.e., visualization to Symbol Search) are fixed exactly to
0. Indeed, with ML-CFA, if all parameters were freed, the model
would not be identified. BSEM differs from ML-CFA because the
exact zero cross-loadings are replaced with “approximate zeros”
based on informative prior distributions. This is particularly rele-
vant in the present study because many cross-loadings could be
suspected of being slightly greater than zero. Thus, in the first step
of Bayesian estimation, the prior distributions for the parameters
are based on previous studies (current knowledge) and reflect
expectation as to the likely value of the parameters; nevertheless,
there is still more or less uncertainty about the parameter values.
Indeed, the prior is represented here by a normal distribution with
a mean of zero, an infinite variance for the major loadings, and a
small variance for cross-loadings:

A non-informative prior, also called a diffuse prior, has a large
variance. A large variance reflects large uncertainty in the parameter
value. With a large prior variance the likelihood contributes relatively
more information to the formation of the posterior and the estimate is
closer to a Maximum-Likelihood estimate. (Muthén & Asparouhov,
2012, p. 315)
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In sum, in order to estimate the model with BSEM, one can
replace zero-fixed cross-loadings by normal prior distributions
with a mean of zero and a small variance, which are approximate
zeros. It should be noted that with classical ML-CFA, an exact
zero cross-loading could be considered a very strong informative
prior (with a mean and a variance of zero). Therefore, ML-CFA is
more restrictive because there is absolutely no uncertainty on these
parameters. The models tested with ML-CFA are theoretically
driven, but the zero-fixed cross-loadings are considered here as
unnecessarily strict operationalization of the researcher’s hypoth-
eses. Because BSEM allows some degree of uncertainty in the
parameters, this estimation technique is less restrictive than ML-
CFA. However, BSEM still encompasses strong theory because
the basic framework of the analysis is still confirmatory in nature.
Prior knowledge is taken into account because the researcher must
specify the model and must also provide prior distributions for the
model parameters, including cross loadings.

After model specification, Bayesian estimation combines prior
distributions for parameters with new collected data and forms
posterior distributions for parameters through the Bayes theorem
(for a detailed summary, see Yuan & MacKinnon, 2009). In other
words, the posterior distribution is the updated representation of
the researcher’s belief, after incorporation of the experimental
data, and provides Bayesian estimates. Information about model fit
is obtained by using posterior predictive checking (PPC; Gelman,
Meng, & Stern, 1996). A low PPC is considered to reflect a poor
fit; a PPC value around 0.5 is considered to reflect a very good fit
(see below).

The fourth important difference between ML-CFA and BSEM
estimation concerns the modification of the initial model and the
use of the modification indices derived from ML-CFA (see Table
1). Modification indices inform about model improvement when
only one parameter is freed at a time. This could be an issue when
the model fit is bad and many model modifications must be tested
in order to achieve acceptable fit. This also could be problematic
when several meaningful cross-loadings are suspected of being
other than zero and many models should be tested, one at a time.
In contrast, with Bayesian estimation of CFA, all parameters can
be freed and estimated simultaneously, and therefore no modifi-
cations have to be tested. Thus, BSEM allow a simpler procedure
for testing alternative cross-loadings, because all parameters are
estimated at the same time.

A fifth and last important difference between ML-CFA and
BSEM concerns the parameter estimates (see Table 1). ML-CFA
estimation is based on asymptotic large-sample normality of the

maximum-likelihood estimates. Therefore, it is not appropriate to
use asymptotic theory with ML-CFA when the sample size is
small, because the sampling distribution of parameter estimates is
unknown and often cannot be estimated efficiently by applying
formulas based on asymptotic theory (Scheines, Hoijtink, &
Boomsma, 1999). In contrast, BSEM does not rely on large sample
theory (Lee & Song, 2004). The parameter estimates and the
credibility intervals are based on the percentile of the posterior
distribution. Parameters are considered to have substantive back-
ing when the 95% credibility interval of the parameter does not
cover zero (Muthén & Asparouhov, 2012). Therefore, it is not
necessary to rely on normal approximations of the posterior
(Scheines et al., 1999). Thus, BSEM has the advantage of being
able to accommodate heavily skewed distributions of parameter
estimates. Finally, some authors have shown that Bayesian esti-
mation does better than ML when sample size is small (Lee &
Song, 2004).

Method

Participants

Participants included 249 French-speaking Swiss children (124
male, mean age � 9.69 years, SD � 1.18, and 125 female, mean
age � 9.78 years, SD � 1.20). The children were recruited from
several schools of the Canton of Geneva (Switzerland), and all
children were in the school grade appropriate to their chronolog-
ical age. The sample was stratified according to sex and parents’
education level, closely approximating the Geneva Census.

Instrument and Procedure

The French version of the WISC–IV (Wechsler, 2005) is an
individually administered test of intelligence that includes 10 core
and five supplemental subtests. The version we used in the present
study with French-speaking Swiss children was standardized on a
French nationally representative sample of children from 6 to
16.11 years of age (N � 1,103). The French WISC–IV provides
four-factor-based indexes: Verbal Comprehension (VCI), Percep-
tual Reasoning (PRI), Working Memory (WMI), and Processing
Speed (PSI). The Full Scale IQ is based on the addition of the 10
core subtest scores. The standard scores (M � 10, SD � 3) of the
15 subtests were used to conduct analyses, and there were no
missing data. Subtest standard scores were standardized so that the
scale of the priors corresponds to standardized loadings.

Table 1
Summary of ML-CFA and BSEM Differences

Difference ML-CFA BSEM

Parameters viewed as Constants Variables
Cross-loadings Exact zeros Informative priors (zero mean and small variance)
Major loadings Freely estimated Diffuse noninformative priors (zero mean and infinite variance)
Model modification Improvement with modification indices

one parameter at a time
All parameters freed and estimated simultaneously

Parameter estimates Assumed to be normally distributed Based on percentiles of the posterior distribution, does not
assume a normal distribution

Note. ML-CFA � maximum-likelihood confirmatory factor analysis; BSEM � Bayesian structural equation modeling.
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Models and Analyses

First, in order to analyze the structure of the WISC–IV, we
used BSEM to compare the current four-factor higher order
structure of the WISC–IV with a five-factor CHC-based model.
Second, BSEM was used to improve the understanding of the
constructs measured by the French WISC–IV subtest scores by
allowing all cross-loadings to be estimated at the same time.
Thus, the influence of each latent variable on the 15 subtest
scores was estimated, which is not possible with classical
ML-CFA estimation. The third and last purpose was to compare
direct hierarchical models with more classical higher order
models, because the former have been found to show a better fit
to the data. The comparison between higher order and direct
hierarchical models allowed us to test the competing theories of
higher order superordinate g versus breadth g.

In sum, we compared eight models: The first four models were
based on the current four-factor structure. Models 1 and 2 were

higher order models with cross-loadings either fixed to zero or
freely estimated (see Figure 1a). The objective was to estimate the
gains in term of model fit that could be achieved. Models 3 and 4
were direct hierarchical counterparts of Models 1 and 2 (see Figure
2a). Then, CHC-based models with five factors were tested: Mod-
els 5 and 6 were higher order models with cross-loadings either
fixed to zero or freely estimated (see Figure 1b). Models 7 and 8
were their direct hierarchical alternatives (see Figure 2b).

As described, BSEM follows the same rationale as typical
ML-CFA but includes two additional steps for the definition of the
model to be estimated. For the WISC–IV, the first step was to
determine the measurement and the structural parts of the models
(i.e., define which subtest scores should be associated with which
factors). For instance, Coding, Symbol Search, and Cancellation
were set to load on the processing speed factor (PSI). With typical
ML-CFA, the cross-loadings of all other subtest scores on the PSI
factor should have been fixed to zero. With BSEM, cross-loadings

Figure 2. Four-factor direct hierarchical and CHC-based direct hierarchical models for the French WISC–IV.
CHC � Cattell–Horn–Carroll; WISC–IV � Wechsler Intelligence Scale for Children—Fourth Edition; g �
general factor; Gc � comprehension-knowledge; Gv � visual processing; Gf � fluid reasoning; Gsm �
short-term memory; Gs � processing speed.
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can be specified as prior distributions of a mean of zero and a small
variance. In that case, the prior is informative in the sense that all
cross-loading values are small but are not necessarily zero. Each
subtest score was therefore allowed to load on all factors. Using
informative, small-variance priors for all cross-loadings would
give information on the model, which would not be identified
otherwise. The choice of the prior variance reflects initial beliefs
and theoretical knowledge. A very small variance would not allow
some cross-loadings to differ sufficiently from zero. On the other
hand, a too large variance would not give enough information, so
that the model would get closer to being nonidentified (Muthén &
Asparouhov, 2012). In such cases, the Markov chain Monte Carlo
(MCMC) estimation algorithm, which is the computational algo-
rithm used with BSEM, will fail to reach convergence. In order to
identify potential significant cross-loadings that remain rather in-
conclusive from the literature, we decided to choose the prior
variance of 0.04 for the higher order models. The value of 0.04
results in 95% credibility interval of �0.39; thus, this prior vari-
ance value allows small to moderate loadings. With direct hierar-
chical models, the standardized coefficients from g to subtest
scores are typically higher than the standardized coefficients from
the broad first-order factors to subtest scores (Gignac, 2006; Golay
& Lecerf, 2011); therefore, we chose a prior variance of 0.01,
which results in a 95% credibility interval of �0.20.

Note that we also followed the recommendation of Muthén and
Asparouhov (2012) concerning studying the sensitivity of the
results: Smaller and larger prior variances were tested for each
model and showed similar pattern of results, although slightly
differing in regard to the model fit (i.e., lower posterior predictive
p values; PPP). With larger prior variance values (0.05 for the
higher order models and 0.02 for the direct hierarchical models),
the MCMC process failed to reach convergence (models were not
identified).

Posterior Distribution, MCMC, and Convergence

All statistical analyses were performed with the Mplus statistical
package (version 6.11, Muthén & Muthén, 2010). The posterior
distribution of Bayesian estimation was achieved through the
MCMC algorithm with the Gibbs sampler method: “The idea
behind MCMC is that the conditional distribution of one set of
parameters given other sets can be used to make random draws of
parameters values, ultimately resulting in an approximation of the
joint distribution of all parameters” (Muthén & Asparouhov, 2012,
p. 334). We did not use thinning, which consist of estimating the
posterior distribution on the basis of every kth iteration rather than
every iteration in order deal with potential autocorrelation in the
chain. Thinning has often been considered as unnecessary and
inefficient, given that the number of iterations is sufficiently large
(Link & Eaton, 2011; MacEachern & Berliner, 1994; Muthén &
Asparouhov, 2012).

Three MCMC chains with 50,000 iterations and with different
starting values and different random seeds were used, a procedure
that makes it possible to monitor convergence. As recommended
by Muthén and Asparouhov (2012), the convergence was assessed
with the Gelman–Rubin convergence diagnostic, which takes into
account the potential scale reduction factor (PSR; Gelman, Carlin,
Stern, & Rubin, 2004; Gelman & Rubin, 1992). When PSR is
between 1 and 1.1, convergence is considered to have been

achieved, because the value indicates that the between-chain vari-
ation is small relative to the within-chain variation. For each
model, we verified convergence by checking the PSR values
(�1.1). Because it was important that the number of iterations was
sufficiently large, we checked that the PSR values had converged
in the desired range before the first half (25,000) of the iterations.
This was easily achieved for the higher order models, but it was
not always the case for the direct hierarchical models (PSR below
1.1 between 25,000 and 35,000 iterations). Thus, the direct hier-
archical models were re-estimated with 70,000 iterations, which
yielded essentially the same results. Finally, the first half of the
chains was discarded as a burn-in phase, and the second half was
used to estimate the posterior distribution (Muthén & Muthén,
2010).

Comparison of Model Fit

Model fit was assessed with posterior predictive checking
(Gelman et al., 1996). The posterior predictive p value (PPP) of
model fit is computed and can be used to test the structural model
for misspecification. A small positive value (e.g., 0.005) indicates
poor fit, and a PPP value around 0.5 indicates excellent fit (Muthén
& Asparouhov, 2012). In contrast with standard ML-CFA
goodness-of-fit indices, such as the root-mean-square error of
approximation (RMSEA), there is no clear-cut PPP value that may
indicate whether or not model fit is acceptable. Therefore, PPP
should be interpreted like a structural equation modeling fit index:
A bigger PPP indicates a better model. We additionally used the
deviance information criterion (DIC; Gelman et al., 2004; Spiegel-
halter, Best, Carlin, & Van Der Linde, 2002). The DIC is a
Bayesian generalization of the AIC that balances the largeness of
the likelihood and adds a penalty for model complexity (number of
parameters). The number of parameters used to penalize for model
complexity with the DIC is the effective number of parameters,
referred as pD. Models with smaller values of DIC should be
preferred.

Results

Four-Factor Models

The higher order four-factor models with and without cross-
loadings were tested first. As shown in Table 2, Model 1 was
clearly rejected (PPP � 0.005). When cross-loadings were allowed
to differ from zero (Model 2), the fit dramatically increased
(PPP � 0.456). The value of the DIC in Model 2 (9,616.227) was
also lower than in Model 1 (9,645.043), indicating that approxi-
mate zero cross-loadings provided a better explanation of the
structure of the WISC–IV than did the current factorial structure
with cross-loadings fixed to 0.

Model 3 was a direct hierarchical variant of Model 1, with four
first-order factors and one general factor. As shown in Table 2,
Model 3 was also rejected because of a very low PPP value
(0.072). Model 4 was a direct hierarchical model with freely
estimated cross-loadings. As indicated by a PPP value of 0.569 and
a DIC of 9,491.086, Model 4 provided a better description of the
French WISC–IV subtest scores. It should be noted that the load-
ings of the four factors on g were substantially reduced when the
cross-loadings were freely estimated. This finding suggests that
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fixing small cross-loadings between specific items and nontarget
factors to zero tends to inflate the factor correlations (Marsh et al.,
2010). Although not reported here, for Model 2, the 95% credi-
bility interval for the loading of PSI on g failed to exclude zero.
This finding indicates that, when adopting a four-factor frame-
work, correlations between PSI and the three other broad factors
are probably overestimated.

CHC-Based Models

Next, we tested a CHC-based model with cross-loadings fixed to
zero (Model 5) and another CHC-based model in which cross-
loadings were freely estimated (small variance priors; Model 6).
The comparison of Model 1 and Model 5 supports the hypothesis
that the CHC framework provides a better description of the
WISC–IV subtest scores than the classical four-factor model. As
shown in Table 3, only one cross-loading was significant: Arith-
metic loaded on both the Gf factor and the Gsm factor. However,
this model showed poor fit (PPP � 0.028, DIC � 9,632.226).

Free estimation of the cross-loadings (Model 6) greatly im-
proved the fit of the model (PPP � 0.529, DIC � 9,601.477; see
Table 2). As shown in Table 4, all hypothesized major loadings
had substantive backing, except the loading from Gf to Arithmetic,
which was very low and did not exclude zero (0.115, 95% CI
�0.319 to �0.519). In line with our previous classical ML-CFA
analyses, this finding suggests that the Arithmetic score is not a
measure of Gf in the French WISC–IV (Lecerf et al., 2010). It
should be emphasized that the typical CFA approach to model
specification (as represented in Model 5) suggests adopting a more
complicated model (with the Arithmetic score loading on both Gf
and Gsm), whereas the BSEM approach (Model 6) suggests a
simpler model, in which Arithmetic loads only on Gsm. No other
cross-loading were considered to be substantive, because the 95%
CI always included zero. Although these nonzero cross-loadings
do not possess much clinical significance (because their magnitude
is small), they are nevertheless statistically important for a correct
and nonbiased estimation of the model parameters. The small

magnitudes of the cross-loadings suggest that besides the major
loadings, no secondary interpretation of the subtest scores is
backed up by the data.

The saturations of the first-order factors in Model 6 were re-
duced in comparison to those found in Model 5, suggesting that
inappropriate fixed zero cross-loadings increased first-order factor
correlations and thus loadings on the g factor. Indeed, the loading
of Gf on g was estimated at .956 in Model 5 (see Table 3) and .880
in Model 6 (see Table 4). Although it is not reported here, we
found with maximum-likelihood estimation that the loading of Gf
on g was unitary. This finding demonstrates again that inappro-
priate fixed zero cross-loadings likely increased first-order factor
correlations and thus loadings on the g factor; more precisely, the
second order loadings are often overestimated and are sometimes
even found to be unitary with classical ML-CFA analyses.

Finally, we estimated direct hierarchical CHC models. Once
again, the model with cross-loadings fixed to zero (Model 7)
was rejected (PPP � 0.046). However, the direct hierarchical
five-factor model with freely estimated cross-loadings (Model
8) showed the best overall fit to the data (PPP � 0.620, DIC �
9,493.646). As shown in Table 5, the direct loadings of the
subtest scores on g were all substantively backed up. However,
it is important to note that only the Gsm and Gs factors were
really supported. Indeed, when the variance of the general
factor was extracted as a breadth factor, g explained more
variance of the subtest scores than did Gc, Gv, and Gf. Most
important, no 95% credibility interval of the subtest loadings on
Gc, Gv, and Gf excluded zero. These results suggest that there
is very weak support for calculation of separate Gc, Gv, and Gf
factor scores. In contrast, Gs and Gsm showed a distinct con-
tribution in addition to the part of variance explained by the
general factor.

Discussion

Analyses reported in the technical manual of the WISC–IV
support a four-factor structure. However, this factorial structure

Table 2
Comparisons of Model Fit for the French WISC–IV Structure

Model
No. free

parameters PPP

Difference between
observed & replicated �2

95% CI

DIC pD
Lower
2.5%

Upper
2.5%

1. Standard WISC–IV, higher order 49 0.005 13.262 90.287 9,645.043 47.335
2. Standard WISC–IV, higher order �

cross-loadings (priors variance � 0.04) 94 0.456 �39.380 43.376 9,616.227 68.984
3. Standard WISC–IV, direct hierarchical 60 0.072 �10.437 68.962 9,594.894 19.765
4. Standard WISC–IV, direct hierarchical �

cross-loadings (priors variance � 0.01) 105 0.569 �47.814 37.672 9,491.086 �49.830
5. CHC model, higher order 51 0.028 �0.993 75.815 9,632.226 49.016
6. CHC model, higher order � cross-

loadings (priors variance � 0.04) 110 0.529 �43.061 38.097 9,601.477 58.621
7. CHC model, direct hierarchical 61 0.046 �5.808 73.848 9,615.542 35.416
8. CHC model, direct hierarchical � cross-

loadings (priors variance � 0.01) 120 0.620 �51.153 35.994 9,493.646 �44.408

Note. WISC–IV � Wechsler Intelligence Scale for Children—Fourth Edition; CHC � Cattell–Horn–Carroll; PPP � posterior predictive p value; CI �
credibility interval; DIC � deviance information criterion; pD � estimated number of parameters.
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is not explicitly aligned with the largely consensual Cattell–
Horn–Carroll (CHC) theory of cognitive ability. Nevertheless,
it has been shown that the WISC–IV could be better described
with a CHC-based model, including five factors (Flanagan &
Kaufman, 2009; Keith et al., 2006). Some questions also remain
about the factorial structure of the WISC–IV and about the
constructs measured by each subtest score. The majority of the
studies addressing these questions used confirmatory factor
analysis with a maximum-likelihood estimation procedure.
However, this approach has several methodological and theo-
retical limits.

To address some of these limitations, we examined the
French WISC–IV structure using Bayesian structural equation

modeling (BSEM). The present study deals with three main
questions: (a) Does a five-factor CHC-based model better fit the
WISC–IV data than does the current four-factor structure? (b)
What constructs are measured by each subtest score, and should
cross-loadings be added to the model? Remember that with
BSEM, the estimation procedure allows one to test for more
complex model structures because all parameters are free and
are estimated simultaneously (major loadings and cross-
loadings). This may result in a final model that is less sample
specific and hence more suited to other samples. (c) Does a
direct hierarchical model better fit the data than does a high-
order model, supporting a breadth conceptualization of g rather
than a superordinate conceptualization of g?

Table 3
BSEM Analysis With No Cross-Loadings, CHC Model (Model 5)

First order loadings
estimates (median)

Gc
95% CI

Gv
95% CI

Gf
95% CI

Gsm
95% CI

Gs
95% CI

Similarities 0.767 0 0 0 0
0.698 0.823

Vocabulary 0.812 0 0 0 0
0.751 0.861

Comprehension 0.665 0 0 0 0
0.578 0.737

Information 0.803 0 0 0 0
0.741 0.853

Word Reasoning 0.708 0 0 0 0
0.628 0.773

Block Design 0 0.641 0 0 0
0.494 0.787

Picture Completion 0 0.556 0 0 0
0.412 0.690

Matrix Reasoning 0 0 0.601 0 0
0.480 0.712

Picture Concepts 0 0 0.468 0 0
0.345 0.586

Digit Span 0 0 0 0.618 0
0.492 0.730

Letter–Number
Sequencing

0 0 0 0.761 0
0.635 0.890

Arithmetic 0 0 0.354 0.337 0
0.145 0.531 0.147 0.539

Coding 0 0 0 0 0.583
0.431 0.711

Symbol Search 0 0 0 0 0.769
0.623 0.935

Cancellation 0 0 0 0 0.450
0.304 0.582

Second order loadings
estimates (median)

General factor g
95% CI

Gc 0.780
0.670 0.877

Gv 0.751
0.577 0.902

Gf 0.956
0.827 0.998

Gsm 0.592
0.430 0.735

Gs 0.427
0.261 0.576

Note. Loadings in bold were freely estimated. Other loadings were fixed to 0. BSEM � Bayesian structural equation modeling; CHC � Cattell–Horn–
Carroll; Gc � comprehension-knowledge; Gv � visual processing; Gf � fluid reasoning; Gsm � short-term memory; Gs � processing speed; CI �
credibility interval.
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First, concerning the debate about the structure of the WISC–IV,
the results of the present investigation clearly indicate that the
French WISC–IV subtest scores could be better described with a
second-order general intelligence factor and five first-order factors
defined according to the CHC framework: fluid reasoning (Gf),
comprehension-knowledge (Gc), visual processing (Gv), process-
ing speed (Gs), and short-term memory (Gsm). This finding is
congruent with previous ML-CFA analyses and suggests that the
CHC model would allow clinicians to make more adequate inter-
pretations than the standard four-factor structure (Keith et al.,
2006; Lecerf et al., 2010). Therefore, to gain clinical validity of
tests scores interpretation, we recommend interpreting the results
of the French WISC–IV subtest scores according to the CHC

classification, with the norms that we have developed for the
French WISC–IV (Lecerf et al., 2012). The superiority of the
direct hierarchical and the higher order CHC-based models over
the current four-factor alternatives also reinforces the idea that the
PRI score should be split into two subcomponents (Gf and Gv).

Second, following this first debate about the factorial structure
of the French WISC–IV, results from this investigation provide
some very important information about the interpretation and
constructs measured by the score of each subtest. In brief, the main
results were as follows: All but one of the major loadings depicted
on Figure 1b were supported by the data, as the Arithmetic subtest
score loaded on the Gsm factor but not on the Gf factor. Remember
that Keith et al. (2006) showed that the subtest measured Gf (and

Table 4
BSEM Analysis With Small-Variance Priors for Cross-Loadings, CHC Model (Model 6)

First order loadings
estimates (median)

Gc
95% CI

Gv
95% CI

Gf
95% CI

Gsm
95% CI

Gs
95% CI

Similarities 0.631 0.130 0.045 0.018 0.000
0.461 0.761 �0.037 0.318 �0.071 0.248 �0.135 0.178 �0.138 0.139

Vocabulary 0.806 �0.061 0.010 0.059 0.023
0.656 0.976 �0.234 0.112 �0.130 0.174 �0.097 0.221 �0.116 0.162

Comprehension 0.722 �0.117 �0.007 0.049 �0.007
0.569 0.901 �0.298 0.052 �0.166 0.136 �0.106 0.215 �0.151 0.134

Information 0.743 0.136 �0.021 0.004 �0.003
0.586 0.917 �0.031 0.324 �0.208 0.109 �0.149 0.163 �0.141 0.137

Word Reasoning 0.661 0.045 0.031 0.011 �0.036
0.503 0.817 �0.126 0.216 �0.091 0.228 �0.143 0.163 �0.178 0.099

Block Design �0.069 0.665 0.004 0.037 0.126
�0.260 0.127 0.430 0.929 �0.181 0.162 �0.164 0.221 �0.041 0.291

Picture Completion 0.107 0.530 0.013 �0.098 0.002
�0.088 0.299 0.287 0.810 �0.128 0.195 �0.290 0.069 �0.157 0.153

Matrix Reasoning 0.039 0.139 0.500 0.023 �0.028
�0.183 0.246 �0.094 0.356 0.048 0.920 �0.182 0.212 �0.193 0.124

Picture Concepts 0.071 �0.037 0.385 0.096 0.041
�0.137 0.260 �0.256 0.153 0.083 0.756 �0.090 0.276 �0.109 0.188

Digit Span �0.025 �0.083 0.022 0.642 0.021
�0.209 0.151 �0.283 0.108 �0.114 0.215 0.435 0.873 �0.137 0.181

Letter–Number
Sequencing

0.023 0.032 0.001 0.749 �0.111
�0.173 0.212 �0.171 0.244 �0.155 0.173 0.528 1.011 �0.278 0.045

Arithmetic 0.128 �0.004 0.115 0.400 0.106
�0.064 0.308 �0.198 0.191 �0.319 0.519 0.173 0.690 �0.037 0.254

Coding �0.078 �0.007 0.001 0.040 0.630
�0.251 0.095 �0.202 0.199 �0.154 0.161 �0.133 0.231 0.456 0.809

Symbol Search 0.002 0.106 �0.007 0.035 0.657
�0.174 0.178 �0.089 0.313 �0.169 0.148 �0.141 0.215 0.483 0.861

Cancellation 0.054 0.017 0.015 �0.131 0.494
�0.109 0.217 �0.163 0.213 �0.124 0.184 �0.304 0.029 0.326 0.668

Second order loadings
estimates (median)

General factor g
95% CI

Gc 0.725
0.352 0.915

Gv 0.694
0.248 0.937

Gf 0.880
0.285 0.996

Gsm 0.623
0.236 0.905

Gs 0.386
�0.072 0.706

Note. Loadings in bold were freely estimated. Other loadings were estimated with small (0.04) variance priors. BSEM � Bayesian structural equation
modeling; CHC � Cattell–Horn–Carroll; Gc � comprehension-knowledge; Gv � visual processing; Gf � fluid reasoning; Gsm � short-term memory;
Gs � processing speed; CI � credibility interval.
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also Gsm and Gc). On the other hand, Flanagan and Kaufman
(2009) assumed that Arithmetic required Gf and Gsm, particularly
for younger children. Concerning the French version of the WISC–
IV, Grégoire (2009) suggested that the Arithmetic score measured
both Gsm and Gc. Our previous ML-CFA indicated that the French
Arithmetic subtest score measured quantitative knowledge (Gq)
and short-term memory (Gsm) and, most important, that it did not
measure fluid reasoning (Gf). The results found with BSEM were
relatively consistent with those results: The Arithmetic score
loaded only on Gsm (and did not load on Gf). Therefore, the
Arithmetic score should be considered as a measure of Gsm, along
with Digit Span and Letter–Number Sequencing. Nevertheless, the
magnitude of the loading of Arithmetic on Gsm was smaller than
the loadings of Digit Span and Letter–Number Sequencing on this
factor. It should be noted that we did not test the hypothesis that
the Arithmetic score measures quantitative knowledge (Gq) in the
present study, because Arithmetic was the only subtest score that
appears to measure this ability in the French WISC–IV.

In addition, the results of both the hierarchical and the higher
order CHC models demonstrated that the Similarities and Word
Reasoning scores did not provide fluid reasoning (Gf) measures
(Grégoire, 2009; Keith et al., 2006; Lecerf et al., 2010). Consistent
with previous studies, the present results showed that the Block
Design score loaded only on visual processing (Gv) and was not a

measure of Gf (Lecerf et al., 2010). BSEM also indicated, unlike
previous ML-CFA analysis, that the Block Design score was not a
measure of processing speed (Gs). As concerns the Picture Com-
pletion score, our previous ML-CFA studies suggested that it
primarily measures Gc and to a lesser degree Gv. In contrast,
results with BSEM suggested a simpler interpretation of the Pic-
ture Completion score: This subtest measured only Gv and not Gc.
Next, results indicated that the Matrix Reasoning subtest score
mainly measured fluid reasoning (Gf), and had no substantive
loading on Gv. This finding was not congruent with Carroll (1993),
who suggested that fluid reasoning tests required visual process-
ing. Consistent with our previous ML-CFA and in contrast to Keith
et al. (2006), the Symbol Search score appeared to measure only
processing speed (Gs); indeed, the cross-loading on Gv was not
substantive. Finally, BSEM demonstrated that the Coding score
loaded only on Gs and was not an indicator of Gsm. Altogether,
besides the major loadings, no secondary interpretation of the
subtest scores has been found to be backed up by the data. Thus,
BSEM suggested simple and parsimonious interpretation of the
subtest scores. Estimating all cross-loadings simultaneously did
not lead to a more complicated loading pattern.

BSEM also provided some important additional information
concerning the correlation between the first-order factors and the
loadings on the second-order factor. Indeed, in contrast to the

Table 5
BSEM Analysis With Small-Variance Priors for Cross-Loadings, CHC Direct Hierarchical Model (Model 8)

Loadings estimates
(median)

G
95% CI

Gc
95% CI

Gv
95% CI

Gf
95% CI

Gsm
95% CI

Gs
95% CI

Similarities 0.665 0.314 �0.012 �0.002 �0.012 �0.013
0.506 0.791 �0.523 0.557 �0.166 0.152 �0.165 0.161 �0.138 0.111 �0.131 0.101

Vocabulary 0.636 0.448 0.015 0.000 0.035 0.017
0.457 0.809 �0.647 0.690 �0.161 0.179 �0.157 0.156 �0.093 0.160 �0.101 0.134

Comprehension 0.494 0.405 0.033 0.000 0.038 �0.011
0.300 0.676 �0.611 0.638 �0.192 0.209 �0.153 0.153 �0.093 0.166 �0.130 0.111

Information 0.667 0.380 �0.019 �0.003 �0.017 �0.017
0.491 0.816 �0.603 0.640 �0.194 0.176 �0.215 0.212 �0.145 0.111 �0.137 0.100

Word Reasoning 0.603 0.305 0.003 �0.001 �0.018 �0.048
0.434 0.742 �0.515 0.549 �0.144 0.147 �0.166 0.166 �0.146 0.105 �0.166 0.069

Block Design 0.491 �0.033 �0.308 �0.001 0.019 0.104
0.306 0.662 �0.216 0.180 �0.827 0.804 �0.189 0.187 �0.138 0.171 �0.040 0.241

Picture Completion 0.446 0.013 �0.176 �0.001 �0.101 �0.014
0.279 0.597 �0.159 0.178 �0.574 0.567 �0.170 0.168 �0.240 0.037 �0.148 0.118

Matrix Reasoning 0.540 0.005 �0.034 �0.004 0.030 �0.020
0.398 0.667 �0.148 0.156 �0.227 0.207 �0.396 0.396 �0.112 0.164 �0.151 0.106

Picture Concepts 0.444 0.013 0.013 �0.004 0.073 0.035
0.282 0.595 �0.159 0.178 �0.176 0.194 �0.618 0.607 �0.078 0.211 �0.098 0.163

Digit Span 0.342 �0.004 0.016 �0.002 0.566 0.026
0.166 0.514 �0.156 0.149 �0.175 0.191 �0.182 0.178 0.342 0.779 �0.108 0.158

Letter–Number
Sequencing

0.458 0.007 �0.008 0.000 0.552 �0.090
0.295 0.612 �0.145 0.159 �0.167 0.162 �0.169 0.170 0.332 0.767 �0.220 0.039

Arithmetic 0.523 0.027 0.005 �0.001 0.294 0.078
0.373 0.667 �0.174 0.199 �0.150 0.162 �0.421 0.407 0.085 0.463 �0.051 0.205

Coding 0.188 �0.019 �0.003 �0.002 0.046 0.632
0.006 0.364 �0.184 0.160 �0.161 0.161 �0.166 0.162 �0.099 0.188 0.460 0.804

Symbol Search 0.360 �0.009 �0.019 �0.001 0.012 0.573
0.191 0.518 �0.161 0.144 �0.199 0.181 �0.187 0.182 �0.127 0.150 0.403 0.736

Cancellation 0.178 0.016 �0.007 0.000 �0.106 0.451
0.005 0.342 �0.155 0.177 �0.163 0.156 �0.180 0.179 �0.240 0.029 0.286 0.605

Note. Loadings in bold were freely estimated. Other loadings were estimated with small (0.01) variance priors. BSEM � Bayesian structural equation
modeling; CHC � Cattell–Horn–Carroll; G �general factor; Gc � comprehension-knowledge; Gv � visual processing; Gf � fluid reasoning; Gsm �
short-term memory; Gs � processing speed; CI � credibility interval.
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results obtained with ML-CFA, results with BSEM indicated that
the correlation between g and Gf was not 1 (or close to 1; .956 in
the present investigation) but around .88. With classical ML-CFA
estimation, some authors have suggested, statistical power could
explain why it was not always possible to distinguish the general
factor from fluid reasoning (Matzke, Dolan, & Molenaar, 2010).
We suggest that inappropriate zero cross-loadings could also ac-
count for the unitary loading between g and Gf, because the
correlations between first-order factors can be overestimated when
using standard CFA estimators. Thus, in line with Matzke et al.
and contrary to Gustafsson (1984), we argue that the equivalence
of g and Gf in higher order models is better accounted for by
statistical artifacts than the mere equivalence of the two constructs.

Third, the present study favored a direct hierarchical model,
which was more adequate than a higher order model. In other
words, the structure of the WISC–IV was best represented by five
first-order CHC factors, plus a general intelligence factor. Consis-
tent with previous studies, it was found that although subtest scores
were aligned with their theoretically assumed factors (e.g., VCI or
Gc), the g factor accounted for the largest portions of variance.
Indeed, the variance explained by first-order factors was weak
when the variance accounted for by the g factor was partialed out.
For instance, 10 subtest scores exhibited a higher loading on g than
on their respective first-order factor. Furthermore, results indicated
that g explained the largest part of the variance of the Gc, Gf, and
Gv subtest scores, in contrast to the Gsm and Gs factors. These
findings are consistent with those reported by Watkins (2006) and
Watkins, Wilson, Kotz, Carbone, and Babula (2006) for the U.S.
WISC–IV, and they indicate more generally that published cogni-
tive batteries may be overfactored (Canivez, 2008). In addition,
this finding was consistent with Gignac’s results (2008) and
showed that the conceptualization of the general factor as a first-
order breadth factor is preferable to that as a higher order super-
ordinate factor: The relationship between the general factor and
each subtest score does not seem to be fully mediated by the broad
abilities. Nevertheless, we want to emphasize that this finding does
not necessarily suggest that there is a single underlying mechanism
for g. To the contrary, we consider that g is a complex construct
defined by the interaction between several mechanisms (van der
Maas et al., 2006). From a practical point of view, the present
results indicated that interpretation of WISC–IV subtest scores
should focus mainly on the Full Scale IQ (FSIQ) and that standard
and/or CHC index scores do not necessarily provide additional and
separate information. Remember that it has been shown that the
general intelligence factor accounted for an important part of the
FSIQ variance and that FSIQ was the best predictor of academic
achievement regardless of index score variability (Watkins, Glut-
ting, & Lei, 2007).

In conclusion, in the present paper, we used BSEM to analyze
the structure of the French WISC–IV and to determine the nature
of the constructs measured by each subtest scores. The results
indicated that the BSEM approach to model specification and
estimation performed better than the more classical and restrictive
ML-CFA approach. The framework used in this study might be
useful for other versions of the Wechsler scales and other intelli-
gence tests. Although Bayesian methodology is used increasingly,
to our knowledge it has not been frequently used with intelligence
research and factor analysis of cognitive batteries, such as the
WISC–IV. We argue that the Bayesian methodology is very effi-

cient for incorporating both knowledge and uncertainty when
analyzing psychological instruments.
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