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INTRODUCTION

The proper interpretation of multiple time-point data has
become a subject of increasing interest among sociologists. One
concern has been with models that incorporate a single variable
measured at two or more points in time. For example, Heise (1969;
see also Wiley and Wiley, 1970) has dealt with a model that includes
unreliability (random measurement error) in the observed variables
and instability over time in the underlying “true score” variable for
variables with single indicators. Heise’s purpose in setting forth this
type of model is to caution researchers to avoid misleading inter-
pretations of simple test-retest correlations, and towards this pur-
pose he provides an operational distinction between the reliability
and stability of variables measured over time. Wiley and Wiley
(1970) and Werts, Joreskog, and Linn (1971) discuss the identifica-
tion and estimation of reliability and stability parameters in these
models under less restrictive sets of assumptions. Others (Costner,
1969; Blalock, 1970; Hauser and Goldberger, 1971) have discussed
single variable multi-wave models where the variable has multiple
indicators at each time point. In this case more information is
available for estimating reliability and stability. Included in the
treatment of both types of single variable panel models is a concern
with measurement specification; that is, a measurement model is ex-
plicitly represented for the relationship between observed measures
and their underlying constructs and for the relationships among
observed measures.

A second concern with the interpretation of panel data has
been in the context of the multi-wave multi-variable case (Bohrn-
stedt, 1969; Duncan, 1969; Heise, 1970). This second focus is im-
portant because it takes more seriously the issue of theoretical
specification. By theoretical specification we mean the specification of
the pattern of relationships among the underlying constructs. Inas-
much as this second concern is not explicitly the issue of measure-
ment error, it lacks the special virtues of the literature cited above.
Both concerns are essential in any proper interpretation of panel
data, especially when observed variables are fallible. Discussions by

Heise (1970), and Duncan (1972, 1975) have dealt with the issues of
measurement specification and theoretical specification, but their
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primary concern is not with estimation issues.! Hannan, Rubinson,
and Warren (1974) have also discussed panel models with both
theoretical and measurement specifications made explicit, but their
treatment of identification and estimation issues does not emphasize
that given an efficient estimation procedure there are clear advan-
tages to overidentification. A recent paper by Joreskog and Sérbom
(1976a) provides a useful and comprehensive statistical treatment of
a number of types of panel models with illustrative examples. This
chapter shares the orientation of Joreskog and Sérbom to the an-
alysis of panel data and follows the approach to estimation in-
troduced by Joreskog (1973; see also Joreskog, 1976).

The purpose of the present chapter is to suggest some stra-
tegies that will improve both the measurement and the theoretical
specification of models using panel data and incorporating the es-
timation of reliability and stability parameters. It is especially im-
portant to point out that the resulting flexibility in the specification
procedure greatly increases the usefulness of panel data while
providing a potential solution to some of the common problems
with their use. Following the lead of Heise (1969) and the Wileys
(1970), our discussion emphasizes the necessity of incorporating the
issue of unreliability of measurement in any general model for the
analysis of panel data. Also, following Duncan (1969) and others, we
encourage the thorough specification of causal relationships among
the theoretical variables included in multiple-wave data.

We begin our discussion by reconsidering the original sin-
gle-variable three-wave model proposed by Heise (1969). It has
become clear that for many purposes such single-variable models are
inadequate at the level of theoretical specification, resulting in
biased estimates of reliability and stability parameters in such
models. Also involved in the issue of the theoretical specification of
relationships among unobserved constructs is the reconceptualiza-
tion of stability, since in the multivariate case the stability par-
ameter is a partial regression coefficient rather than a correlation.

'A third literature dealing with panel analysis has addressed the issue of
assessing causal priority of variables in multi-wave data using “cross-lagged” cor-
relations (Pelz and Andrews, 1964; Rozelle and Campbell, 1969; Kenny, 1973).
Others (Bohrnstedt, 1969; Duncan, 1969; Heise, 1970) have shown that this issue
can be addressed in a more conventional regression framework.
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We then go on to examine a set of models that are more completely
specified, estimating the parameters of these models via a technique
that allows us to estimate causal (structural) relations among un-
observed constructs with multiple indicators ( Joreskog, 1976;

Joreskog and Sérbom, 1976b). Of special interest here is the fact that
issues of specification at each level must be considered in the
development of properly specified panel models.

THE SINGLE-VARIABLE THREE-WAVE MODEL

The original single-variable three-wave model set forth by
Heise (1969) is presented in Figure 1. First, the model states that
at each point in time (¢t = 1, 2, 3) the observed variable x,, is a per-
fect linear, additive function of two uncorrelated components: a true
(reliable) component X;, and a random error component e;,
assumed to be measurement error. Second, the model states that at
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Figure 1. A Representation of the Single-Variable Three-Wave Panel Model.
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each point in time the true underlying variable X, is a perfect linear
additive function of two uncorrelated components: the true variable
at the previous point in time, and a random disturbance represent-
ing sources of change or instability in the true variable over time. We
have represented the effects of a true score on the observed score at a
particular point in time as «;, and the effects of a true score at a
particular point in time on the true score at a subsequent point in
time as (7 = 1, 2). In order to identify the reliability and stability
parameters Heise (1969) assumes &y = az = a3, which provides for
a straightforward algebraic solution for a; and the stability
parameters 81 and 2. Wiley and Wiley (1970) point out that this
solution does not make use of all the available information in the
data, since it analyzes the correlation matrix instead of the
variance-covariance matrix. The Wileys note that it is sufficient to
assume that Var(e;) = Var(¢z) = Var(es), then the variance of
the unobserved true variable need not be equal across time. In this
case we need not assume a; = az = a3 in order to identify these
parameters. Werts, Joreskog, and Linn (1971) have pointed out that
if the single-variable model is extended to four (or more) time
points, unequal reliabilities and the stabilities for the internal
measures (excluding the first and the last) can be identified without
having to assume equality in the error variances.

Note that the reliability of a particular observed score at a
given point in time is defined as a7 (see Lord and Novick, 1968),
where for any ¢:

2
o = p2, = Var(X) _ 0% )
Var(x) 0% + 0%
where 0% = true score variance, and 6% = measurement error

variance. There is a more general definition of reliability, which we
will introduce later, of which this definition is a special case.

These single-variable models do have a number of assump-
tions in common:

(1) The true and error components of the observed score are
uncorrelated, and error components of any observed score are un-
correlated with all other true variables.

(2) Measurement errors at different points in time are
uncorrelated.
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(3) Disturbance terms are uncorrelated with the true
variables at prior points in time.

(4) The system is assumed to be lag-1; that is, there is no

direct linear effect of the true variable at time 1 on the true variable
at time 3.
Problems with assumptions (1) and (2) have been discussed in a
number of other papers (Blalock, 1970; Althauser and Heberlein,
1970; Costner and Schoenberg, 1973; Alwin, 1974). For our present
purposes, assumption (1) expresses the measurement model used in
this paper, and we will address problems resulting when the other
assumptions do not hold.

An important potential problem with the single-variable
model described above is one of bias in the estimates of the stability
parameters. We mean by this that some external variable, say Y, is a
determinant of the underlying true variable at two or more points in
time; and, as a result, we may spuriously attribute stability to the
underlying true variable. This possibility (assuming Y is perfectly
measured) is represented in the diagram in Figure 2.

e ey €3

Xy X2 3
A | uy ay ' uy "‘3] ug
- - /
> X, — X,

X,
t 7 -
| / -
| /7 Pl
| ,/ g
| / Phe
Y1y Y2, Y3 o~
4
: / -~
/ Pig

| /7 -
1 /7 //
W\ 2 _-

/7 -
1 7~ /’

-
Y

Figure 2. The Operation of an Excluded Variable in the Single-Variable Model.
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Using the conventional algorithms of path analysis and
assuming standardized data, we can solve for Heise’s stability
parameters in this model as follows (using the notation 8 and f3 for
Heise’s parameters):

gy — P1a araz(B1Bz + v1vs + v1728B2)
1= = !
Pa3 asa3(Bs + Y3¥2 + Y37181)

a3 (B1B2 + Y13 + Y1Y2B5)
(B + Y3¥2 + ¥371B1)

g, =Pu — araz(BiBz + v1vs + v1v282)
P12 araz(Br + Y1v2)
as(B1Bs + Y173 + Y172B2)
az(B1+ v1v2)

Note from the above equations that 87 will equal 8; when y1y3 =
Y1Y2 = Y2Y3 = 0 and a; = a3. Also note that 82 will equal 83 when
Y1Y2 = Y1Y3s = 0 and az = a3, suggesting the possibility of bias
when Y is related to X. Heise (1969) discusses the possibility, but
does not present data bearing on the issue. Likewise, reliability
estimates in such a model may be affected. Using Heise’s assump-
tions (a1 = az = ag = a) for simplicity, it is clear that under most
conditions

o = PP, \/;2(31 + Y1v2) (B2 + v2v3 + B1v1vs)
P13 (B1Bz + y1v3 + v1v2B2)

where a’ is the estimate resulting from the Heise model. Therefore, in
cases where other variables cause X, the Heise estimates of reliability
and stability may be biased.?

Figure 2 introduces a new complexity in the definition and
interpretation of stability. In single-variable models, the stability
(standardized to a path coefficient) is automatically the total cor-
relation between successive true variables. In the multivariate case,

2These principles can also be illustrated with the Wiley and Wiley (1970)
model, since it is very similar to that proposed by Heise. The proofs in this case are
much more cumbersome, and we will not deal with them here.



ASSESSING RELIABILITY AND STABILITY IN PANEL MODELS 91

the stability parameters we will use are partial regression
coefficients. This is not only a shift in operational definition, it also
points to the need for a clarification of the concept of stability. Care
must be taken first to specify the unit of analysis under discussion.
The stability parameter is intended to represent the amount of true
change in a variable across time, and in this chapter what we mean
by “true change” is change of individuals’ positions in the distribu-
tion relative to one another. This means that we do not address the
issue of constant change over time, as reflected by changes in the
intercept. Constant change of the group as a whole is another issue,
which can be addressed in the context of “system” differences but is
not central to the question of the relative change between
individuals—which is implicit in our application of the stability
concept.

We contend that the simple change definition (operation-
alized as a correlation) can lead to misleading interpretations of
stability. It is obvious from Figure 2 that part of this inter-temporal
true score correlation is not due to the effect of the variable at ¢ on the
same variable at ¢ + 1. Stability, as we define it, is concerned with
the amount of change or lack of change in X,_, and due to X, alone;
that is, the degree to which one’s score on X, is, in fact, the source of
one’s score on X, ;. The change in X, and X; in Figure 2 caused by
other agents should be interpreted separately from the stability of
that variable. Such a notion of stability is implicitly recognized by
Heise when discussing potential sources of distortion to stability
estimates (1969, pp. 99-101).

We conclude, from the preceding discussion, that it is essen-
tial that causal models representing processes measured in panel
data be correctly specified at the theoretical level —as well as the
measurement level —if one is to place any confidence in estimates of
the “true” stability of variables. Our orientation leads us to explore
first the possibility that certain concomitant variables may be cau-
sally related to the single variable measured at three points in time
in single indicator models. Also, however, by using multiple indi-
cators for each construct we introduce the possibility of es-
timating correlations between error terms for the observed mea-
sures, and we create more information for the estimation of the
stability parameters (Costner, 1969; Blalock, 1970). This “over-
identification” in multiple indicator models is useful precisely



92 BLAIR WHEATON AND OTHERS

because it results in more than one estimate of the stability par-
ameter. Given a procedure for combining these separate estimates,
the estimation of such models is enhanced. A general procedure for

obtaining efficient estimation in overidentified models of the type
considered here is available using a maximum-likelihood solution

(Joreskog, 1973, 1976; Joreskog and S6rbom, 1976b), and we will
make use of this method below.

THE SPECIFICATION AND ESTIMATION
OF RECURSIVE MODELS IN PANEL DATA

Discussions of the analysis of panel data by Duncan (1969)
and Heise (1970) consider the problems inherent in making infer-
ences from sample data in panel situations where the variables
contain measurement error. Neither treatment incorporates
specification of the measurement error in the variables as a part of
the model to be estimated. More recent papers by Duncan (1972,
1975) develop several models for the two-wave two-variable situa-
tion that incorporate unobserved constructs and, thereby, im-
plicitly deal with the issue of random measurement error. Also,
Hannan et al. (1974) specify both random and nonrandom measur-
ement errors in a series of three-wave models. We can extend these
discussions using different estimation assumptions and placing them
in the context of the reliability-stability issue.

We will discuss first an “unexplicated” confirmatory factor
analytic model (hereafter referred to as a CFA model). By “unex-
plicated” we mean simply that we do not specify a causal system for
the covariances among unobserved constructs. Later, we will dis-
tinguish this form of CFA from the “explicated” CFA model in
which we postulate a causal structure among unobserved constructs,
which is intended to account for the covariances and variances
among these constructs. The unexplicated CFA model deals only
with the issue of measurement specification, whereas the explicated
model deals with both measurement and theoretical specification.
From an econometric perspective, the explicated model could be
regarded as a structural equation model extended to include multi-
ple indicators.

Explicated confirmatory factor analytic models provide a
number of advantages in estimating reliability-and-stability models
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with panel data. First, these methods take into account random
measurement error in that the amount of this type of error is es-
timated directly in the model. Second, in the case of multiple in-
dicators, certain measurement error correlations can also be es-
timated. Third, causal relationships between abstract constructs
can be interpreted directly rather than through inference from
measured variable relationships. Fourth, the postulated structure
relating observed measures to unobserved constructs and unob-
served constructs to each other can be tested for fit to the observed
variance-covariance matrix. Fifth, the model is thus very amenable
to use as a theory construction tool (se: ihe discussion by Burt,
1973). And, sixth, the issue of reliability and stability can be ad-
dressed within the context of a general model that has increased
specification flexibility and, thus, increases our chances of accura-
tely estimating these parameters. Specifically, the models we will
suggest can be used to incorporate and estimate the effects of three
possible sources of distortion to reliability and stability estimates;
including the effects of excluded causal variables in the Heise and
Wileys’ models, the effects of correlations between exogenous con-
structs in the model and endogenous disturbance terms (or, alter-
natively, violation of the lag-1 assumption), and the effects of cor-
related measurement error.

An example of an unexplicated CFA model appears in Figure
3. The well-known covariance structure implied by this model (J&-
reskog, 1969) can be expressed as:

S = ADA’ + ©2 (2)

where 2 is a p X p population variance-covariance matrix for p = 7
variables, composed of three types of matrices: matrix Aisap X m
factor pattern matrix expressing the p observed variables as a linear
function of m unobserved constructs; matrix ® is an m X m matrix of
unobserved construct covariances and variances; and matrix ©2is a
p X p diagonal matrix of residual error variances for the observed
variables.? Each of these parameter matrices may contain fixed par-
ameters that are assumed known a priori, and the other parameters in

3In this case, the paths for the error terms are assumed to be 1 (as in the
factor analytic model), and we can then identify the variance of the error term. This

is equivalent to representing the ©; as the path coefficients for the measurement
terms with the variance of the ¢; equal to 1.
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Figure 3. A Two-Variable Three-Wave CFA Measurement Model.

the model are then estimated. Estimated parameters can be of two
types: free parameters that are unknown and not assumed equal to
any other unknown parameters in the model, and constrained par-
ameters that are set equal to other unknown parameters. The con-
sequences of restricting certain parameters can be tested for efficacy
by a x2 goodness of fit test in the case where we restrict more
parameters than are needed for identification.

In the model presented in Figure 3, there are several zero
entries in matrix A, indicated by the absence of direct effects from
certain unobserved constructs to certain observed variables (for
example, X3 to xpp). The prespecification of certain zero entries in
the A matrix allows a covariance between factors (or “constructs,”
in our terminology) to be identified and to be estimated. Thus'a zero
effect of X5 on xpy, for instance, is not evidence of a lack of covar-
iance; rather, there is an association between xp, and X3 due to the
fact that xp, is a measure of another construct, which itself is directly
related to X3.

If we feel that a particular causal structure underlies the
unobserved variances and covariances in Figure 3, and we have a
time-ordering established for our variables, we can postulate an
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Figure 4. Explicated Causal Model for the CFA Model in Figure 3.

explicated CFA model as in Figure 4. This model will be important
in our subsequent analysis. We will consider first the version of
Figure 4 in which y3 = 0.* This is an explicated model containing an
overidentifying restriction on the variance-covariance matrix for the
constructs in addition to the restrictions on the A matrix.

Following Jéreskog (1976), we can express the relationships
in Figure 4 as follows, first for the relations between constructs and
their measures:

4We specify y3 as the correlation between X; and u3 and not the direct effect
of X; on X for reasons to be stated later.
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[ x42 ] F"q
Xp2 X, €5
=p+ A, + (3)
X43 X3 s
| *pP3 | | €7 |
le- relA
x + A % +
=y €
Al z Xl 2 (4)
*p1 | | 3]

where p and » are the respective mean vectors for the measures
A ypxm = the factor loading matrix for all observed measures of
endogenous unobserved constructs, p = the number of observed
measures and m = the number of endogenous constructs, and
A ygxny = the factor loading matrix for all observed measures of
exogenous unobserved constructs, ¢ = the number of observed
measures, and n = the number of exogenous constructs; and second,
for the relations between constructs,

XZ Zl Uy
B- =T + (5)
Xy X, Us

where B(yym) is a coefficient matrix for the relationships among
endogenous constructs, and I,y is a coefficient matrix for rela-
tionships between exogenous and endogenous constructs.

In applying this model, we begin with the following as-
sumptions: the expectation for all unobserved constructs is defined
to be zero, that is, E(Z;) = E(X;) = E(X,;) = E(X3) = 0; the
expectation of the disturbances is also zero, that is, E(u;) = E(u3) =
0; the expectation of the observed variable vector is p, v; meas-
urement errors are uncorrelated with each other and with all con-
structs in the model; exogenous constructs and disturbance terms for
endogenous constructs are uncorrelated; and B is nonsingular. We
designate @, as the variance-covariance matrix of exogenous
constructs, Y, as the variance-covariance matrix for disturbance
terms, ©, as a diagonal matrix of error standard deviations for the p
observed measures of endogenous constructs, and ©; as a diagonal
matrix of error standard deviations for ¢ observed measures of ex-
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ogenous constructs. We will then obtain the population variance-
covariance matrix for the observed measures (x5, Xpo, X43, Xp3, 2115
X41,Xpy)’ as ( Joreskog, 1976):

s = (6)
A,(B-'TOT'B'~t + B-1WB'-)A; + 02 | symmetric
A,®T'B'-1A,’ ' A, @A, + OF

We should make it explicit that the variance-covariance matrix of
exogenous constructs is

Zy
T, = Var =90
X

that the variance-covariance matrix of endogenous constructs is
Xz
T, = Var = B-1T®I''B'-1 + B-1¥B'~1
X3

and that the covariance matrix between exogenous and endogenous
constructs is

Zy) [X Z,
T3 = Cov s =F (X2X3) = ¢I’'B’'-1
X1 ) \X; X
Then we write 2 in simplified form:
- [Ay(TZ)A; + 02 ‘ symmetric
AdTA; | A(T)A,+ 03
[ A 0 T,
I 2w (7)
0 A, Ty T,
A, o | ez 0
+
0 A, 0 03
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which is in a form analogous to our expression for Z(equation (2))
for the unexplicated CFA4 model.

Our object is to fit this matrix to the corresponding sample
variance-covariance matrix S by an appropriate choice of parameter
estimates. We use the following fitting function ( Jéreskog, 1976):

F = }[log[Z] — log|S[+ tr. (S271) — (p + ¢)] (8)
which will be minimized with respect to the elements in
A,A,BT>® ¥:0,,0;

With the additional assumption of a multivariate normal dis-
tribution for the observed variable vector, the assumptions stated
earlier ensure that minimizing F is equivalent to maximizing the
likelihood of the sample values; that is, our parameter estimates will
be ML-estimates with optimal large-sample properties. This addi-
tional assumption is not an unreasonable approximation for the
data we will use, and our sample size seems large enough (N = 932)
for large-sample properties to be relevant. The model as represented
in Figure 4 may be conveniently estimated using the fitting function
above via the J6reskog and Sérbom computer program LISREL
(1976b). For the case in which we impose restrictions on the rela-
tionships among constructs, the ML-estimates have the property of
optimal efficiency compared to the ordinary least squares estimates.
In some cases in which this part of the model is just-identified, the
estimates are in fact the same. LISREL can be applied as easily in
both situations. However, the method of analysis used by LISREL
is especially advantageous in the case that the researcher has theor-
etical reasons for imposing restrictions a prior: on relationships
among constructs.

Using LISREL, we can also obtain a x2 goodness of fit test
(see Joreskog, 1973, p. 90) for any overidentified model, with degrees
of freedom equal to the number of distinct elements in S[(p + ¢) -
(p + ¢ + 1)/2] minus the number of different parameters to be
estimated. The x? value for a model is determined by both the
sample size and the minimum value of our fitting function F, as
follows:

Xdr = 2N — 1) -Fo (9)
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This means that we are testing the null hypothesis (H,)) that the 2
matrix for a particular constrained model is correct as specified
against the alternative (/) that an unconstrained 2 matrix (which
is, of course, still positive definite and symmetric) is the correct
model. Obviously, the 2 matrix under H; will reproduce the §
matrix perfectly, and F; = 0. In practice, this hypothesis testing
procedure implies that larger values of x?2 reflect poorer fit for the
model under H,.

The x?2 test statistic is very often significant in samples of
large size, suggesting rejection of the proposed model. Thus, it is
used frequently in a descriptive fashion to decide between models on
the basis of relative fit to the data. In applying this x2, we will want to
assess varying x2/d.f. ratios across models in order to get a rough
indication of fit per degree of freedom. For our sample size, we judge
a ratio of around 5 or less as beginning to be reasonable, based on
our experience in inspecting the sizes of residuals which accompany
varying x 2 values. The residuals matrix is the difference between the
2 matrix of the estimated variances and covariances implied by the
model and the observed variance-covariance matrix (). In order to
give an indication of the kinds of residuals that accompany different
x2/d.f. ratios we will present such information at various points in
the discussion.

EMPIRICAL ESTIMATION OF RECURSIVE
MODELS FOR PANEL DATA

The Data

The empirical examples that we present to illustrate the
estimation techniques suggested in the foregoing section make use of
data from a longitudinal study of the effects of industrial develop-
ment in a rural region in Illinois. The study was designed such that
the data were collected on the same variables at three points in time
(1966, 1967, and 1971) in each of two regions—an experimental
region where a Jones & Laughlin Steel Corporation cold rolling mill
was being constructed, and a control region where there was no such
development taking place. For purposes of the present analyses the
two samples are combined, producing a total of 932 cases.>

>See Summers et al. (1969) for a further description of the research setting
and O’Meara (1966) for a detailed description of the sampling design.
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Beginning with a traditional “social structure and person-
ality” perspective, our original interest was in the reliability and
stability of measured attitudes and the possible effects of'selected
social status factors on these attitudes over time. The initial interest
in the stability of attitudes stemmed from a concern with whether
social psychological variables (such as alienation and expressed
social distance toward minority groups) are either highly volatile
and, therefore, amenable to change, or are relatively stable over
time. The following attitude scales were administered at all three
points in time: an alienation scale, composed of items from Srole
(1956) and items developed for this study by Summers; an anomia
subscale of the above scale, from Srole (1956); a powerlessness subscale
from the alienation scale, comprised of the items developed by
Summers; a religious importance scale, measuring the degree to which
the individual attaches importance to religion in his own life and
composed of items from the scale developed by Snell and Middleton
(1961); a Latin American social distance scale from Bogardus (1925),
composed of a summated 6-item scale, each item was coded with a
dichotomous acceptance-rejection designation; and a Negro social
distance scale, a modification of items in Bogardus (1925), also a
summed 6-item scale wherein each item was coded with a dicho-
tomous acceptance-rejection designation.

In addition, two measures of the respondent’s current
socioeconomic position are also included in the present analysis: the
respondent’s educational attainment is expressed as years of
schooling completed, and the status of the respondent’s occupation
is expressed in terms of the Duncan Socioeconomic Index (SET),
using the average SEI of the major census occupational grouping in
which his occupation falls. For those not currently in the labor force,
the SEI score for their last full-time job was used.

Single-Indicator Models

In Table 1 we present the estimates of reliability and stability
of each of the six attitude measures in a single-variable model using
the computational formulae of both Heise (1969) and Wiley and
Wiley (1970). It is remarkable that, given the time period involved
(from one to four years), the stability of these social psychological
variables appears to be rather high. It appears also that three diffe-
rent reliability coefficients estimated from the Wileys’ model are
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102 BLAIR WHEATON AND OTHERS

usually similar over time points. Heise’s assumption of constant
reliability may indeed be reasonable for these variables. As Wiley
and Wiley (1970) note, their time 2 reliability coefficient is equal to
Heise’s overall reliability —an assertion which is empirically
demonstrated by the estimates presented in Table 1.

However, there are some problems with these results. In
computing the parameter estimates in the two versions of the sin-
gle-variable panel model for “Latin American social distance” and
“Negro social distance” some unexpected results were obtained. For
these variables some of Heise’s stabilities exceed unity, and for
corresponding coefficients in the Wiley models negative variances
were obtained in the disturbances for the true score variables at
times 2 and 3. This makes the application of the Wiley formulas
problematic. Of course, given some sampling error, these results are
possible and would then lead to the interpretation that the variable
in question is, in fact, perfectly stable. However, such an interpre-
tation is not convincing without first testing alternative
explanations.

The above discussion suggests the possibility that, at least for
certain variables, single-variable models may be inappropriate in
the sense that some of the assumptions are not met and that they are,
therefore, misspecified in important ways. In particular, we are
concerned first with the possibility that important causal variables
are excluded from these single-variable models (that is, assumption
(3), noted earlier, is violated).® This circumstance is not, however,
limited to the cases in which the stability estimates exceed unity in
Heise’s model. Even those stability estimates that are within rea-
sonable limits may be biased upward, and this is a possibility we
wish to explore. For instance, the estimated stabilities for alienation
in Table 1 are 0.95 to 0.97 for 8; and 0.80 to 0.81 for 3, in the two
models, respectively, and we feel these results demand closer in-
spection as well.

Before we proceed, however, it is important to illustrate the
limitations imposed on alternative specifications by three-wave sin-
gle-indicator models. Using LISREL, rather than the computa-
tional formulae, we can find reliability and stability estimates for
the just-identified Wileys’ model. In the case of the “Latin American

6We shall retain the lag-1 assumption in its original form, and choose to
relax assumption (3) instead, where it is possible.
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social distance” variable, for instance, we estimate the following
parameters: a? = (0.654)%, a} = (0.639)2, a3 = (0.727)2%, B; =
1.031, and B, = 0.981. Both of the stability paths are close to one.
The question is whether we can assess with other models the plau-
sibility of these estimates. The first step might be to estimate a model
as in Figure 2, adding a variable with proven theoretical and em-
pirical relevance to the phenomenon of expressed social distance.
Our inclination, then, is to assess the effects of “years of education”
in this model, assuming that social distance towards minority
groups (or “out groups”) is itself a proxy for generalized prejudice.
The correlations underlying this model are contained in Table 2.
Without presenting the results of the whole model, we need only
mention that effects of education as measured in 1966 on later states
of social distance are essentially zero (where we apply the criterion
for statistical significance that a coefficient should exceed twice its
standard error).” Thus, changes in estimates of stability are minor.

In cases where the added variable’s effects are unsuccessful,
or only partially successful—and if we want to asses the potential
influence of other causal variables which could distort the stability
estimates via indirect paths between X; and X5 — we can specify the
model so that py,,, # 0.2 However, without imposing further res-
trictions, the model is under-identified in the single indicator case. It
should be pointed out that there is more than one way to render the
model just-identified, and we have no statistical criteria for deciding
between these models. The resulting estimates are affected by the
particular restrictions we choose, and the fit to the observed data is
perfect for each model. It may be useful to impose some contrasting
over-identifying restrictions on the model in order to test their
efficacy with the x2 test.

If we want to estimate py, u, (@ path which stands for other
possible sources of further dlStOI‘thIl to the stability estimates), we

"The LISREL program produces estimates of the asymptotic standard
errors, and in a large sample such as ours the above ratio has an approximate
normal distribution.

8This relaxes the third assumption we began with in applying LISREL.
This can be done by specifying u; as an extra exogenous construct correlated with
X; and causing X3 with the unstandardized path fixed to one. It should be noted
that this parameter does not constitute a special case for the ML method of
estimation. ML produces a consistent and asymptotically efficient estimate of the
parameter.
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must impose restrictions on other parameters in the model. Re-
searchers may have a prior: reasons for choosing certain kinds of
restrictions. In this case, we arbitrarily fix y, = y3 = O for illustra-
tive purposes, and this allows us to estimate the measured-to-unob-
served regressions, given that they are constrained equal, and py,,,, -
For ease in interpretation, we can discuss the standardized solution
for this model for selected important parameters given below:

B, = 099 as = 0.66
Bz =1.13 Pryu, = —0.52
&1 = 0.74 '?1 — —0.31
&, = 0.66

The estimate of py ,, does not, in fact, represent a significant path
despite its size, due to the relatively large standard error in com-
parison to the corresponding unstandardized parameter (£ value =
—1). However, the x2 for this model is 4.58 with 1 degree of
freedom, denoting a relatively good fit. Note that the stabilities in
this case are again close to one.

For a final model, we removed the education variable from
the model —returning to the single-variable case —and assumed
Px,u; = 0.1t should be noted that we have no way in single-
indicator models of attempting to estimate the possible influence
of correlated measurement error. We suggest, therefore that
our best estimate of the stability is, in fact, one. We add the restric-
tion in our final model for social distance that V(ug) = V(u3) = 0. In
effect, this assumes that the correlations among the constructs are
each one. Forcing the model to lag-1 form (as in Figure 2) produces
estimates of 8; = 1 and 8, = 1. The fit of this model is, of course,
better than the last, with a x? value of 0.59 with 2 degrees of freedom
(probability level for the model = 0.74). Given the alternatives, our
conclusion is that the best estimate is that “Latin American social
distance” is perfectly stable over this five-year period.

In sum, we feel that estimates of reliabilities and stabilities in
single-indicator models are difficult to interpret in view of the
limited alternatives available to these models. Our ad hoc procedures
for exploring the reasonableness of Wileys’ specification are, at best,
risky. The inherent lack of flexibility is the most important limita-
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tion in applying these models, and we are led to suggest that the
increased flexibility in multiple indicator models makes them more
useful for estimating both reliability and stability parameters.

Multivariate Panel Models with Multiple Indicators

In this section we will estimate several multivariate models
for panel data in which we incorporate, as above, parameters
representing the magnitude of measurement error and the stability
of the variables over time. Now, however, we wish to include a
variety of forms and extensions of the general model presented in
Figure 4 and discussed previously. We will focus on one variable
with multiple indicators (in this case, alienation) in successive
specifications for the purpose of facilitating comparisons across
models. The models which we present begin to specify more com-
pletely the relationships between indicators of alienation and other
variables. In placing alienation in a substantive context, we wish to
assume a “‘social structure and personality” perspective. Our inter-
est is in the possible consequences that position in the social struc-
ture can have for the individual’s psychological functioning. This is,
of course, a classic sociological issue, one which is pertinent in a
search for causal variables which can be added to single-variable
models involving attitudes.

We have included two aspects of a person’s position in the
social structure —educational achievement and occupational stat-
us—as a way of placing alienation in a more completely specified,
albeit rudimentary, theoretical context. Although there may be
important mediating processes which more thoroughly explain how
such aspects of social structure affect these variables, our main
interest here is in estimating their total effects.

The correlation matrix for all observed variables that appear
in our earlier analyses of single-indicator models, and all subsequent
analyses, is presented in Table 2. It is apparent from a perusal of this
matrix that there are consistent patterns of relatively strong nega-
tive correlations between the selected attitude variables, on the one
hand, and the two measures of social position, on the other. These
results are consistent with the findings of a number of other studies
(Thompson and Horton, 1960; Middleton, 1963; Photiadis and
Schweiker 1971; Simpson, 1970; and Anderson, 1973).
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We can begin by estimating a baseline model for alienation,®
which can be used as a starting point for comparison. This model is
represented as a sub-model of Figure 4, including all paths except
those involving Z; , 211, and e, . Also, we assume that py ,, = y3 = 0.
The underlying model involving X;, X5, X3, and their indicators is
a familiar one and in various forms has been discussed elsewhere
(Costner, 1969; Blalock, 1970). We need only remind the reader that
it is overidentified. Each alienation construct at each point in time
(X; = alienation (1966); X, = alienation (1967); X3 = alienation
(1971)) has two indicators, an anomia sub-scale (x 41, X452, X43) and a
powerlessness sub-scale (xpy, xps, ¥p3).

We should lay out our general strategy in estimating this and
subsequent models. Of course, the first issue is one of identification.
By identification we specifically mean that no two sets of distinct
parameter values should be able to produce the same 2 matrix.!?
Before attempting to estimate any model, one should check for
identification by ensuring analytically that a solution exists for
every distinct parameter in terms of the variance-covariance ele-
ments of the population = matrix. We will not describe this process
for every model (see Joreskog and Sérbom, 1976a, for a discussion of
identification in selected panel models). However, the specification
consequences which follow from consideration of identification
issues will be made explicit where necessary.!!

In all the following models we analyze, we will incorporate
the assumption that the unstandardized regressions of observed
measures on constructs (the so-called “factor loadings” —see Werts,
Linn, and Jo6reskog, 1974, p. 273) are equal at each point in time for

?These models implicitly take a stand on the conceptualization of alienation
that must be mentioned. There has been controversy as to the generality versus
specificity of the alienation concept. Our position is that anomia and powerlessness
can be interpreted as indicators of the more general and abstract construct of
alienation, even though anomia and powerlessness can be distinguished as separate
dimensions by some factor analytic criteria.

1Equivalently, in the case of exact multinormality of the observed variables,
the model is not identified if for a given sample the same likelihood value can result
from different sets of values for our parameters.

""We discourage using the LISREL program itself to decide issues of iden-
tification. It is true that if the program suceeds in computing standard errors of the
estimates this is a good indication that the model is identified . However, this may
be a costly trial-and-error procedure. Also, the program does not tell the user what
the implications of different restrictions are in terms of identifying the model.



108 BLAIR WHEATON AND OTHERS

each indicator of alienation. In Figure 4 this means constraining A,
= Ag2 = Ag3and Ap; = Apy = Aps. This regression weight A states
the relationship between the unit of measurement of the observed
variable and that of the construct (Werts,Linn, and Jéreskog, 1974,
p- 273). In the case of the anomia measure, for instance, the equa-
tions are:

Xg1 = par + Ay X1+ e
Xg2 = Paz + A2 X + ¢4
x43 = Pas + A3 X3 + ¢6

The As are unstandardized regression coefficients (and when stan-
dardized they correspond to validity coefficients). The equality as-
sumption stated above has a specific empirical interpretation: for a
given alienation true score X, a unit change in alienation will
produce the same amount of change in x4y, x40, and x43. This
amounts to specifying that each of the measures of alienation are the
“same” measures across time. We include this set of restrictions for
reasons of parsimony, and in order to emphasize that we feel suc-
cessive applications of the same measure are tapping the same con-
struct. These restrictions are not necessary for identification and are
testable by the x? test in the case of multiple indicators.

The earlier definition of reliability given by equation (1) for
the single-indicator model should be modified for the more general
multiple indicator case. Here we define the reliability as:

A20%

2 __NO0x
A26% + 0%

(10)

a

This definition is the same as the previous expression (where A is
implicitly assumed to be 1) in the sense that the ratio is the portion
of the observed variance “explained” by the construct and it is, in
fact, the square of the correlation between the observed measure and
its construct. Thus, the square root of this expression is the validity
(defined operationally as the correlation between an observed mea-
sure and its construct). The definition we use points out the fact that
A and 0% cannot be identified separately in the classical test theory
model underlying our earlier definition for the single-indicator case.
Note that, although we have restricted these loadings to be equal,
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the true score variances, the measurement errors—and thus the
reliabilities —can vary over time.

Throughout our analyses we will fix the scale of the aliena-
tion construct by setting the variance of X; to one. The scale for X,
and Xj is then determined by setting construct loadings equal at
each point in time. The variance of the endogenous constructs X,
and X3 may, thereby, vary in relation to the variance of X;. The
endogenous variances are, in fact, determined by the model, since

V(Xy) = BiV(Xy) + 03,
V(X3) = B3V(X,) + o3,

in the Figure 4 sub-model involving alienation measures only. Thus
we should not assume these variances are known (for example, equal
to 1), but rather let the model generate estimates of these variances.

To summarize, the consequences of these features of our
application of the explicated CFA model are important in compar-
ing multiple-indicator panel models with the single-indicator ver-
sions. The Heise model necessitates the assumption of equal
reliability at three points in time, and this assumption implies that
the ratio of true score to observed variance remains invariant; either
due to no change in the true score variance and error variance, or to
a change in both which happens not to effect the ratio (Wiley and
Wiley, 1970, pp. 112—-113). This rather restrictive assumption was
relaxed in the Wileys’ case to allow for changes in reliability, but it
was necessary in their case to assume constant error variance even
though the true score variance could vary. With models as in Figure
4, however, we can allow both error variance and true score variance
to vary for the variables with multiple indicators; and, thus,
reliability will vary as a function of changes in both. This is
especially useful in estimating reliabilities of the same measure in
different populations and across different models in the same
population.

The proper data matrix to use as input in these analyses is the
sample variance-covariance matrix S. It will be true that for many
panel models this will be equivalent to using the correlation matrix
R as input. In this case the model is said to be scale-free; that is, “a
change in the unit of measurement in one or more of the observed
variables can be appropriately absorbed by a corresponding change
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in the parameters” (Werts, Linn, and J6reskog, 1971, p. 404). The
models we estimate cannot be scale-free because of the equality
restrictions on the loadings for similar measures. This means that if
we had used the R matrix instead of the S matrix, the results of our
models would have been different in terms of fit and in terms of the
specific parameter estimates— possibly leading to quite different
interpretations.

This does not mean that we are uninterested in the standar-
dized estimates of the parameters of our panel models. In order to
produce reliability and stability estimates we re-scale the unstan-
dardized estimates produced by an analysis of the § matrix. The
standardized solution we report sets the construct variances at 1, so
that the regression coefficients for relations between constructs are
path coefficients. For the regressions of observed measures on con-
structs, we report the validities, that is, the path coefficients where
the measured variances are also set to 1. Note that this standardized
solution does not reproduce the same X matrix as the unstandar-
dized version. It is scaled so as to reproduce the input correlation
matrix R with the same overall fit, but it is nof the same standardized
solution that would have been produced from a direct analysis of the
R matrix. Our standardized solution is the accurate description of
the relationships in the model when the model is not scale-free.

The estimates for the three-wave two-indicator model for
alienation are presented in the first two columns of Table 3, under
the heading of sub-model IA. Table 3 includes estimates from a
succession of models which are all varieties of Figure 4, and the
parameters labeled in Figure 4 are listed in Table 3. Models are
numbered according to the following scheme: roman numerals are
changed due to respecification of Figure 4 by either adding or
changing a variable, and letters A and B stand for whether the
assumption is made that py ,, = v3 = 0 or it is free in the model.

Recalling our definition of reliability, we can illustrate the
relationship between the unstandardized loadings A and the stan-
dardized loadings A*. Given, for example, 5\,,2 = 2.66, I}(Xz) =
0.823, and the estimated observed variance of xp, = 9.3636, we can
calculate the reliability as follows, using equation (10):

A6y A2 V(Xy

A26% + 63 P(ip)

a2 =
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_ (2:66)2 - 0.823

= 0.622
9.3636

We note that @ = 1/0.622 = 0.787, which is the reported 3\}';2, the
validity coefficient.

The reported validities range from )\*1 = 0.859 to )\* =
0.787, and in general the validities for the anomia measure are
slightly higher. The two stabilities estimated by this model are ,81 =
0.897 and ,82 = 0.768. These are, of course, the total éstimated
correlations 7y, x, and Tx,x, as well, with 7y y estimated as
0.689. Though these estimates are the standard we will use in com-
parisons with subsequent models, we should point out first the
difference between the single-indicator stabilities for alienation,
anomia, and powerlessness and these stabilities in the multiple-in-
dicator case. The estimates of 8, and f3, are, in fact, slightly lower
here — although not markedly so (see Table 1). This model produces
a x2 = 184.08 with 9 d.f., which results in a descriptive fit ratio of
20.45. According to most criteria, this is an unsatisfactory fit.

. The upper diagonal of Table 4 gives the residuals for model
IA(Z — §) expressed as a signed proportion of the corresponding
sample variances and covariances S. We have avoided reporting the
residuals as correlations since our X matrix is attempting to re-
produce the observed variances as well. Also, however, the raw
residuals given by the differences between corresponding elements
in 2 and § have little intuitive value for purposes of interpretation.
Therefore, we have divided each residual by the absolute value of
the corresponding element in S in order to present residuals as a
proportion of input variance or covariance unexplained by the
model. It should be made clear at this point that we do not advocate
using the residuals as evidence for modifications in specification (see
Costner and Schoenberg (1973) and Sérbom (1975) for discussions
of the problems inherent in such a procedure), and we do not use the
residuals for these purposes in this chapter. Residuals are presented
in order to asses the overall magnitude of unexplained covariances
and variances in the model. We should emphasize that our fitting
function, Equation 8, is not aiming at the simple minimization of
the (Z;; — §;;)/|S;;| elements, but at the minimization of F,. Of
course, the two are related, and we compare residuals to varying
x?2/d.f. ratios (where x 2 for a given N is determined by F,) in order to
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assess the level of correspondence between them, and in order to
show what types of residuals accompany models whose fit we deem
as unsatisfactory or satisfactory.

The residuals for model IA are often near ten percent and
range up to fifteen percent of the original § covariance elements.
Although these levels are not extremely high, the magnitude of these
residuals do suggest that important relationships among these var-
iables are presently left unspecified. With a large sample size such as
ours we can explore some of these possibilities without inordinately
capitalizing on chance.

We choose to specify “real” alternatives to this model before
including “hypothetical” alternatives. Thus, we include first the
causal influence of variables which we have measured and which
have substantive relevance to the phenomenon of alienation before
including paths involving unmeasured alternatives, y; # 0 for ex-
ample. We estimate now a model for Figure 4 in which Z; is educa-
tional attainment (unobserved) and zy; is the measured score for
this variable. According to this model, the education construct is as-
sumed to be perfectly correlated over this time period — thus, the
1967 and 1971 measures are not included in the model. In order to
render the model identified, some assumptions must be made about
the relationship between Z; and z;;. For this purpose we assume
that the reliability of the education measure is known a priors, based
on the Siegel and Hodge (1968) reported reliability of educational
attainment of 0.9332.!2 In the present data our assumption of a
perfect cross-temporal education correlation given this reliability is
not inappropriate: the validity is 1/0.9332 = 0.966, and the cross-
temporal correlations between measures are 0.956,0.915, and 0.910;
which would result in stability estimates near unity in the Heise
model. In order to estimate o, in Figure 4, we fix V(Z;) = 1 and
constrain A, so that it corresponds to a validity of 0.966 when
transformed to A¥. Here we do this by solving for A in the formula:

__ Aoy

Oo

12Sjegel and Hodge (1968) report a test-retest correlation of (0.966)2 =
0.9332 for educational attainment based on matches from the 1960 census and the
March, 1962 Current Population Survey.
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derivable from equation (10), and where oy is the population stan-
dard deviation of the observed measure. Since we know that for an
exogenous indicator in this situation the ML-estimate for o, is equal
to the corresponding sample standard deviation:

0.966 = A(1)/3.10
A = (0.966) - (3.10) = 2.9

In this and the following models we should note that, as
usual, comparisons of absolute sizes of parameters should be
between unstandardized coefficients (see Schoenberg, 1972). How-
ever, the standardized estimates are more interpretable in many
situations and are the source of our wvalidity and stability
coefficients. We shall discuss them as well.

In model ITA, we assess the causal influence of education on
alienation in 1967 and 1971 and thereby hope to account for a
portion of the unanalyzed stability paths in model IA via indirect
paths betweeen X; and X,, and X; and X5. The result is a corre-
sponding drop in the stabilities of about 0.04 (see Table 3). This we
assess to be important enough to justify the inclusion of education in
the model —since the education effects denoted by y; and y, are
significant in the negative direction, and education and alienation
in 1966 are rather strongly correlated, ry ;, = —0.46. In other
words, the model as it stands lends some support to a social structure
and personality hypothesis about attitude influence, although it
does not address the possibility of reciprocal influence—and there are
numerous possibilities for spuriousness in y; and y, . The descriptive
fit ratio here is 200.08/12 = 16.67, which reflects an overall im-
provement in fit compared to model IA.

The residuals for this model are presented in the lower
diagonal of Table 4 (without parentheses). For the relationships
among alienation measures, this model is no more effective than IA:
some residuals are slightly lower and others are slightly higher for
model ITA. Also, residuals for the relationship between education
and alienation measures are, on the average, not much better. There
are clearly not large differences in residuals corresponding to the
change in the descriptive fit ratio. In short, we feel the fit is still, on
the whole, unsatisfactory — despite the fact that certain residuals are
fairly low. We should point out that both of these first two models
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reproduce the variances in § fairly well, with approximately 2 per-
cent the highest proportion of unexplained variance.

Model IIB adds the possibility that X; is correlated with the
disturbance term for X;. With multiple indicators, we can identify
this path without adding further restrictions to the model. There are
at least two possible interpretations of a covariance between X; and
u3: another exogenous variable or set of variables presently excluded
from the model could covary with X; and have a causal effect on X3,
or X; could affect X3 directly. We do not have the space to explore
these alternatives here, so we will leave Y3 specified as in Figure 4.
We see that 5 for model IIB in Table 3 denotes a significant
correlation between X; and u3 (= 0.27); and the influence on our
stabilities is important — B is only reduced to 0.764 from 0.772, but
B2 drops from 0.756 to 0.513, amounting to a —0.243 change in this
stability estimate. The effect of education on alienation at time 3
appears to be larger than its effect on alienation at time 2 in this
model, but there is more than one possible interpretation of this
result: either the one year lag underestimates the true causal lag for
this relationship or there are factors excluded from the model prior
to time 1 which covary with X; and Z; and affect X3 directly
(resulting in an inflated vs).

The resulting stability coefficients are now 0.836 and 0.493
respectively. The question is: how do we assess the improvement in
fit of this model? In this case we compare the change in x? from
model IIA to IIB, which itself is a x2? variable with degrees of
freedom equal to the difference in degrees of freedom of the two
models, and not the descriptive fit ratio across the two models. This
is true in comparing all “nested” models; that is, models where no
new variables are specified, and we impose or relax constraints while
holding specification in the rest of the model constant. Comparing
model IIB to ITA, we see that the x 2 difference is:

x? = x% — x} = 200.08 — 19593 = 4.05

meaning that the decrease in x 2 due to respecification is significant

beyond the 0.05 level (Xfi.t., p=0.05=3.84), and that model IIB stands
for an improvement in fit.!?

BBOf course, this significant x2 value is merely a re-statement of the sig-
nificant Z-value for the correlation between X; and u3. This is true in our analyses
when nested models differ only in one parameter that is fixed to zero in the first
model.



118 BLAIR WHEATON AND OTHERS

Before proceeding to our next model, we must discuss other
possible specifications of model IIB. There are other kinds of cor-
related error between disturbance terms and exogenous variables
(px,u,)and between disturbance terms(p,,,,)which could affect
stability estimates. However, py ,, # 0 cannot be identified. The
same possibility for indirect relationships through other variables
between X, and X3 would be reflected by p,,,, # 0, and this path
can be identified. We cannot identify both p,,, ., and px_ ,, since the
disturbance terms are free parameters in this model. We did es-
timate a variant of model IIB in which p,,, ,, was not constrained to
zero and py ,, = Y3 was constrained to zero. The results of this
model are not reported in Table 3, but they are important to the
ensuing discussion. The estimated correlation £, yug 18 —0.193,
which fails to be significant according to our criterion. Our expec-
tation is that this “test” is not seriously affected by constraining y; to
zero and forcing this covariance through other paths in the model.
The fit of the model reflected by the x %14; is 195.93, exactly the same
as model IIB. This reflects the fact that the construct part of the
model is just-identified in both cases. Given that we can specify
either py, ,# 0 or p,,,, # 0,and it turns out in the above case that
Puyuy; = 0, we choose to specify subsequent models with py ..
unconstrained as the alternative, and we will not discuss the pos-

sibilities connoted by Pu, «, further.
Model IIIA replaces education and its measure with SEJ

(unobserved) and its measure in 1966. For this model Z; in Figure 4
is now occupational status, as measured by Duncan’s SEI Index
(211)- Again, our specification assumes that Z; is stable over the
five-year period in the sample. Using the Siegel and Hodge (1968)
reliability for occupational reporting of 0.8726, we estimate the
autocorrelations of SEJ over time to be near unity and, thus, we use
the specification as in Figure 4. Again, we must constrain the con-
struct loading for z;;, but in this case we want to set A, such that A }

= 0.9341 = 1/0.8726. By fixing V(Z,) = 1, we calculate A, to be
19.82. Loadings for anomia and powerlessness are again set equal.

The model estimates the stabilities for alienation to be higher
than for Model IIA, although they are very close. Our hope in
specifying occupational status as Z; was that this variable would
improve on previous estimates of stability by accounting, in part, for
v3in Model IIB. In fact, SET is slightly less correlated with alienation
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in 1966 (—0.347 compared to —0.46 for education), and its lagged
effects are also slightly smaller. However, these effects are still sig-
nificant, although we do not yet know how confounded they are
with the education effects. The fit for this model as evaluated by our
fit ratio is 190.12/12 = 15.85, the best overall fit to this point.

We add the specification that y; # 0 for model IIIB, and the
results reflect the changes in estimates between models ITA and IIB.
Most importantly, there is a significant reduction in the estimate of
the stability of alienation between 1967 and 1971 (% drops from
0.736 to 0.497). v3 is still significant in this model and is higher than
for model IIB, reflecting the fact that SEI accounts for indirect
effects less effectively. The x? change from model IIIA to IIIB of
—4.53 denotes a significant improvement in fit for a model for the
relationship between occupational status and alienation.

Finally in Table 3, we should note the similarity in validity
estimates across all models estimated to this point. Changes in
validities are slight, amounting to =0.01. Model IA does as well as
any in estimating these parameters. This invariance should be ex-
pected, however, since we have not changed either the measurement
specification or the type of concomitant theoretical construct in the
model. Estimates of these validities suggest that the reliabilities of
similar measures across time may change slightly; and, of course,
longer time periods could produce larger differences. Since diffe-
rences in estimates of reliability for similar measures across time
range up to 0.06 here, the ability to allow validity to vary is of some
importance.

In Table 4 we compare the residuals for models IIA and IIIA
in the lower diagonal. Proportional residuals for model IIIA are in
parentheses, while entries for model IIA are not. In line with the
similarity of the fit ratios for these two models, the residuals are also
similar; the major difference being the residuals between z,; and the
alienation measures at time 2 and time 3. Column one shows the
superiority of model IIIA in reproducing these covariances, which
may account for the slightly better fit ratio for this model.

The logical next step is to estimate a model in which the
effects of both education and occupational status are included
simultaneously in order to assess the confounding in previous
models. The model in Figure 5 can be used for this purpose. This
model allows for some instability in SEI (designated as S; through
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S5 in the model). Thus, we include measures in 1966 (s1,), 1967 (s5,),
and in 1971 (s3;). We must allow for the possibility here that
education (E,) will account for a portion of the previous stability
estimates for SEI This model will be useful for social researchers
who might want to assume some instability in more than one var-
iable in their panel models. Figure 5 represents just one type of
cross-lagged model that can be used with panel data, and it is based
on the Heise (1970) model extended to three time points.

We saw in Figure 4 that education and occupational status
exhibited very similar effects on alienation. Figure 5 is mainly con-
cerned with the size of the correlation between E and S variables,
and the distribution of their individual effects. Without reporting
the complete solution of this model, we do wish to summarize the
estimates we derive. First, the correlation between education and
occupational status is substantial, 75 ¢ = 0.642; and the con-
sequences for the rest of the model are far-reaching. Lagged effects
for education and SEI separately on alienation are all now nonsig-
nificant, and in this sense their individual effects are similar. The
estimates of 8; and S8, in this model are thus close to those for model
IA. The model is unsatisfactory in that it does not describe par-
simoniously the relationships between these variables. Evidence
from this model and models II and III suggests that education and
SEI do not affect alienation differently in this sample. Moreover, the
argument could be advanced that the SET and education measures
are tapping the common construct of socioeconomic status, and
that this construct explains the covariance between these measures.

This leads us to estimate a final set of models which are all
variants of the model in Figure 6. This model argues that occupa-
tional status in 1966, s, and education in 1966, s;, measure in
common a construct $; we call socioeconomic status (SES). For cer-
tain substantive purposes this specification may be questionable;
however, introducing SES as a summary concept here may, in fact,
increase the interpretive value of the model since now we do not
have to assume reliabilities for education and SEIL Also, this mea-
surement specification is a possibility clearly suggested by previous
models. The SES part of the model can be identified by fixing V(S;)
= 1, and allowing both Ag and Az to be free. Also, we need not
restrict 0,5 and 0.
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€1 €2

Figure 6. Final I'xplicated Model for the Relationship between SES and Alienation, with a

Two-Indicator Specification for an SES Construct Assumed Perfectly Stable,
1966-1971.

Panel Models with Multiple Indicators
and Correlated Error between Measures

The other major change in specification in Figure 6 concerns
the possibility of correlated measurement errors. Thus, we now wish
to relax assumption (2) for the single-indicator models. These cor-
related errors stand for sources of nonrandom measurement error in
the measures, such as a yeasaying or naysaying bias, “memory
effects,” etc. (Costner, 1969; Alwin, 1974). The first source is a real
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possibility in statements containing judgments, and the second
becomes important when the time lag is not sufficient to create
independence of successive measures. If this second type of problem
is, in fact, the source of correlated error, we have no a prior: reason for
expecting correlated errors to be equal across successive lags in this
model. Our error specification allows us to assess the influence of
both sources of nonrandom error, although we do not separate the
total covariance into different “methods bias” components. To
represent these possibilities, we include all error correlations for
similar measures across time. Thus, we are not detecting correlated
errors by the more systematic stepwise procedure suggested by Sor-
bom (1975), which is intended to produce the best-fitting error
model; rather, we impose the a priori restriction that correlated error
should occur between the same measures only, and then we estimate
the most flexible error model possible given this restriction. Chang-
ing the measurement specification with these error correlations can
affect both validity and stability estimates and, indirectly, our es-
timates of other parameters.

We wish to emphasize that the correlated errors in Figure 6
can be identified without imposing any equality restrictions, which
allows the differential time lag to have the effect it should. The
identification issues which arise in this model are worthy of discus-
sion since equality restrictions on correlated errors have often been
assumed in identifying these errors over time, for example, 7; = ,
and 73 = m4. Also, separate parameters for 75 and 7g are sometimes
assumed not to be identifiable in two-indicator models. First, con-
sider a version of Figure 6 in which §; and its accompanying mea-
sures are excluded from the model. In making a preliminary in-
spection of the identifiability of the model, we introduce the pos-
sibility thatanew Ay; = A4; - a, where a is any nonzero constant not
equal to one. Our definition of identification demands that no two
sets of parameters can reproduce the same population variance-
covariance matrix - However, we can compensate for the change in
A41 by a change in Ap; equal to 1/a, thereby reproducing the same
covariance between x4; and xp;, and the same holds as a result of
equivalent changes in Ay; at later points in time. In order to re-
produce the same cross-temporal covariance for the same indicators,
we must compensate in the error covariances m;, which is possible
since they are all free parameters. Finally, in order to reproduce the
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same 2 variances, we can compensate by the proper changes in the
error variances since they are also all free. Since we can produce two
sets of parameters for the model that both reproduce 2, the model is
not identified—even where we have equality restrictions for the
construct loadings of the same indicators across time.

Now we can consider the consequences of adding §; to the
model. For example, in order to leave the covariance between x,;
and sg in 2 intact, and assuming for the moment that we leave the
variances and covariances for constructs the same, we would have to
divide Ag by a. However, in order to avoid changing the covariance
between xp; and sg we would have to multiply Ag by a. Therefore, we
have a contradiction, implying that we cannot obtain the same X
with these two sets of parameters. We could, without changing Ag,
change the parameters for relationships between constructs in order
to reproduce X, but this would change the reproduced covariances
for alienation indicators. For instance, we could attempt to alleviate
the above contradiction by compensating in Cov (X7, 1), but this
would reproduce either the covariance between sg and x4, or sg and
xp1, but not both. For example, if we have divided Agand Ap; by a as
above, then in order to reproduce Cov(sg, xp;) we would have to
multiply Cov(Xj, S;) by a%. However, this would again change the
reproduced covariance between sg and x4; . Now we know that none
of the parameters at the first time point can be altered. Changes in
the As at later points in time for the alienation measures result in
similar contradictions in attempting to reproduce covariances with
sg. Using this approach, it seems unlikely that the same matrix
could be reproduced by two different sets of parameters. A rigorous
analysis of identifiability will prove this to be correct in this case.
Therefore, the model becomes identifiable as we specify it due to the
inclusion of the concomitant variable S; (of which only one indica-
tor is necessary for identification pruposes). There are two indirect
paths that the observed cross-temporal covariances between aliena-
tion indicators can take: through the constructs, and through the
error correlations. S; helps to determine the As for these indicators,
and we can thereby separate the indirect path through the con-
structs from the indirect path through the error terms—two com-
ponents which are otherwise inseparable.

Our first specification of Figure 6, however, assumes there is
no correlated error, as in previous models (thatis, 7; = 7y = 73 =
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7y = 5 = Mg = 0). We include y3 # O because we know that it is
significant in all versions of Figure 4. Results for this model are
under model VA in Table 5. First we see that our validity for SE/ in
the SES construct is somewhat lower than what was assumed for the
single-indicator construct in Figure 4. As a consequence of this S}
specification, relationships between SES and alienation are affected:
the correlation at time 1 is now —0.525, and the lagged effects of
SES on alienation are also correspondingly larger than in Figure 4
versions, Y§ = —0.137 and Y5 = —0.263. As aresult, the estimate
of py 4, is a bit smaller, but still significant. The effect on the
stabilities is also predictable.

The standardized estimates are slightly lower still, than for
previous models, with 8} = 0.812 and B§ = 0.467. This is a rea-
sonable model for assessing the influence of position in the social
structure on a generalized attitude such as alienation, and we are
beginning to produce stability estimates which are closer to expec-
tation. We should expect, however, that for attitudes which are not
object-specific there should be some stability over a five year period.
The descriptive fit ratio is 200.64/16 = 12.54, and we judge this
specification to be somewhat superior to models IIB and IIIB in
which education and SEI are considered separately. Despite the
general interpretative use of this model, it is still unsatisfactory in
terms of fit; and there are other specifications we must now consider.
By changing the theoretical specification in various ways, we have
reduced the fit ratio from 20.54 to 12.54. Considering the fact that
changes at this level of specification have not been incorporated in
the reliability/stability literature, this is an important improvement
in fit. Of course, what we have illustrated with one concomitant
variable states our point only to a degree, and other variables could
by added to this model which would specify the context within
which alienation changes over time more completely.

We turn finally to changes in measurement specification
with model VB. In this model, 7; through 74 are free (as outlined
above), but in all other respects the model is the same as model
VA.* The results of this model are interesting in terms of estimating
reliability and stability. First we inspect the results for 7, through

“In Joreskog and Sérbom (1976a) it is shown how correlated errors are
specified in LISREL.



126 BLAIR WHEATON AND OTHERS

TABLE 5
Parameter Estimates for Various Specifications of Figure 6.12
Model VA Model VB Model VC
8] S U S U S

As 13.670 0.645 13.500 0.636 13.480 0.635
Ag 2.600 0.838 2.630 0.848 2.640 0.850
A1 3.090*  0.849 2.880*  0.792 2.860*  0.788
Apy 2.690°  0.823 2.900°  0.886 2920  0.889
As2 3.090*  0.823 2.880*  0.764 2.860% 0.759
Aps 2.690>  0.803 2.900° 0.863 2.920° 0.871
Aus 3.090*  0.837 2.880*  0.780 2.860*  0.775
Ap3 2.690P 0.802 2.900P 0.859 2.920P 0.866
B 0.742 0.812 0.648 0.711 0.651 0.712
B2 0.486 0.467 0.359 0.346 0.383 0.370
Y1 —0.125 —0.137 —0.170 —0.187 —0.167 —0.183
Y2 —0.250 —0.263 —0.310 —0.327 —-0.295 —0.312
Y3 0.157 0.246 0.210 0.302 0.198 0.287
Cov(Xy,8;) —0525 —0.525 —0.527 —0.527 —0.526 —0.526
V(X,) 1.000f 1.000 1.000f 1.000 1.000f 1.000
V(S;) 1.000f 1.000 1.000f 1.000 1.000f 1.000
Oy 0.415 0.454 0.516 0.566 0.520 0.569
Ou3 0.638 0.671 0.695 0.733 0.689 0.727
O 16.220 0.765 16.370 0.771 16.390 0.772
Oep 1.690 0.546 0.164 0.529 1.630 0.526
O3 1.920 0.528 2.220 0.611 2.240 0.616
Oes 1.860 0.569 1.520 0.464 1.500 0.458
Oes 1.950 0.569 2.220 0.645 2.240 0.651
O 1.830 0.597 1.550 0.505 1.500 0.491
O 1.920 0.548 2.190 0.626 2.220 0.633
Oeg 1.910 0.597 1.640 0.512 1.600 0.501
Ty 0.000f 0.000 2.300 0.467 2.380 0.474
Ty 0.000f 0.000 1.740 0.357 1.830 0.368
3 0.000f 0.000 0.077*  0.033 0.000f 0.000
Ty 0.000f 0.000 0.202*  0.080 0.000f 0.000
5 0.000f 0.000 1.450 0.297 1.500 0.302
g 0.000f 0.000 —0.012* —0.005 0.000f 0.000
V(X2) 0.836 1.000 0.831 1.000 0.836 1.000
V(X3) 0.905 1.000 0.898 1.000 0.900 1.000
x? 200.640 16.900 18.180

d.f. '6.000 10.000 13.000

Probability
level 0.000 0.0767 0.1507
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fixed parameters

parameters constrained equal

parameters constrained equal

coefficients less than twice their standard error (designated nonsignificant)
unstandardized solution

standardized solution

nc o roe ™,

([ [ T Tl

!Variables are the same as in previous models except S; = socioeconomic status
(1966), s, = SEI (1966), 5, = education (1966).
, 2The “"” notation is not included for estimated parameters, but it is to be understood
that all parameters are sample estimates.

7. The correlated errors for the anomia measure are significant and
surprisingly strong: 7§ = 0.467, #5 = 0.357 and ## = 0.297. We can
see that relaxing equality restrictions in this case is an important
feature of the model. On the other hand, the evidence suggests that
there is no correlated error for the powerlessness measure, with 7,
74, and g near zero.

The consequences for our validity estimates are as one would
expect: for the first time, estimates of validity for anomia are now
lower than for powerlessness. Estimates of validity for anomia drop
about 0.06, while estimates for powerlessness increase about 0.06.
The distortion due to assuming there is no correlated measurement
error in previous models is considerable. In fact, powerlessness is the
more reliable measure of alienation, and its reliability is higher
when we specify correlated errors over time for the anomia measure.
This specification also has important effects on the stability par-
ameters. Note that (8, is affected more in this model than any
estimated previously. The change in the unstandardized estimate is
—0.094, resulting in a stability 8 = 0.711. We now see that alien-
ation in 1966 accounts for only about fifty percent of the variance in
alienation in 1967. B is also drastically affected in this model,
dropping —0.127 from 0.486 to 0.359 in the unstandardized case
and resulting in a stability of just 0.346. This estimate is still sig-
nificant, but rather low.

The correlated error across anomia measures also indirectly
affects estimates of the substantive relationships in the model. The
effects of SES on alienation are somewhat larger than in model VA.
This suggests that the correlated error in the model was previously
manifested as both a component of the stabilities (causing inflated
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estimates) and a counteractive component of indirect effects on X,
and X3 through S, causing inhibition of the §; effects. Also, ¥ is
larger again, now an estimated correlation of 0.302. The fact that
Y3 remains significant in these models can be interpreted in at least
two ways, as noted earlier.

The single most succinct reflection of the change in this
model is our measure of overall fit. x? is now 16.90 with 10d.f.,
producing a fit ratio of 1.69. For the first time we see that the
probability level for the model differs from zero. This we judge to be
asatisfactory model in terms of fit, except that we should re-estimate
the model with 73 = 74, = 7g = O, since this is indicated in model
VB. Given the number of different specification possibilities we have
now considered, we can start to believe the reliability/stability es-
timates this model produces. Also, we have shown that changes in
both theoretical and measurement specification are necessary in
producing more reasonable reliability and stability estimates.

Thus we go on to specify model VC with 73 = 74 = 75 = 0,
producing our final model for the alienation construct. Estimates for
model VC are quite similar to VB, except that here there is even
more of a difference between the anomia and powerlessness validi-
ties, there is a slight increase in 8; and in 7, %5, and 75, and there
are slight decreases in SES effects and ¥5.Alleffects are significant in
this model. The correlated errors are substantial, with # = 0.474,
#4 = 0.368 and 7# = 0.302. This is a potentially disturbing result for
many researchers interested in panel models, but it does reflect a real
possibility which one can address only with multivariate multiple
indicator models. Our final estimates of the validities for anomia are
below 0.8, and for powerlessness they range from 0.87 to 0.89. These
validities reflect reliability estimates A}\;"z ranging from 0.58 for an-
omia in 1967 to about 0.79 for powerlessness in 1966. This is a
considerable range and reflects the importance of allowing both true
score variance and error variance to vary in these models. Our final
stability estimates are 0.712 and 0.370, and we consider these as
approaching a lower limit. Owing indirectly to the effect of cor-
related measurement error in the model, the total correlations
between alienation constructs estimated by the model are somewhat
lower for model IIA:7y, x, = 0.804, 7y, x,= 0.689, and rx x,= 0.684.
These are still in marked contrast with our stability estimates.
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The descriptive fit ratio for this model is the best we have
achieved, equal to 1.40 (with an accompanying improvement in the
probability level). Residuals for model VC are compared with those
for model VA in Table 6 (entries for VC are in parentheses). Differ-
ences in fit of the two models are clearly reflected by these residuals,
especially for covariances among alienation indicators. Model VC is
a clear improvement here and in reproducing relationships of these
indicators with sz, but it seems less effective in reproducing rela-
tionships between sg and the alienation indicators at times 2 and 3.
This is the only area in which the residuals increase across the two
models, and the problem is especially noticeable in the case of the
latter two anomia indicators. We see that the negative covariances
between sg and x4, and sg and x,4 are overestimated by the model
(taking into account the sign of the residual). Despite this, the
overall fit of model VC suggests that this model is adequately
specified for interpretative purposes. It is true that this fit can be
improved, but we do not feel that further modification will seriously
affect our estimates of reliabilities and stabilities.

We began with the constraint that the loadings for the same
alienation indicator over time would be assumed equal. This is an
important assumption in reliability /stability models, and it merits
further attention. First, we feel that this equality is implied in any
model that purports to interpret a variable’s stability: it is the
specification of equal loadings when using the same measures over
time, which means that we are expecting to measure the same
construct. Strictly speaking, the concept of stability demands this
specification, but we can test for the equality assumption by com-
paring x?2 differences between a constrained “same construct”
model and an unconstrained model in which loadings for the same
indicators are not set equal.!® We first tested model IA for the
efficacy of this equality assumption by specifying an alternative
model in which the loadings for anomia and powerlessness are both
free at time 1 (with V(X;) = 1), and the loadings for anomia at
times 2 and 3 are set at 1 (in order to give the construct a metric),

> A word of caution is in order here: successive application of this x? diffe-
rence test to a series of nested models affects the validity of its probability level and
forces an analysis of specification problems to become exploratory and speculative
without further data.
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and the loadings for powerlessness are free. The test assesses whether
the set of loadings at times 2 and 3 differs from the set of loadings at
time 1. The x?2 test for improvement in fit is

x3ar — X3ar = 184.08 — 181.47

X%df = 2.60

which is not significant at the 0.05 level, p = 0.27. Thus, the equality
assumption holds for this model. We can apply the same test to
model VC, since this model includes a concomitant variable, cor-
related error, and a construct-to-endogenous disturbance correla-
tion not included in model IA. Here, respecification of the con-
strained version with the free loading version reduces the x 2 value
5.3, which with 2d.f. just fails to be a significant difference at the
0.05 level, p = 0.08. Thus, the assumption of loading equality is
more in question in our final model, but it is still not unreasonable.
This is especially true when we consider the residuals for model VC:
excluded correlations between sg and the errors for the anomia
indicators, for instance, would presently operate through paths in
the model which include the construct loadings—and this could
distort these estimates slightly. We conclude that the equality as-
sumption is still tenable and that we are discussing the same con-
struct over time in this model.

The conclusions one can infer from this model can now be
summarized. First, powerlessness is a more reliable measure of
alienation than anomia. Second, this anomia measure exhibits some
nonrandom measurement error which is correlated over time.
Third, alienation shows a moderate amount of stability over a one
year period, but a considerable amount of instability over a four
year period. Fourth, in terms of an analysis of trends over a five year
period in this sample, higher SES in 1966 leads to lower levels of
alienation in 1967 and 1971. Fifth, evidence indicates that either
other causal variables are related to alienation in 1966 and cause
alienation in 1971, or that alienation in 1966 is directly related to
alienation in 1971. This second explanation is possible, for instance,
if alienation in 1971 depends on original position in the alienation
distribution in 1966.
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SUMMARY AND CONCLUSIONS

It should be obvious at this point that specification flexibility
is a mandatory requirement in the adequate estimation of reliability
and stability parameters with panel data. Our presentation has
emphasized that the issue of stability should be addressed within a
thoroughly specified theoretical and measurement context. There is
a statistical basis for this assertion in that stability coeflicients are
subject to bias if obtained from single-indicator single-variable
models. Also, we have seen that only with multiple-indicator mul-
tivariate models can we begin to test our reliability and stability
estimates.

We should point out that the stability of a variable over time
should be an issue in the theory needed to explain that variable.
Basically, we could speculate that stable variables should be less
sensitive to situationally based influences, and unstable variables
should be more sensitive to these sources of influence. This is the
sense in which the stability issue is inseparable from the substantive
context and, thus, the causal system within which the variable
operates. We should be sensitive to the point at which estimates of
stability begin to “bottom out” in the light of successive re-
specifications of a model, since evidence for completeness of a causal
system partially depends on this lower-limit stability value.

We began with stability estimates for alienation in model IA
of 0.897 and 0.768, and finally concluded with model VC that the
stabilities were probably closer to 0.712 and 0.370, respectively.
Obviously, there is some danger in taking a “barefaced” approach to
single-indicator or single-construct models. Additionally, we can
best address theoretical issues only when measurement issues are
also incorporated into our models.

The superiority of multiple-indicator models is not only on
methodological grounds. In fact, these models are in harmony with
meta-theoretical arguments which suggest the need for multiple-
indicators of all theoretical concepts. This argument is usually made
in terms of the increased content validity of the unobserved con-
struct with increasing numbers of indicators. Thus, there are con-
venient rationales available at both the empirical and meta-theore-
tical levels for choosing multiple-indicator panel models where
possible.
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In general, our conclusion is that there is a need to be explicit
about both measurement and theoretical specification in stating
relationships between variables in panel models in order to maxim-
ize the accuracy of estimation of parameters in these models. We
have shown that concerns at one level of specification can affect the
estimation of parameters at another. And since we believe the
stability coefficient has implications for our definition and inter-
pretation of a concept in the process of theory construction, these
specification issues are important for theorists to consider as well.
Where we depend on parameter estimates to make decisions with
theoretical implications, adequacy at both levels of specification is
necessary if our decisions are to be taken seriously.
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